

KV10 Sub-Family Reference Manual

Supports: MKV10Z32VLC7, MKV10Z32VFM7, MKV10Z32VLF7, MKV10Z16VLC7, MKV10Z16VFM7, MKV10Z16VLF7

Document Number: KV10P48M75RM Rev. 7, September 2014

Contents

Section number		mber Title	Page
		Chapter 1 About This Document	
1.1	Overvie	W	37
	1.1.1	Purpose	37
	1.1.2	Audience	37
1.2	Conven	tions	37
	1.2.1	Numbering systems	37
	1.2.2	Typographic notation	
	1.2.3	Special terms	

Chapter 2 Introduction

2.1	Overviev	Overview	
2.2	Module I	Functional Categories	9
	2.2.1	ARM Cortex-M0+ Core Modules4	0
	2.2.2	System Modules4	1
	2.2.3	Memories and Memory Interfaces4	2
	2.2.4	Clocks4	2
	2.2.5	Security and Integrity modules	2
	2.2.6	Analog modules4	2
	2.2.7	Timer modules4	3
	2.2.8	Communication interfaces	4
	2.2.9	Human-machine interfaces	4
2.3	Orderabl	e part numbers4	4

Chapter 3 Chip Configuration

3.1	Introduct	on	.47
3.2 Module to Module Interconnects		Module Interconnects	.47
	3.2.1	Module to Module interconnections	.47

Section number		mber Title	Page	
3.3	Core Mo	odules		
	3.3.1	ARM Cortex-M0+ Core Configuration		
	3.3.2	Nested Vectored Interrupt Controller (NVIC) Configuration	55	
	3.3.3	Asynchronous wake-up interrupt controller (AWIC) configuration		
3.4	System	Modules	60	
	3.4.1	SIM Configuration	60	
	3.4.2	System Mode Controller (SMC) Configuration	61	
	3.4.3	PMC Configuration	62	
	3.4.4	Low-Leakage Wake-up Unit (LLWU) Configuration	62	
	3.4.5	MMDVSQ Configuration	64	
	3.4.6	MCM Configuration	65	
	3.4.7	Crossbar-Light Switch Configuration	65	
	3.4.8	Peripheral Bridge Configuration	67	
	3.4.9	DMA request multiplexer configuration	68	
	3.4.10	DMA Controller Configuration	71	
	3.4.11	External Watchdog Monitor (EWM) Configuration	71	
	3.4.12	Watchdog Configuration	73	
3.5	Clock M	Iodules	74	
	3.5.1	MCG Configuration	74	
	3.5.2	OSC Configuration	75	
3.6	Memori	es and Memory Interfaces	76	
	3.6.1	Flash Memory Configuration	76	
	3.6.2	Flash Memory Controller Configuration		
	3.6.3	SRAM Configuration	79	
3.7	Security	r	81	
	3.7.1	CRC Configuration	81	

Section number		mber Title	Page	
3.8	Analog		82	
	3.8.1	16-bit SAR ADC Configuration		
	3.8.2	CMP Configuration		
	3.8.3	12-bit DAC Configuration		
3.9	Timers		90	
	3.9.1	FlexTimer Configuration	90	
	3.9.2	Low-power timer configuration		
	3.9.3	PDB Configuration		
3.10	Commu	nication interfaces		
	3.10.1	SPI configuration		
	3.10.2	I2C Configuration		
	3.10.3	UART Configuration		
3.11 Human-machine interfaces (HMI)		machine interfaces (HMI)		
	3.11.1	GPIO Configuration		

Chapter 4 Memory Map

4.1	Introduction		
4.2	System m	nemory map	111
4.3	Flash Me	mory Map	112
	4.3.1	Alternate Non-Volatile IRC User Trim Description	112
4.4	SRAM m	emory map	113
4.5	Bit Manipulation Engine		113
4.6	Periphera	l bridge (AIPS-Lite) memory map	114
	4.6.1	Read-after-write sequence and required serialization of memory operations	114
	4.6.2	Peripheral Bridge (AIPS-Lite) Memory Map	115
	4.6.3	Modules Restricted Access in User Mode	118
4.7	Private Po	eripheral Bus (PPB) memory map	118

Title

Page

Chapter 5 Clock Distribution

5.1	Introducti	ion121	
5.2	Programm	ning model121	
5.3	High-leve	el device clocking diagram	
5.4	Clock definitions		
	5.4.1	Device clock summary	
5.5	Internal c	locking requirements	
	5.5.1	Clock divider values after reset	
	5.5.2	VLPR mode clocking	
5.6	Clock Ga	ting126	
5.7	Module c	locks	
	5.7.1	PMC 1-kHz LPO clock	
	5.7.2	LPTMR clocking	
	5.7.3	Flex Timer (FTM) clocking	
	5.7.4	UART clocking	
	5.7.5	SPI clocking	
	5.7.6	ADC clocking	

Chapter 6 Reset and Boot

6.1	Introduction1		133
6.2	Reset		133
	6.2.1	Power-on reset (POR)	134
	6.2.2	System reset sources	134
	6.2.3	MCU Resets	137
	6.2.4	Reset Pin	138
	6.2.5	Debug resets	139
6.3 Boot			140
	6.3.1	Boot sources	140

Section number		Title	Page
6.3.2	FOPT boot options		
6.3.3	Boot sequence		141
		Chapter 7 Power Management	
7.1 Introd	luction		143
7.2 Clock	ing Modes		
7.2.1	Partial Stop		
7.2.2	DMA Wakeup		144
7.2.3	Compute Operation		
7.2.4	Peripheral Doze		146
7.2.5	Clock Gating		147
7.3 Power	Power modes		147
7.4 Enter	Entering and exiting power modes		
7.5 Modu	Module Operation in Low Power Modes		

Chapter 8 Security

8.1	Introducti	on1	153
8.2	Flash Sec	urity1	153
8.3	3.3 Security Interactions with other Modules		153
	8.3.1	Security Interactions with Debug	154

Chapter 9 Debug

9.1	Introduct	ion	155
9.2	Debug Port Pin Descriptions		155
9.3	SWD stat	us and control registers	156
	9.3.1	MDM-AP Control Register	157
	9.3.2	MDM-AP Status Register	158
9.4	Debug Re	esets	160
9.5	Micro Tra	ace Buffer (MTB)	160
9.6	Debug in	Low-Power Modes	161

_

_

Section number		mber Title	Page
9.7	Debug &	ک Security	162
		Chapter 10 Signal Multiplexing and Signal Descriptions	
10.1	Introduc	tion	163
10.2	Signal M	Aultiplexing Integration	163
	10.2.1	Port control and interrupt module features	164
	10.2.2	Clock gating	165
	10.2.3	Signal multiplexing constraints	165
10.3	Pinout		165
	10.3.1	Signal Multiplexing and Pin Assignments	165
	10.3.2	KV10 Pinouts	168
10.4	Module	Signal Description Tables	170
	10.4.1	Core Modules	170
	10.4.2	System Modules	171
	10.4.3	Clock Modules	171
	10.4.4	Memories and Memory Interfaces	171
	10.4.5	Analog	171
	10.4.6	Timer Modules	173
	10.4.7	Communication Interfaces	174
	10.4.8	Human-Machine Interfaces (HMI)	175

Chapter 11 Port Control and Interrupts (PORT)

11.1	Introduct	ion	.177
11.2	2 Overview		
	11.2.1	Features	177
	11.2.2	Modes of operation	178
11.3	External	signal description	.179
11.4	Detailed signal description		

Section number		Section number Title	
11.5	Memory	y map and register definition	
	11.5.1	Pin Control Register n (PORT <i>x</i> _PCR <i>n</i>)	
	11.5.2	Global Pin Control Low Register (PORTx_GPCLR)	
	11.5.3	Global Pin Control High Register (PORTx_GPCHR)	
	11.5.4	Interrupt Status Flag Register (PORTx_ISFR)	
11.6	Function	nal description	
	11.6.1	Pin control	
	11.6.2	Global pin control	
	11.6.3	External interrupts	

Chapter 12 System Integration Module (SIM)

12.1	Introduct	ion
	12.1.1	Features
12.2	Memory	map and register definition
	12.2.1	System Options Register 1 (SIM_SOPT1)
	12.2.2	System Options Register 2 (SIM_SOPT2)196
	12.2.3	System Options Register 4 (SIM_SOPT4)197
	12.2.4	System Options Register 5 (SIM_SOPT5)
	12.2.5	System Options Register 7 (SIM_SOPT7)
	12.2.6	System Options Register 8 (SIM_SOPT8)
	12.2.7	System Device Identification Register (SIM_SDID)
	12.2.8	System Clock Gating Control Register 4 (SIM_SCGC4)
	12.2.9	System Clock Gating Control Register 5 (SIM_SCGC5)
	12.2.10	System Clock Gating Control Register 6 (SIM_SCGC6)
	12.2.11	System Clock Gating Control Register 7 (SIM_SCGC7)214
	12.2.12	System Clock Divider Register 1 (SIM_CLKDIV1)
	12.2.13	Flash Configuration Register 1 (SIM_FCFG1)
	12.2.14	Flash Configuration Register 2 (SIM_FCFG2)
	12.2.15	Unique Identification Register Mid-High (SIM_UIDMH)

Sec	tion nur	nber Title	Page	
	12.2.16	Unique Identification Register Mid Low (SIM_UIDML)	219	
	12.2.17	Unique Identification Register Low (SIM_UIDL)	220	
	12.2.18	WDOG Control Register (SIM_WDOGCTRL)	220	
12.3	Function	al description	221	

Chapter 13 System Mode Controller (SMC)

13.1	Introduct	ion	223
13.2	Modes of	f operation	223
13.3	Memory	map and register descriptions	225
	13.3.1	Power Mode Protection register (SMC_PMPROT)	226
	13.3.2	Power Mode Control register (SMC_PMCTRL)	227
	13.3.3	Stop Control Register (SMC_STOPCTRL)	228
	13.3.4	Power Mode Status register (SMC_PMSTAT)	230
13.4	Function	al description	230
	13.4.1	Power mode transitions	230
	13.4.2	Power mode entry/exit sequencing	233
	13.4.3	Run modes	235
	13.4.4	Wait modes	236
	13.4.5	Stop modes	237
	13.4.6	Debug in low power modes	239

Chapter 14 Power Management Controller (PMC)

14.1	Introduct	ion	241
14.2	Features		241
14.3	Low-voltage detect (LVD) system		
	14.3.1	LVD reset operation	242
	14.3.2	LVD interrupt operation	242
	14.3.3	Low-voltage warning (LVW) interrupt operation	242
14.4	I/O reten	tion	243

Section number		mber Title	Page	
14.5	Memory	map and register descriptions		
	14.5.1	Low Voltage Detect Status And Control 1 register (PMC_LVDSC1)		
	14.5.2	Low Voltage Detect Status And Control 2 register (PMC_LVDSC2)		
	14.5.3	Regulator Status And Control register (PMC_REGSC)		
		Chapter 15 Low-Leakage Wakeup Unit (LLWU)		
15.1	Introduc	tion		
	15.1.1	Features		
	15.1.2	Modes of operation		
	15.1.3	Block diagram		
15.2	LLWU s	signal descriptions		
15.3	15.3 Memory map/register definition			
	15.3.1	LLWU Pin Enable 1 register (LLWU_PE1)		
	15.3.2	LLWU Pin Enable 2 register (LLWU_PE2)		
	15.3.3	LLWU Pin Enable 3 register (LLWU_PE3)		
	15.3.4	LLWU Pin Enable 4 register (LLWU_PE4)		
	15.3.5	LLWU Module Enable register (LLWU_ME)		
	15.3.6	LLWU Flag 1 register (LLWU_F1)		
	15.3.7	LLWU Flag 2 register (LLWU_F2)		
	15.3.8	LLWU Flag 3 register (LLWU_F3)		
	15.3.9	LLWU Pin Filter 1 register (LLWU_FILT1)		
	15.3.10	LLWU Pin Filter 2 register (LLWU_FILT2)		
15.4	Function	nal description		
	15.4.1	VLLS modes		
	15.4.2	Initialization		
		0 1 40		

Chapter 16 Reset Control Module (RCM)

16.1	Introduction	269
------	--------------	-----

Section number		mber Title	Page
	16.2 Reset m	emory map and register descriptions	
	16.2.1	System Reset Status Register 0 (RCM_SRS0)	
	16.2.2	System Reset Status Register 1 (RCM_SRS1)	
	16.2.3	Reset Pin Filter Control register (RCM_RPFC)	
	16.2.4	Reset Pin Filter Width register (RCM_RPFW)	

Chapter 17 Bit Manipulation Engine (BME)

17.1 Introduction		ion	275
	17.1.1	Overview	276
	17.1.2	Features	276
	17.1.3	Modes of operation	277
17.2	Memory	map and register definition	277
17.3 Functional description		al description	277
	17.3.1	BME decorated stores	278
	17.3.2	BME decorated loads	285
	17.3.3	Additional details on decorated addresses and GPIO accesses	291
17.4	Applicati	on information	292

Chapter 18 Memory-Mapped Divide and Square Root (MMDVSQ)

18.1	Introduct	ion	295
	18.1.1	Features	295
	18.1.2	Block diagram	296
	18.1.3	Modes of operation	297
18.2	External	signal description	298
18.3 Memory map and register definition		map and register definition	298
	18.3.1	Dividend Register (MMDVSQ_DEND)	299
	18.3.2	Divisor Register (MMDVSQ_DSOR)	299
	18.3.3	Control/Status Register (MMDVSQ_CSR)	301
	18.3.4	Result Register (MMDVSQ_RES)	304

Section number		mber Title	Page
	18.3.5	Radicand Register (MMDVSQ_RCND)	
18.4	18.4 Functional description		
	18.4.1	Algorithms	
	18.4.2	Execution times	
	18.4.3	Software interface	

Chapter 19 Miscellaneous Control Module (MCM)

19.1	Introduction		
	19.1.1	Features	313
19.2	Memory	map/register descriptions	313
	19.2.1	Crossbar Switch (AXBS) Slave Configuration (MCM_PLASC)	314
	19.2.2	Crossbar Switch (AXBS) Master Configuration (MCM_PLAMC)	314
	19.2.3	Platform Control Register (MCM_PLACR)	315
	19.2.4	Compute Operation Control Register (MCM_CPO)	318

Chapter 20 Micro Trace Buffer (MTB)

20.1	20.1 Introduction		
	20.1.1	Overview	321
	20.1.2	Features	323
	20.1.3	Modes of operation	324
20.2	External	signal description	324
20.3	20.3 Memory map and register definition		
	20.3.1	MTB_RAM Memory Map	326
	20.3.2	MTB_DWT Memory Map	339
	20.3.3	System ROM Memory Map	348

Chapter 21 Crossbar Switch Lite (AXBS-Lite)

21.1	Introduction		353
	21.1.1	Features	353
21.2	Memory	Map / Register Definition	354

Section number		mber	nber Title	
21.3	3 Functional Description			
	21.3.1	General operation		
	21.3.2	Arbitration		
21.4	Initializa	ation/application information		

Chapter 22 Peripheral Bridge (AIPS-Lite)

22.1 Introduction		on	359
	22.1.1	Features	359
	22.1.2	General operation	359
22.2	Functional description		360
	22.2.1	Access support	360

Chapter 23 Direct Memory Access Multiplexer (DMAMUX)

23.1	Introduct	ion	361	
	23.1.1	Overview	361	
	23.1.2	Features	362	
	23.1.3	Modes of operation	362	
23.2	External	signal description	363	
23.3	23.3 Memory map/register definition			
	23.3.1	Channel Configuration register (DMAMUX_CHCFGn)	363	
23.4	23.4 Functional description			
	23.4.1	Always-enabled DMA sources	364	
23.5 Initialization/application information		tion/application information	365	
	23.5.1	Reset	366	
	23.5.2	Enabling and configuring sources	366	

Chapter 24 Enhanced Direct Memory Access (eDMA)

24.1	Introduction		
	24.1.1	eDMA system block diagram	369
	24.1.2	Block parts	370

Section number		mber Title	Page	
	24.1.3	Features		
24.2	Modes o	f operation		
24.3	Memory	map/register definition		
	24.3.1	TCD memory		
	24.3.2	TCD initialization		
	24.3.3	TCD structure		
	24.3.4	Reserved memory and bit fields		
	24.3.1	Control Register (DMA_CR)		
	24.3.2	Error Status Register (DMA_ES)		
	24.3.3	Enable Request Register (DMA_ERQ)		
	24.3.4	Enable Error Interrupt Register (DMA_EEI)		
	24.3.5	Clear Enable Error Interrupt Register (DMA_CEEI)		
	24.3.6	Set Enable Error Interrupt Register (DMA_SEEI)		
	24.3.7	Clear Enable Request Register (DMA_CERQ)		
	24.3.8	Set Enable Request Register (DMA_SERQ)		
	24.3.9	Clear DONE Status Bit Register (DMA_CDNE)		
	24.3.10	Set START Bit Register (DMA_SSRT)		
	24.3.11	Clear Error Register (DMA_CERR)		
	24.3.12	Clear Interrupt Request Register (DMA_CINT)		
	24.3.13	Interrupt Request Register (DMA_INT)		
	24.3.14	Error Register (DMA_ERR)		
	24.3.15	Hardware Request Status Register (DMA_HRS)		
	24.3.16	Enable Asynchronous Request in Stop Register (DMA_EARS)		
	24.3.17	Channel n Priority Register (DMA_DCHPRIn)		
	24.3.18	TCD Source Address (DMA_TCDn_SADDR)	400	
	24.3.19	TCD Signed Source Address Offset (DMA_TCDn_SOFF)	400	
	24.3.20	TCD Transfer Attributes (DMA_TCDn_ATTR)	401	
	24.3.21	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCDn_NBYTES_MLNO)		

Sec	tion nui	mber Title	Page	
	24.3.22	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCDn_NBYTES_MLOFFNO)	402	
	24.3.23	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCDn_NBYTES_MLOFFYES)	404	
	24.3.24	TCD Last Source Address Adjustment (DMA_TCDn_SLAST)	405	
	24.3.25	TCD Destination Address (DMA_TCDn_DADDR)	405	
	24.3.26	TCD Signed Destination Address Offset (DMA_TCDn_DOFF)	406	
	24.3.27	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCDn_CITER_ELINKYES)	406	
	24.3.28	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCDn_CITER_ELINKNO)	408	
	24.3.29	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCDn_DLASTSGA)	409	
	24.3.30	TCD Control and Status (DMA_TCDn_CSR)	409	
	24.3.31	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCDn_BITER_ELINKYES)	412	
	24.3.32	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCDn_BITER_ELINKNO)	413	
24.4	Functional description		414	
	24.4.1	eDMA basic data flow	414	
	24.4.2	Fault reporting and handling	417	
	24.4.3	Channel preemption	419	
	24.4.4	Performance	419	
24.5	Initializa	tion/application information	424	
	24.5.1	eDMA initialization	424	
	24.5.2	Programming errors	426	
	24.5.3	Arbitration mode considerations	426	
	24.5.4	Performing DMA transfers	427	
	24.5.5	Monitoring transfer descriptor status	431	
	24.5.6	Channel Linking	433	

Sec	tion nu	mber Title	Page
	24.5.7	Dynamic programming	434
		Chapter 25 External Watchdog Monitor (EWM)	
25.1	Introduc		
	25.1.1	Features	
	25.1.2	Modes of Operation	
	25.1.3	Block Diagram	
25.2	EWM S	Signal Descriptions	
25.3	Memory	y Map/Register Definition	
	25.3.1	Control Register (EWM_CTRL)	
	25.3.2	Service Register (EWM_SERV)	
	25.3.3	Compare Low Register (EWM_CMPL)	
	25.3.4	Compare High Register (EWM_CMPH)	
	25.3.5	Clock Control Register (EWM_CLKCTRL)	
	25.3.6	Clock Prescaler Register (EWM_CLKPRESCALER)	
25.4	Function	nal Description	
	25.4.1	The EWM_out Signal	
	25.4.2	The EWM_in Signal	
	25.4.3	EWM Counter	
	25.4.4	EWM Compare Registers	
	25.4.5	EWM Refresh Mechanism	
	25.4.6	EWM Interrupt	
	25.4.7	Selecting the EWM counter clock	
	25.4.8	Counter clock prescaler	
		Chapter 26 Watchdog Timer (WDOG)	

26.1	Introduction	.451
26.2	Features	.451

Sec	tion nui	mber Title	Page
26.3	Function	al overview	
	26.3.1	Unlocking and updating the watchdog	454
	26.3.2	Watchdog configuration time (WCT)	
	26.3.3	Refreshing the watchdog	456
	26.3.4	Windowed mode of operation	456
	26.3.5	Watchdog disabled mode of operation	456
	26.3.6	Low-power modes of operation	
	26.3.7	Debug modes of operation	
26.4	Testing t	he watchdog	
	26.4.1	Quick test	
	26.4.2	Byte test	
26.5	Backup	reset generator	
26.6	6.6 Generated resets and interrupts		
26.7	Memory	map and register definition	461
	26.7.1	Watchdog Status and Control Register High (WDOG_STCTRLH)	
	26.7.2	Watchdog Status and Control Register Low (WDOG_STCTRLL)	
	26.7.3	Watchdog Time-out Value Register High (WDOG_TOVALH)	
	26.7.4	Watchdog Time-out Value Register Low (WDOG_TOVALL)	
	26.7.5	Watchdog Window Register High (WDOG_WINH)	
	26.7.6	Watchdog Window Register Low (WDOG_WINL)	
	26.7.7	Watchdog Refresh register (WDOG_REFRESH)	
	26.7.8	Watchdog Unlock register (WDOG_UNLOCK)	
	26.7.9	Watchdog Timer Output Register High (WDOG_TMROUTH)	
	26.7.10	Watchdog Timer Output Register Low (WDOG_TMROUTL)	
	26.7.11	Watchdog Reset Count register (WDOG_RSTCNT)	
	26.7.12	Watchdog Prescaler register (WDOG_PRESC)	
26.8	Watchdo	g operation with 8-bit access	
	26.8.1	General guideline	
	26.8.2	Refresh and unlock operations with 8-bit access	

Section number		nber Title	Page
26.9	Restrictio	ons on watchdog operation	
		Chapter 27 Multipurpose Clock Generator (MCG)	
27.1	Introduct	ion	
	27.1.1	Features	
	27.1.2	Modes of Operation	476
27.2	External	Signal Description	476
27.3	Memory	Map/Register Definition	476
	27.3.1	MCG Control 1 Register (MCG_C1)	476
	27.3.2	MCG Control 2 Register (MCG_C2)	477
	27.3.3	MCG Control 3 Register (MCG_C3)	
	27.3.4	MCG Control 4 Register (MCG_C4)	
	27.3.5	MCG Control 6 Register (MCG_C6)	
	27.3.6	MCG Status Register (MCG_S)	
	27.3.7	MCG Status and Control Register (MCG_SC)	
	27.3.8	MCG Auto Trim Compare Value High Register (MCG_ATCVH)	
	27.3.9	MCG Auto Trim Compare Value Low Register (MCG_ATCVL)	
27.4	Functiona	al description	
	27.4.1	MCG mode state diagram	
	27.4.2	Low-power bit usage	
	27.4.3	MCG Internal Reference Clocks	
	27.4.4	External Reference Clock	
	27.4.5	MCG Fixed Frequency Clock	
	27.4.6	MCG Auto TRIM (ATM)	
27.5	Initializat	ion / Application information	
	27.5.1	MCG module initialization sequence	
	27.5.2	Using a 32.768 kHz reference	
	27.5.3	MCG mode switching	

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

Title

Page

Chapter 28 Oscillator (OSC)

28.1	Introduct	.4	95
28.2	Features	and Modes4	95
28.3	Block Di	agram4	96
28.4	OSC Sig	nal Descriptions4	96
28.5	External	Crystal / Resonator Connections	96
28.6	External	Clock Connections	98
28.7	Memory	Map/Register Definitions4	98
	28.7.1	OSC Memory Map/Register Definition	99
28.8	Function	al Description	00
	28.8.1	OSC module states	00
	28.8.2	OSC module modes	02
	28.8.3	Counter	04
	28.8.4	Reference clock pin requirements	04
28.9	Reset		04
28.10	Low power modes operation		
28.11	Interrupts	s5	05

Chapter 29 Flash Memory Controller (FMC)

Introduct	on	507
29.1.1	Overview	507
29.1.2	Features	507
Modes of	operation	508
External signal description		508
Memory map and register descriptions		508
Functiona	l description	508
	29.1.1 29.1.2 Modes of External s Memory 1	Modes of operation External signal description

Title

Page

Chapter 30 Flash Memory Module (FTFA)

30.1	Introduction		
	30.1.1	Features	512
	30.1.2	Block Diagram	512
	30.1.3	Glossary	513
30.2	External	Signal Description	514
30.3	Memory	Map and Registers	514
	30.3.1	Flash Configuration Field Description	514
	30.3.2	Program Flash IFR Map	515
	30.3.3	Register Descriptions	516
30.4	Functiona	al Description	525
	30.4.1	Flash Protection	525
	30.4.2	Interrupts	526
	30.4.3	Flash Operation in Low-Power Modes	527
	30.4.4	Functional Modes of Operation	527
	30.4.5	Flash Reads and Ignored Writes	527
	30.4.6	Read While Write (RWW)	528
	30.4.7	Flash Program and Erase	528
	30.4.8	Flash Command Operations	528
	30.4.9	Margin Read Commands	532
	30.4.10	Flash Command Description	533
	30.4.11	Security	546
	30.4.12	Reset Sequence	549

Chapter 31 Cyclic Redundancy Check (CRC)

31.1	Introduct	ion	551
	31.1.1	Features	551
	31.1.2	Block diagram	551

Sect	tion nu	mber Title	Page
	31.1.3	Modes of operation	552
31.2	Memory	map and register descriptions	552
	31.2.1	CRC Data register (CRC_DATA)	553
	31.2.2	CRC Polynomial register (CRC_GPOLY)	554
	31.2.3	CRC Control register (CRC_CTRL)	554
31.3	Functior	nal description	555
	31.3.1	CRC initialization/reinitialization	555
	31.3.2	CRC calculations	556
	31.3.3	Transpose feature	557
	31.3.4	CRC result complement	559

Chapter 32 Analog-to-Digital Converter (ADC)

32.1	Introduct	ion	561
	32.1.1	Features	561
	32.1.2	Block diagram	562
32.2	ADC sig	nal descriptions	563
	32.2.1	Analog Power (VDDA)	564
	32.2.2	Analog Ground (VSSA)	564
	32.2.3	Voltage Reference Select	564
	32.2.4	Analog Channel Inputs (ADx)	565
	32.2.5	Differential Analog Channel Inputs (DADx)	565
32.3	Memory	map and register definitions	565
	32.3.1	ADC Status and Control Registers 1 (ADCx_SC1n)	567
	32.3.2	ADC Configuration Register 1 (ADCx_CFG1)	571
	32.3.3	ADC Configuration Register 2 (ADCx_CFG2)	572
	32.3.4	ADC Data Result Register (ADCx_Rn)	573
	32.3.5	Compare Value Registers (ADCx_CVn)	575
	32.3.6	Status and Control Register 2 (ADCx_SC2)	576
	32.3.7	Status and Control Register 3 (ADCx_SC3)	578

Sec	tion nur	nber Title	Page
	32.3.8	ADC Offset Correction Register (ADCx_OFS)	579
	32.3.9	ADC Plus-Side Gain Register (ADCx_PG)	
	32.3.10	ADC Minus-Side Gain Register (ADCx_MG)	
	32.3.11	ADC Plus-Side General Calibration Value Register (ADCx_CLPD)	
	32.3.12	ADC Plus-Side General Calibration Value Register (ADCx_CLPS)	
	32.3.13	ADC Plus-Side General Calibration Value Register (ADCx_CLP4)	
	32.3.14	ADC Plus-Side General Calibration Value Register (ADCx_CLP3)	
	32.3.15	ADC Plus-Side General Calibration Value Register (ADCx_CLP2)	
	32.3.16	ADC Plus-Side General Calibration Value Register (ADCx_CLP1)	
	32.3.17	ADC Plus-Side General Calibration Value Register (ADCx_CLP0)	
	32.3.18	ADC Minus-Side General Calibration Value Register (ADCx_CLMD)	
	32.3.19	ADC Minus-Side General Calibration Value Register (ADCx_CLMS)	
	32.3.20	ADC Minus-Side General Calibration Value Register (ADCx_CLM4)	
	32.3.21	ADC Minus-Side General Calibration Value Register (ADCx_CLM3)	
	32.3.22	ADC Minus-Side General Calibration Value Register (ADCx_CLM2)	
	32.3.23	ADC Minus-Side General Calibration Value Register (ADCx_CLM1)	
	32.3.24	ADC Minus-Side General Calibration Value Register (ADCx_CLM0)	
32.4	Function	al description	
	32.4.1	Clock select and divide control	
	32.4.2	Voltage reference selection	
	32.4.3	Hardware trigger and channel selects	
	32.4.4	Conversion control	
	32.4.5	Automatic compare function	
	32.4.6	Calibration function	600
	32.4.7	User-defined offset function	
	32.4.8	Temperature sensor	
	32.4.9	MCU wait mode operation	604
	32.4.10	MCU Normal Stop mode operation	604
	32.4.11	MCU Low-Power Stop mode operation	

Sec	tion nu	mber Title	Page
32.5	Initializa	ation information	606
	32.5.1	ADC module initialization example	606
32.6	Applicat	tion information	608
	32.6.1	External pins and routing	608
	32.6.2	Sources of error	610
		Chapter 33 Comparator (CMP)	
33.1	Introduc	ction	615
	33.1.1	CMP features	615
	33.1.2	6-bit DAC key features	616
	33.1.3	ANMUX key features	616
	33.1.4	CMP, DAC and ANMUX diagram	617
	33.1.5	CMP block diagram	618
33.2	Memory	y map/register definitions	619
	33.2.1	CMP Control Register 0 (CMPx_CR0)	619
	33.2.2	CMP Control Register 1 (CMPx_CR1)	620
	33.2.3	CMP Filter Period Register (CMPx_FPR)	
	33.2.4	CMP Status and Control Register (CMPx_SCR)	622

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

33.2.5

33.2.6

33.3.1

33.3.2

33.3.3

33.3.4

33.3

33.4

33.5

33.6

33.7

Sect	ion number	Title	Page
33.8	DAC functional description		639
	33.8.1 Voltage reference source select		639
33.9	DAC resets		640
33.10	DAC clocks		640
33.11	DAC interrupts		
33.12	CMP Trigger Mode		640

Chapter 34 12-bit Digital-to-Analog Converter (DAC)

Introduct	ion	641
Features.		641
Block dia	gram	641
Memory	map/register definition	642
34.4.1	DAC Data Low Register (DACx_DATnL)	643
34.4.2	DAC Data High Register (DACx_DATnH)	643
34.4.3	DAC Status Register (DACx_SR)	644
34.4.4	DAC Control Register (DACx_C0)	645
34.4.5	DAC Control Register 1 (DACx_C1)	646
34.4.6	DAC Control Register 2 (DACx_C2)	647
Functiona	al description	647
34.5.1	DAC data buffer operation	647
34.5.2	DMA operation	649
34.5.3	Resets	649
34.5.4	Low-Power mode operation	649
	Features Block dia Memory 2 34.4.1 34.4.2 34.4.3 34.4.4 34.4.5 34.4.6 Functiona 34.5.1 34.5.2 34.5.3	34.4.2 DAC Data High Register (DACx_DATnH)

Chapter 35 FlexTimer Module (FTM)

35.1	Introduct	ion	.651
	35.1.1	FlexTimer philosophy	.651
	35.1.2	Features	.652
	35.1.3	Modes of operation	.653

Section number		mber Title	Page
	35.1.4	Block diagram	
35.2	FTM sig	nal descriptions	
35.3	Memory	map and register definition	
	35.3.1	Memory map	
	35.3.2	Register descriptions	
	35.3.3	Status And Control (FTMx_SC)	
	35.3.4	Counter (FTMx_CNT)	
	35.3.5	Modulo (FTMx_MOD)	
	35.3.6	Channel (n) Status And Control (FTMx_CnSC)	
	35.3.7	Channel (n) Value (FTMx_CnV)	
	35.3.8	Counter Initial Value (FTMx_CNTIN)	
	35.3.9	Capture And Compare Status (FTMx_STATUS)	
	35.3.10	Features Mode Selection (FTMx_MODE)	
	35.3.11	Synchronization (FTMx_SYNC)	
	35.3.12	Initial State For Channels Output (FTMx_OUTINIT)	
	35.3.13	Output Mask (FTMx_OUTMASK)	
	35.3.14	Function For Linked Channels (FTMx_COMBINE)	
	35.3.15	Deadtime Insertion Control (FTMx_DEADTIME)	
	35.3.16	FTM External Trigger (FTMx_EXTTRIG)	
	35.3.17	Channels Polarity (FTMx_POL)	
	35.3.18	Fault Mode Status (FTMx_FMS)	
	35.3.19	Input Capture Filter Control (FTMx_FILTER)	
	35.3.20	Fault Control (FTMx_FLTCTRL)	
	35.3.21	Quadrature Decoder Control And Status (FTMx_QDCTRL)	
	35.3.22	Configuration (FTM <i>x</i> _CONF)	
	35.3.23	FTM Fault Input Polarity (FTMx_FLTPOL)	
	35.3.24	Synchronization Configuration (FTMx_SYNCONF)	
	35.3.25	FTM Inverting Control (FTMx_INVCTRL)	
	35.3.26	FTM Software Output Control (FTMx_SWOCTRL)	

Sec	tion nur	mber Title	Page
	35.3.27	FTM PWM Load (FTMx_PWMLOAD)	
35.4	Function	al description	
	35.4.1	Clock source	
	35.4.2	Prescaler	
	35.4.3	Counter	
	35.4.4	Input Capture mode	
	35.4.5	Output Compare mode	
	35.4.6	Edge-Aligned PWM (EPWM) mode	717
	35.4.7	Center-Aligned PWM (CPWM) mode	719
	35.4.8	Combine mode	
	35.4.9	Complementary mode	
	35.4.10	Registers updated from write buffers	
	35.4.11	PWM synchronization	
	35.4.12	Inverting	
	35.4.13	Software output control	
	35.4.14	Deadtime insertion	750
	35.4.15	Output mask	
	35.4.16	Fault control	
	35.4.17	Polarity control	
	35.4.18	Initialization	
	35.4.19	Features priority	
	35.4.20	Channel trigger output	
	35.4.21	Initialization trigger	
	35.4.22	Capture Test mode	
	35.4.23	DMA	
	35.4.24	Dual Edge Capture mode	
	35.4.25	Quadrature Decoder mode	771
	35.4.26	BDM mode	
	35.4.27	Intermediate load	

Section nu	mber Title	Page
35.4.28	Global time base (GTB)	
35.5 Reset ov	verview	
35.6 FTM Int	terrupts	
35.6.1	Timer Overflow Interrupt	
35.6.2	Channel (n) Interrupt	
35.6.3	Fault Interrupt	
35.7 Initializa	ation Procedure	

Chapter 36 Low-Power Timer (LPTMR)

36.1	Introduction		785
	36.1.1	Features	785
	36.1.2	Modes of operation	785
36.2	LPTMR	signal descriptions	786
	36.2.1	Detailed signal descriptions	786
36.3	Memory	map and register definition	786
	36.3.1	Low Power Timer Control Status Register (LPTMRx_CSR)	787
	36.3.2	Low Power Timer Prescale Register (LPTMRx_PSR)	788
	36.3.3	Low Power Timer Compare Register (LPTMRx_CMR)	790
	36.3.4	Low Power Timer Counter Register (LPTMRx_CNR)	790
36.4	Function	al description	791
	36.4.1	LPTMR power and reset	791
	36.4.2	LPTMR clocking	791
	36.4.3	LPTMR prescaler/glitch filter	791
	36.4.4	LPTMR compare	793
	36.4.5	LPTMR counter	793
	36.4.6	LPTMR hardware trigger	794
	36.4.7	LPTMR interrupt	794

Title

Page

Chapter 37 Programmable Delay Block (PDB)

37.1	Introduction		
	37.1.1	Features	795
	37.1.2	Implementation	796
	37.1.3	Back-to-back acknowledgment connections	797
	37.1.4	DAC External Trigger Input Connections	797
	37.1.5	Block diagram	797
	37.1.6	Modes of operation	799
37.2	PDB sig	nal descriptions	799
37.3	Memory	map and register definition	799
	37.3.1	Status and Control register (PDBx_SC)	801
	37.3.2	Modulus register (PDBx_MOD)	803
	37.3.3	Counter register (PDBx_CNT)	804
	37.3.4	Interrupt Delay register (PDBx_IDLY)	804
	37.3.5	Channel n Control register 1 (PDBx_CHnC1)	805
	37.3.6	Channel n Status register (PDBx_CHnS)	806
	37.3.7	Channel n Delay 0 register (PDBx_CHnDLY0)	806
	37.3.8	Channel n Delay 1 register (PDBx_CHnDLY1)	807
	37.3.9	DAC Interval Trigger n Control register (PDBx_DACINTCn)	807
	37.3.10	DAC Interval n register (PDBx_DACINTn)	808
	37.3.11	Pulse-Out n Enable register (PDBx_POEN)	808
	37.3.12	Pulse-Out n Delay register (PDBx_POnDLY)	809
37.4	Function	al description	809
	37.4.1	PDB pre-trigger and trigger outputs	809
	37.4.2	PDB trigger input source selection	811
	37.4.3	DAC interval trigger outputs	811
	37.4.4	Pulse-Out's	812
	37.4.5	Updating the delay registers	813

Sec	tion nu	mber Title	Page
	37.4.6	Interrupts	
	37.4.7	DMA	814
37.5	Applicat	tion information	815
	37.5.1	Impact of using the prescaler and multiplication factor on timing resolution	
		Chapter 38 Serial Peripheral Interface (SPI)	
38.1	Introduc	tion	817
	38.1.1	Block Diagram	817
	38.1.2	Features	818
	38.1.3	Interface configurations	
	38.1.4	Modes of Operation	
38.2	Module	signal descriptions	
	38.2.1	PCS0/SS—Peripheral Chip Select/Slave Select	
	38.2.2	PCS1–PCS3—Peripheral Chip Selects 1–3	
	38.2.3	SCK—Serial Clock	
	38.2.4	SIN—Serial Input	
	38.2.5	SOUT—Serial Output	
38.3	Memory	Map/Register Definition	
	38.3.1	Module Configuration Register (SPIx_MCR)	
	38.3.2	Transfer Count Register (SPIx_TCR)	829
	38.3.3	Clock and Transfer Attributes Register (In Master Mode) (SPIx_CTARn)	
	38.3.4	Clock and Transfer Attributes Register (In Slave Mode) (SPLx_CTARn_SLAVE)	834
	38.3.5	Status Register (SPIx_SR)	
	38.3.6	DMA/Interrupt Request Select and Enable Register (SPIx_RSER)	838
	38.3.7	PUSH TX FIFO Register In Master Mode (SPLx_PUSHR)	
	38.3.8	PUSH TX FIFO Register In Slave Mode (SPIx_PUSHR_SLAVE)	
	38.3.9	POP RX FIFO Register (SPLx_POPR)	
	38.3.10	Transmit FIFO Registers (SPLx_TXFRn)	
	38.3.11	Receive FIFO Registers (SPIx_RXFRn)	

Sec	tion nur	mber Title	Page
	38.3.12	Status Register Extended (SPLx_SREX)	
38.4	Function	al description	
	38.4.1	Start and Stop of module transfers	
	38.4.2	Serial Peripheral Interface (SPI) configuration	
	38.4.3	Module baud rate and clock delay generation	
	38.4.4	Transfer formats	
	38.4.5	Continuous Serial Communications Clock	
	38.4.6	Slave Mode Operation Constraints	
	38.4.7	Interrupts/DMA requests	
	38.4.8	Power saving features	
38.5	Initializa	tion/application information	
	38.5.1	How to manage queues	
	38.5.2	Switching Master and Slave mode	
	38.5.3	Initializing Module in Master/Slave Modes	
	38.5.4	Baud rate settings	
	38.5.5	Delay settings	
	38.5.6	Calculation of FIFO pointer addresses	

Chapter 39 Inter-Integrated Circuit (I2C)

39.1	Introduction		
	39.1.1	Features	875
	39.1.2	Modes of operation	876
	39.1.3	Block diagram	876
39.2	I2C signa	l descriptions	877
39.3 Memory map/register definition		map/register definition	878
	39.3.1	I2C Address Register 1 (I2Cx_A1)	878
	39.3.2	I2C Frequency Divider register (I2C <i>x</i> _F)	879
	39.3.3	I2C Control Register 1 (I2Cx_C1)	880
	39.3.4	I2C Status register (I2Cx_S)	882

Sec	tion nur	mber Title	Page
	39.3.5	I2C Data I/O register (I2Cx_D)	
	39.3.6	I2C Control Register 2 (I2Cx_C2)	
	39.3.7	I2C Programmable Input Glitch Filter Register (I2Cx_FLT)	
	39.3.8	I2C Range Address register (I2Cx_RA)	
	39.3.9	I2C SMBus Control and Status register (I2Cx_SMB)	
	39.3.10	I2C Address Register 2 (I2Cx_A2)	
	39.3.11	I2C SCL Low Timeout Register High (I2Cx_SLTH)	
	39.3.12	I2C SCL Low Timeout Register Low (I2Cx_SLTL)	
39.4	Functional description		
	39.4.1	I2C protocol	
	39.4.2	10-bit address	
	39.4.3	Address matching	
	39.4.4	System management bus specification	
	39.4.5	Resets	
	39.4.6	Interrupts	
	39.4.7	Programmable input glitch filter	
	39.4.8	Address matching wake-up	
	39.4.9	DMA support	
39.5	Initializa	ation/application information	

Chapter 40 Universal Asynchronous Receiver/Transmitter (UART)

40.1	Introduction		909
	40.1.1	Features	909
	40.1.2	Modes of operation	911
40.2	UART s	ignal descriptions	912
	40.2.1	Detailed signal descriptions	912
40.3	Memory	map and registers	913
	40.3.1	UART Baud Rate Registers: High (UARTx_BDH)	915
	40.3.2	UART Baud Rate Registers: Low (UART <i>x</i> _BDL)	916

Section number		nber Title	Page
	40.3.3	UART Control Register 1 (UARTx_C1)	916
	40.3.4	UART Control Register 2 (UART <i>x</i> _C2)	
	40.3.5	UART Status Register 1 (UARTx_S1)	
	40.3.6	UART Status Register 2 (UARTx_S2)	
	40.3.7	UART Control Register 3 (UART <i>x</i> _C3)	
	40.3.8	UART Data Register (UART <i>x</i> _D)	
	40.3.9	UART Match Address Registers 1 (UARTx_MA1)	
	40.3.10	UART Match Address Registers 2 (UARTx_MA2)	
	40.3.11	UART Control Register 4 (UART <i>x</i> _C4)	
	40.3.12	UART Control Register 5 (UART <i>x</i> _C5)	
	40.3.13	UART Extended Data Register (UART <i>x</i> _ED)	
	40.3.14	UART Modem Register (UARTx_MODEM)	
	40.3.15	UART FIFO Parameters (UARTx_PFIFO)	
	40.3.16	UART FIFO Control Register (UARTx_CFIFO)	
	40.3.17	UART FIFO Status Register (UARTx_SFIFO)	
	40.3.18	UART FIFO Transmit Watermark (UARTx_TWFIFO)	
	40.3.19	UART FIFO Transmit Count (UARTx_TCFIFO)	
	40.3.20	UART FIFO Receive Watermark (UARTx_RWFIFO)	
	40.3.21	UART FIFO Receive Count (UART <i>x</i> _RCFIFO)	
40.4	Function	al description	
	40.4.1	Transmitter	
	40.4.2	Receiver	
	40.4.3	Baud rate generation	
	40.4.4	Data format	
	40.4.5	Single-wire operation	
	40.4.6	Loop operation	
40.5	Reset		

Sec	tion nu	mber Title	Page
40.6	System	level interrupt sources	
	40.6.1	RXEDGIF description	963
40.7	DMA oj	peration	964
40.8	Application information		964
	40.8.1	Transmit/receive data buffer operation	964
	40.8.2	Initialization sequence	
	40.8.3	Overrun (OR) flag implications	966
	40.8.4	Match address registers	967
	40.8.5	Modem feature	967
	40.8.6	Legacy and reverse compatibility considerations	

Chapter 41 General-Purpose Input/Output (GPIO)

41.1	Introduction		
	41.1.1	Features	971
	41.1.2	Modes of operation	971
	41.1.3	GPIO signal descriptions	972
41.2	Memory	map and register definition	973
	41.2.1	Port Data Output Register (GPIOx_PDOR)	975
	41.2.2	Port Set Output Register (GPIOx_PSOR)	976
	41.2.3	Port Clear Output Register (GPIOx_PCOR)	976
	41.2.4	Port Toggle Output Register (GPIOx_PTOR)	977
	41.2.5	Port Data Input Register (GPIOx_PDIR)	977
	41.2.6	Port Data Direction Register (GPIOx_PDDR)	978
41.3	FGPIO memory map and register definition		978
	41.3.1	Port Data Output Register (FGPIOx_PDOR)	980
	41.3.2	Port Set Output Register (FGPIOx_PSOR)	981
	41.3.3	Port Clear Output Register (FGPIOx_PCOR)	981
	41.3.4	Port Toggle Output Register (FGPIOx_PTOR)	982
	41.3.5	Port Data Input Register (FGPIOx_PDIR)	982

Section	number Title	Page
41.3.	6 Port Data Direction Register (FGPIOx_PDDR)	
41.4 Func	tional description	
41.4.	1 General-purpose input	
41.4.	2 General-purpose output	
41.4.	3 IOPORT	
	Chapter 42 Release Notes for Revision 7	
42.1 Gene	ral changes throughout document	

42.2	About This Document chapter changes	985
42.3	Introduction chapter changes	985
42.4	Chip Configuration chapter changes	985
42.5	Memory Map chapter changes	986
42.6	Clock Distribution chapter changes	986
42.7	Reset and Boot chapter changes	986
42.8	Power Management chapter changes	986
42.9	Security chapter changes	986
42.10	Debug chapter changes	986
42.11	Signal Multiplexing and Signal Descriptions chapter changes	986
42.12	PORT changes	987
42.13	SIM changes	987
42.14	SMC changes	987
42.15	PMC changes	987
42.16	LLWU changes	987
42.17	RCM changes	987
42.18	BME configuration changes	987
42.19	MMDVSQ changes	988
42.20	MCM changes	988
42.21	MTB configuration changes	988
42.22	Crossbar switch module changes	988

Section number	Title	Page
42.23 AIPS module changes		
42.24 DMAMUX module changes		
42.25 eDMA module changes		
42.26 EWM changes		
42.27 WDOG changes		
42.28 MCG changes		
42.29 OSC changes		
42.30 FMC changes		
42.31 FTFA changes		
42.32 CRC changes		
42.33 ADC changes		
42.34 CMP changes		
42.35 DAC changes		
42.36 FTM changes		
42.37 LPTMR changes		
42.38 PDB changes		
42.39 SPI module changes		
42.40 I2C changes		
42.41 UART changes		
42.42 GPIO changes		

Chapter 1 About This Document

1.1 Overview

1.1.1 Purpose

This document describes the features, architecture, and programming model of the Freescale KV10 microcontroller.

1.1.2 Audience

This document is primarily for system architects and software application developers who are using or considering using the microcontroller in a system.

1.2 Conventions

1.2.1 Numbering systems

The following suffixes identify different numbering systems:

This suffix	Identifies a
b	Binary number. For example, the binary equivalent of the number 5 is written 101b. In some cases, binary numbers are shown with the prefix <i>0b</i> .
d	Decimal number. Decimal numbers are followed by this suffix only when the possibility of confusion exists. In general, decimal numbers are shown without a suffix.
h	Hexadecimal number. For example, the hexadecimal equivalent of the number 60 is written 3Ch. In some cases, hexadecimal numbers are shown with the prefix <i>0x</i> .

1.2.2 Typographic notation

The following typographic notation is used throughout this document:

Example	Description
placeholder, x	Items in italics are placeholders for information that you provide. Italicized text is also used for the titles of publications and for emphasis. Plain lowercase letters are also used as placeholders for single letters and numbers.
code	Fixed-width type indicates text that must be typed exactly as shown. It is used for instruction mnemonics, directives, symbols, subcommands, parameters, and operators. Fixed-width type is also used for example code. Instruction mnemonics and directives in text and tables are shown in all caps; for example, BSR.
SR[SCM]	A mnemonic in brackets represents a named field in a register. This example refers to the Scaling Mode (SCM) field in the Status Register (SR).
REVNO[6:4], XAD[7:0]	Numbers in brackets and separated by a colon represent either: • A subset of a register's named field
	For example, REVNO[6:4] refers to bits 6–4 that are part of the COREREV field that occupies bits 6–0 of the REVNO register.
	A continuous range of individual signals of a bus
	For example, XAD[7:0] refers to signals 7–0 of the XAD bus.

1.2.3 Special terms

The following terms have special meanings:

Term	Meaning
asserted	 Refers to the state of a signal as follows: An active-high signal is asserted when high (1). An active-low signal is asserted when low (0).
deasserted	 Refers to the state of a signal as follows: An active-high signal is deasserted when low (0). An active-low signal is deasserted when high (1). In some cases, deasserted signals are described as <i>negated</i>.
reserved	Refers to a memory space, register, or field that is either reserved for future use or for which, when written to, the module or chip behavior is unpredictable.
w1c	Write 1 to clear: Refers to a register bitfield that must be written as 1 to be "cleared."

Chapter 2 Introduction

2.1 Overview

This chapter provides high-level descriptions of the modules available on the devices covered by this document.

2.2 Module Functional Categories

The modules on this device are grouped into functional categories. The following sections describe the modules assigned to each category in more detail.

Module category	Description
ARM® Cortex®-M0+ core	 32-bit MCU core from ARM's Cortex-M class, 1.77 CoreMark[®]/MHz from single-cycle access memories, 75 MHz CPU frequency Additional 32-bit integer divide and square root arithmetic module Supports 32/32 signed and unsigned divide (or remainder) calculations Supports 32-bit unsigned square root calculations
System	 System integration module Power management and mode controllers Multiple power modes available based on run, wait, stop, and power-down modes Low-leakage wakeup unit Miscellaneous control module Crossbar switch Peripheral bridge Direct memory access (DMA) controller with multiplexer to increase available DMA requests External watchdog monitor Watchdog
Memories	 Internal memories include: Up to 32 KB flash memory 8 KB SRAM

Table 2-1. Module functional categories

Module category	Description
Clocks	 Multiple clock generation options available from internally- and externally- generated clocks System oscillator to provide clock source for the MCU MCG module with FLL for systems and CPU clock sources
Security	Cyclic Redundancy Check module for error detection
Analog	 16-bit analog-to-digital converter Comparator Digital-to-analog converter Internal voltage reference
Timers	 Programmable delay block FlexTimers Low power timer
Communications	 Serial peripheral interface Inter-integrated circuit (I²C) UART
Human-Machine Interfaces (HMI)	General purpose input/output controller

Table 2-1. Module functional categories (continued)

2.2.1 ARM Cortex-M0+ Core Modules

The following core modules are available on this device.

Table 2-2.	Core modules
------------	--------------

Module	Description
ARM Cortex-M0+	The ARM® Cortex [™] -M0+ is the newest member of the Cortex M Series of processors targeting microcontroller applications focused on very cost sensitive, deterministic, interrupt driven environments. The Cortex M0+ processor is based on the ARMv6 Architecture and Thumb®-2 ISA and is 100% instruction set compatible with its predecessor, the Cortex-M0 core, and upward compatible to Cortex-M3 and M4 cores.
NVIC	The ARMv6-M exception model and nested-vectored interrupt controller (NVIC) implement a relocatable vector table supporting many external interrupts, a single non-maskable interrupt (NMI), and priority levels.
	The NVIC replaces shadow registers with equivalent system and simplified programmability. The NVIC contains the address of the function to execute for a particular handler. The address is fetched via the instruction port allowing parallel register stacking and look-up. The first sixteen entries are allocated to ARM internal sources with the others mapping to MCU-defined interrupts.
AWIC	The primary function of the Asynchronous Wake-up Interrupt Controller (AWIC) is to detect asynchronous wake-up events in stop modes and signal to clock control logic to resume system clocking. After clock restart, the NVIC observes the pending interrupt and performs the normal interrupt or event processing.
Single-cycle I/O Port	For high-speed, single-cycle access to peripherals, the Cortex-M0+ processor implements a dedicated single-cycle I/O port.

Table 2-2. Core modules (continued)

Module	Description
Debug interfaces	Most of this device's debug is based on the ARM CoreSight [™] architecture. One debug interfaces are supported:
	Serial Wire Debug (SWD)Micro Trace Buffer (MTB)
MMDVSQ	 32-bit integer divide and square root arithmetic module Supports 32/32 signed and unsigned divide (or remainder) calculations Supports 32-bit unsigned square root calculations

2.2.2 System Modules

The following system modules are available on this device.

Module	Description
System integration module (SIM)	The SIM includes integration logic and several module configuration settings.
System mode controller	The SMC provides control and protection on entry and exit to each power mode, control for the Power management controller (PMC), and reset entry and exit for the complete MCU.
Power management controller (PMC)	The PMC provides the user with multiple power options. Ten different modes are supported that allow the user to optimize power consumption for the level of functionality needed. Includes power-on-reset (POR) and integrated low voltage detect (LVD) with reset (brownout) capability and selectable LVD trip points.
Low-leakage wakeup unit (LLWU)	The LLWU module allows the device to wake from low leakage power modes (LLS and VLLS) through various internal peripheral and external pin sources.
Miscellaneous control module (MCM)	The MCM includes integration logic and embedded trace buffer details.
Crossbar switch (XBS)	The XBS connects bus masters and bus slaves, allowing all bus masters to access different bus slaves simultaneously and providing arbitration among the bus masters when they access the same slave.
Bit manipulation engine (BME)	The BME provides hardware support for atomic read-modify-write memory operations to the peripheral address space in Cortex-M0+ based microcontrollers.
Peripheral bridges	The peripheral bridge converts the crossbar switch interface to an interface to access a majority of peripherals on the device.
DMA multiplexer (DMAMUX)	The DMA multiplexer selects from many DMA requests down to a smaller number for the DMA controller.
Direct memory access (DMA) controller	The DMA controller provides programmable channels with transfer control descriptors for data movement via dual-address transfers for 8-, 16-, 32-, 128-, and 256-bit data values.
External watchdog monitor (EWM)	The EWM is a redundant mechanism to the software watchdog module that monitors both internal and external system operation for fail conditions.
Software watchdog (WDOG)	The WDOG monitors internal system operation and forces a reset in case of failure. It can run from an independent 1 KHz low power oscillator with a programmable refresh window to detect deviations in program flow or system frequency.

2.2.3 Memories and Memory Interfaces

The following memories and memory interfaces are available on this device.

Table 2-4. Memories and memory interfaces

Module	Description
Flash memory	Program flash memory — non-volatile flash memory that can execute program code.
Flash memory controller	Manages the interface between the device and the on-chip flash memory.
SRAM	Internal system RAM.

2.2.4 Clocks

The following clock modules are available on this device.

Module	Description
Multi-clock generator (MCG)	The MCG provides several clock sources for the MCU that include:
	 Frequency-locked loop (FLL) — Digitally-controlled oscillator (DCO) Internal reference clocks — Can be used as a clock source for other on-chip peripherals
System oscillator	The system oscillator, in conjunction with an external crystal or resonator, generates a reference clock for the MCU.

 Table 2-5.
 Clock modules

2.2.5 Security and Integrity modules

The following security and integrity module is available on this device:

Table 2-6.	Security and integrity modules	5
------------	--------------------------------	---

Module	Description			
	Hardware CRC generator circuit using 16/32-bit shift register. Error detection for all single, double, odd, and most multi-bit errors, programmable initial seed value, and optional feature to transpose input data and CRC result via transpose register.			

2.2.6 Analog modules

The following analog modules are available on this device:

Module	Description		
16-bit analog-to-digital converters (ADC)	16-bit successive-approximation ADC		
Analog comparators	Compares two analog input voltages across the full range of the supply voltage.		
	Low-power general-purpose DAC, whose output can be placed on an external pin or set as one of the inputs to the analog comparator or ADC.		

2.2.7 Timer modules

The following timer modules are available on this device:

Table 2-8. Timer modules

Module	Description				
Programmable delay block (PDB)	 16-bit resolution 3-bit prescaler Positive transition of trigger event signal initiates the counter Supports two triggered delay output signals, each with an independently- controlled delay from the trigger event Outputs can be OR'd together to schedule two conversions from one input trigger event and can schedule precise edge placement for a pulsed output. This feature is used to generate the control signal for the CMP windowing feature and output to a package pin if needed for applications, such as critical conductive mode power factor correction. Continuous-pulse output or single-shot mode supported, each output is independently enabled, with possible trigger events Supports DMA 				
Flexible timer modules (FTM)	 Selectable FTM source clock, programmable prescaler 16-bit counter supporting free-running or initial/final value, and counting is up or up-down Input capture, output compare, and edge-aligned and center-aligned PWM modes Operation of FTM channels as pairs with equal outputs, pairs with complementary outputs, or independent channels with independent outputs Deadtime insertion is available for each complementary pair Generation of hardware triggers Software control of PWM outputs Up to 4 fault inputs for global fault control Configurable channel polarity Programmable interrupt on input capture, reference compare, overflowed counter, or detected fault condition Quadrature decoder with input filters, relative position counting, and interrupt on position count or capture of position count on external event DMA support for FTM events 				

Table continues on the next page...

orderable part numbers

Module	Description
Low-power timer (LPTimer)	 Selectable clock for prescaler/glitch filter of 1 kHz (internal LPO), 32.768 kHz (external crystal), or internal reference clock Configurable Glitch Filter or Prescaler with 16-bit counter 16-bit time or pulse counter with compare Interrupt generated on Timer Compare Hardware trigger generated on Timer Compare

Table 2-8. Timer modules (continued)

2.2.8 Communication interfaces

The following communication interfaces are available on this device:

Module	Description			
Serial peripheral interface (SPI)	Synchronous serial bus for communication to an external device			
Inter-integrated circuit (I2C)	Allows communication between a number of devices. Also supports the System Management Bus (SMBus) Specification, version 2.			
Universal asynchronous receiver/ transmitters (UART)	Asynchronous serial bus communication interface with programmable 8- or 9-bit data format and support of.			

 Table 2-9.
 Communication modules

2.2.9 Human-machine interfaces

The following human-machine interfaces (HMI) are available on this device:

Table 2-10. HMI modules

Module	Description		
	All general purpose input or output (GPIO) pins are capable of interrupt and DMA request generation. All GPIO pins have 3.3 V tolerance.		

2.3 Orderable part numbers

The following table summarizes the part numbers of the devices covered by this document.

Freescale part number	CPU	Pin count	Package	Total flash	SRAM	GPIO
	frequency			memory		
MKV10Z32VLC7	75 MHz	32	LQFP	32 KB	8 KB	28
MKV10Z32VFM7	75 MHz	32	QFN	32 KB	8 KB	28
MKV10Z32VLF7	75 MHz	48	LQFP	32 KB	8 KB	40
MKV10Z16VLC7	75 MHz	32	LQFP	16 KB	8 KB	28
MKV10Z16VFM7	75 MHz	32	QFN	16 KB	8 KB	28
MKV10Z16VLF7	75 MHz	48	LQFP	16 KB	8 KB	40

 Table 2-11.
 Orderable part numbers summary

oruerable part numbers

Chapter 3 Chip Configuration

3.1 Introduction

This chapter provides details on the individual modules of the microcontroller. It includes:

- Module block diagrams showing immediate connections within the device
- Specific module-to-module interactions not necessarily discussed in the individual module chapters
- Links for more information

3.2 Module to Module Interconnects

3.2.1 Module to Module interconnections

The table below shows the various signal interconnections for MKV10 devices.

Peripheral	Signal	Signal name	Signal name In or Out	
LPTMR0	TPS [5:4]	—	—	—
—	0;0	Pulse counter input 0	input	CMP0_OUT
—	0;1	Pulse counter input 1	input	LPTMR0_ALT1 pin
—	1;0	Pulse counter input 2	input	LPTMR0_ALT2 pin
—	1;1	Pulse counter input 3	input	LPTMR0_ALT3 pin
—	PCS[1:0]	—	—	—
_	0;0	Prescaler/Glitchfilter input clock 0	input	MCGIRCLK
_	0;1	Prescaler/Glitchfilter input clock 1	input	1khz LPO

 Table 3-1.
 MKV10Zx peripheral interconnections

Table continues on the next page...

Peripheral	Signal	Signal name	In or Out	connected to
—	1;0	Prescaler/Glitchfilter input clock 2	input	OSC32KCLK
—	1;1	Prescaler/Glitchfilter input clock 2	input	OSCERCLK
FTM0	TRIGO	Triggers refresh of FTM regs/counter	input	FTM0_SYNC of SIM_OPTx reg/ CMP0_OUT or FTM1_match
—	TRIG1	Triggers refresh of FTM regs/counter	input	PDB ch1 trigger or FTM2_match
—	TRIG2	Triggers refresh of FTM regs/counter	input	CMP0_out or CMP1_out
_	FAULT0	places PWMs in safe state	input	FTM0_FLT0 or CMP0_OUT
—	FAULT1	places PWMs in safe state	input	FTM0_FLT1 or CMP1_OUT
—	FAULT2	places PWMs in safe state	input	FTM0_FLT2
—	FAULT3	places PWMs in safe state	input	FTM0_FLT3
—	EXTRIG	OR of all channels/ counter init	output	PDB ch 1000
—	Ch0 event	Channel event (CMP/ CAP)	output	PDB ch 1000/ DMA_MUX source 24
—	Ch1 event	Channel event (CMP/ CAP)	output	PDB ch 1000/ DMA_MUX source 25
—	Ch2 event	Channel event (CMP/ CAP)	output	PDB ch 1000/ DMA_MUX source 26
—	Ch3 event	Channel event (CMP/ CAP)	output	PDB ch 1000/ DMA_MUX source 27
—	Ch4 event	Channel event (CMP/ CAP)	output	PDB ch 1000/ DMA_MUX source 28
—	Ch5 event	Channel event (CMP/ CAP)	output	PDB ch 1000/ DMA_MUX source 29
FTM1	TRIGO	Triggers refresh of FTM regs/counter	input	FTM1_SYNC of SIM_OPTx reg/ CMP0_OUT or FTM0_match
_	TRIG1	Triggers refresh of FTM regs/counter	input	PDB ch1 trigger or FTM2_match
_	TRIG2	Triggers refresh of FTM regs/counter	input	CMP0_out or CMP1_out
_	FAULT0	places PWMs in safe state	input	FTM1_FLT0 or CMP0_OUT
_	FAULT1	places PWMs in safe state	input	CMP1_OUT

Table 3-1. MKV10Zx peripheral interconnections (continued)

Table continues on the next page...

Chapter 3 Chip Configuration

Peripheral	Signal	Signal name	In or Out	connected to
—	FTM1CH0SRC	input option for channel 0 capture	input	FTM1_CH0 pin or CMP0_OUT or CMP1_OUT
—	EXTRIG	OR of all channels/ counter init	output	PDB ch 1001
_	Ch0 event	Channel event (CMP/ CAP)	output	PDB ch 1001/ DMA_MUX source 32, UART0TXSRC, UART1TXSRC
—	Ch1 event	Channel event (CMP/ CAP)	output	PDB ch 1001/ DMA_MUX source 33
FTM2	TRIG0	Triggers refresh of FTM regs/counter	input	FTM2_SYNC of SIM_OPTx reg/ CMP0_OUT or FTM0_match
—	TRIG1	Triggers refresh of FTM regs/counter	input	PDB ch1 trigger or FTM1_match
_	TRIG2	Triggers refresh of FTM regs/counter	input	CMP0_out or CMP1_out
_	FAULT0	places PWMs in safe state	input	FTM2_FLT0 or CMP0_OUT
_	FAULT1	places PWMs in safe state	input	CMP1_OUT
_	FTM2CH0SRC	input option for channel 0 capture	input	FTM2_CH0 pin or CMP0_OUT or CMP1_OUT
_	EXTRIG	OR of all channels/ counter init	output	PDB ch 1010
_	Ch0 event	Channel event (CMP/ CAP)	output	PDB ch 1010/ DMA_MUX source 34
_	Ch1 event	Channel event (CMP/ CAP)	output	PDB ch 1010/ DMA_MUX source 35
PDB0	0	input 0	input	External Trigger (PDB0_EXTRG)
—	1	input 1	input	CMP 0
	10	input 2	input	CMP 1
_	11	input	input	Reserved
—	100	—	input	DMAch0_done
—	101	_	input	DMAch1_done
—	110	—	input	DMAch2_done
—	111	_	input	DMAch3_done
—	1000	-	input	FTM0 Init and Ext Trigger Outputs
_	1001	—	input	FTM1 Init and Ext Trigger Outputs

Table 3-1. MKV10Zx peripheral interconnections (continued)

Peripheral	Signal	Signal name	In or Out	connected to
renpileiai	-			
_	1010	_	input	FTM2 init and Ext Trigger Outputs
—	1011	—	input	Reserved
—	1100	—	input	Reserved
—	1101	—	input	Reserved
—	1110	input 15	input	LPTMR Output
—	1111	software triggered input	—	-
_	ch0 trigger	trigger 0 out	output	ADC0 and DMA_MUX source 48
_	ch1 trigger	trigger 1 out	output	ADC1 and TRIG1 of FTM0,1,2
—	pulse out	—	output	each CMP sample/ window input
—	DAC triggers	—	output	DAC0 trigger
Watchdog	CLK_IN0	input clock source default	input	LPO or MCGIRCLK
—	CLK_IN1	alternative clock source	input	Bus clock
	CLK_IN3	fast test clock source	input	Bus clock
ADC0	ch0	analog input channel	input	ADC0_SE0/ADC0_DP0 and ADC0_DM0
_	ch1	analog input channel	input	ADC0_SE1/ADC0_DP1 and ADC0_DM1
—	ch2	analog input channel	input	ADC0_SE2
	ch3	analog input channel	input	ADC0_SE3
—	ch4	analog input channel	input	ADC0_SE4
—	ch5	analog input channel	input	ADC0_SE5
—	ch6	analog input channel	input	ADC0_SE6
	ch7	analog input channel	input	ADC0_SE7
_	ch8	analog input channel	input	ADC0_SE8
	ch9	analog input channel	input	ADC0_SE9
	ch10	analog input channel	input	ADC0_SE10
_	ch11	analog input channel	input	ADC0_SE11
_	ch12	analog input channel	input	-
_	ch13	analog input channel	input	_
_	ch14	analog input channel	input	
_	ch15	analog input channel	input	_
_	hardware trigger	trigger input, start acquisition	input	PDB_out 0
_	сосо	conversion complete	output	DMA _MUX source 40
ADC1	ch0	analog input channel	input	ADC1_SE0
—	ch1	analog input channel	input	ADC1_SE1/ADC1_DP1 and ADC1_DM1

Table 3-1. MKV10Zx peripheral interconnections (continued)

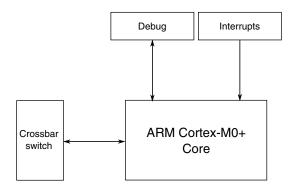
Chapter 3 Chip Configuration

	-			
Peripheral	Signal	Signal name	In or Out	connected to
_	ch2	analog input channel	input	ADC1_SE2/ADC1_DP2 and ADC1_DM2
—	ch3	analog input channel	input	ADC1_SE3
—	ch4	analog input channel	input	ADC1_SE4
—	ch5	analog input channel	input	ADC1_SE5
—	ch6	analog input channel	input	ADC1_SE6
—	ch7	analog input channel	input	ADC1_SE7
—	ch8	analog input channel	input	ADC1_SE8
—	ch9	analog input channel	input	ADC1_SE9
—	ch10	analog input channel	input	ADC1_SE10
—	ch11	analog input channel	input	ADC1_SE11
—	ch12	analog input channel	input	—
—	ch13	analog input channel	input	—
—	ch14	analog input channel	input	—
—	ch15	analog input channel	input	—
_	hardware trigger	trigger input, start acquisition	input	PDB_out 1
—	COCO	conversion complete	output	DMA_MUX source 41
CMP0	INO	input channel	input	CMP0_IN0 pin
—	IN1	input channel	input	CMP0_IN1 pin
—	IN2	input channel	input	—
	IN3	input channel	input	—
	IN4	input channel	input	CMP0_IN4 pin
—	IN5	input channel	input	CMP0_IN5 pin
	IN6	input channel	input	bandgap
—	IN7	input channel	input	6bDAC
_	WindowIN	—	input	PDB pulse out
	CMP0_OUT	_	output	LPTMR0, PDB ch 0001, FTM0_FAULT0, FTM1_FAULT0, FTM2_FAULT0, FTM1CH0SRC,FTM2C H0SRC, UART0RXSRC, USART1RXSRC, DMA_MUX source 42
CMP1	INO	input channel	input	CMP1_IN0 pin
	IN1	input channel	input	CMP1_IN1 pin
—	IN2	input channel	input	—
—	IN3	input channel	input	—
_	IN4	input channel	input	CMP1_IN4
—	IN5	input channel	input	CMP1_IN5

Table 3-1. MKV10Zx peripheral interconnections (continued)

Core Modules

Peripheral	Signal	Signal name	In or Out	connected to
—	IN6	input channel	input	bandgap
—	IN7	input channel	input	6bDAC
—	WindowIN	—	input	PDB pulse out
	CMP1_OUT		output	PDB ch 0010, FTM0_FAULT1, FTM1_FAULT1, FTM2_FAULT1, FTM0_TRIG2,FTM1_T RIG2,FTM2_TRIG2, UART0RXSRC,UART1 RXSRC, DMA_MUX source 43
UART0	Receive complete	—	output	DMA _MUXsource 2
—	Transmit complete	—	output	DMA _MUXsource 3
	UARTORXSRC	_	input	UART0_RX pin or CMP0_OUT or CMP1_OUT
	UARTOTXSRC	_	output	UART0_TX pin or UART0_TX pin modulated with FTM1 channel 0 output
UART1	Receive complete	—	output	DMA _MUXsource 4
—	Transmit complete	—	output	DMA_MUX source 5
	UART1RXSRC	—	input	UART1_RX pin or CMP0_OUT or CMP1_OUT
	UART1TXSRC	_	input	UART1_TX pin or UART1_TX pin modulated with FTM1 channel 0 output
SPI	Receive complete	_	output	DMA_MUX source 16
_	Transmit complete		output	DMA_MUX source 17
I2C	transmission complete	—	output	DMA_MUX source 22


Table 3-1. MKV10Zx peripheral interconnections (continued)

3.3 Core Modules

3.3.1 ARM Cortex-M0+ Core Configuration

This section summarizes how the module has been configured in the chip. Full documentation for this module is provided by ARM and can be found at **arm.com**.

Figure 3-1. Core configuration

Торіс	Related module	Reference
Full description	ARM Cortex-M0+ core, r0p0	ARM Cortex-M0+ Technical Reference Manual, r0p0
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
System/instruction/data bus module	Crossbar switch	Crossbar switch
Debug	Serial Wire Debug (SWD)	Debug
	Micro Trace Buffer (MTB)	МТВ
Interrupts	Nested Vectored Interrupt Controller (NVIC)	NVIC
	Miscellaneous Control Module (MCM)	МСМ
	Memory-Mapped Divide and Square Root (MMDVSQ)	MMDVSQ

3.3.1.1 ARM Cortex M0+ Core

The ARM Cortex M0+ parameter settings are as follows:

Table 3-3.	ARM Cortex-M0+ p	parameter settings
------------	------------------	--------------------

Parameter	Verilog Name	Value	Description
Arch Clock Gating	ACG	1 = Present	Implements architectural clock gating
DAP Slave Port Support	AHBSLV	1	Support any AHB debug access port (like the CM0+ DAP)

Table continues on the next page...

Core Modules

Parameter	Verilog Name	Value	Description	
DAP ROM Table Base	BASEADDR	0xF000_2003	Base address for DAP ROM table	
Endianess	BE	0	Little endian control for data transfers	
Breakpoints	BKPT	2	Implements 2 breakpoints	
Debug Support	DBG	1 = Present		
Halt Event Support	HALTEV	1 = Present		
I/O Port	IOP	1 = Present	Implements single-cycle ld/st accesses to special address space	
IRQ Mask Enable	IRQDIS	0x0000000	Assume (for now) all 32 IRQs are used (set if IRQ is disabled)	
Debug Port Protocol	JTAGnSW	0 = SWD	SWD protocol, not JTAG	
Core Memory Protection	MPU	0 = Absent	No MPU	
Number of IRQs	NUMIRQ	32	Assume full NVIC request vector	
Reset all regs	RAR	0 = Standard	Do not force all registers to be async reset	
Multiplier	SMUL	0 = Fast Mul	Implements single-cycle multiplier	
Multi-drop Support	SWMD	0 = Absent	Do not include serial wire support for multi- drop	
System Tick Timer	SYST	1 = Present	Implements system tick timer (for CM4 compatibility)	
DAP Target ID	TARGETID	0		
User/Privileged	USER	1 = Present	Implements processor operating modes	
Vector Table Offset Register	VTOR	1 = Present	Implements relocation of exception vector table	
WIC Support	WIC	1 = Present	Implements WIC interface	
WIC Requests	WICLINES	34	Exact number of wakeup IRQs is 34	
Watchpoints	WPT	2	Implements 2 watchpoints	

Table 3-3. ARM Cortex-M0+ parameter settings (continued)

For details on the ARM Cortex-M0+ processor core, see the ARM website: www.arm.com.

3.3.1.2 Buses, Interconnects, and Interfaces

The ARM Cortex-M0+ core has two bus interfaces:

- single 32-bit AMBA-3 AHB-Lite system interface that provides connections to peripherals and all system memory, which includes flash and RAM.
- single 32-bit I/O port bus interfacing to the GPIO with 1-cycle loads and stores.

3.3.1.3 System Tick Timer

The CLKSOURCE bit in SysTick Control and Status register selects either the core clock (when CLKSOURCE = 1) or a divide-by-16 of the core clock (when CLKSOURCE = 0). Because the timing reference is a variable frequency, the TENMS bit in the SysTick Calibration Value Register is always zero.

3.3.1.4 Debug Facilities

This device supports standard ARM 2-pin SWD debug port.

3.3.1.5 Core Privilege Levels

The Core on this device is implemented with both Privileged and Unprivileged levels. The ARM documentation uses different terms than this document to distinguish between privilege levels.

If you see this term	it also means this term
Privileged	Supervisor
Unprivileged or user	User

3.3.2 Nested Vectored Interrupt Controller (NVIC) Configuration

This section summarizes how the module has been configured in the chip. Full documentation for this module is provided by ARM and can be found at **arm.com**.

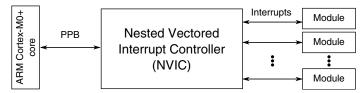


Figure 3-2. NVIC configuration

Table 3-4.	Reference l	links to	related	information
------------	-------------	----------	---------	-------------

Торіс	Related module	Reference
Full description	Nested Vectored Interrupt Controller (NVIC)	ARM Cortex-M0+ Technical Reference Manual
System memory map		System memory map
Clocking		Clock distribution

Table continues on the next page...

Торіс	Related module	Reference
Power management		Power management
Private Peripheral Bus (PPB)	ARM Cortex-M0+ core	ARM Cortex-M0+ core

Table 3-4. Reference links to related information (continued)

3.3.2.1 Interrupt priority levels

This device supports 4 priority levels for interrupts. Therefore, in the NVIC each source in the IPR registers contains 2 bits. For example, IPR0 is shown below:

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	IRC	צר	0	0	0	0	0	0	IR	02	0	0	0	0	0	0	IR	N1	0	0	0	0	0	0	IRC	ഫ	0	0	0	0	0	0
W	Inc	20								QZ							ΠW	ايد							II IC	0						

3.3.2.2 Non-maskable interrupt

The non-maskable interrupt request to the NVIC is controlled by the external $\overline{\text{NMI}}$ signal. The pin the $\overline{\text{NMI}}$ signal is multiplexed on, must be configured for the $\overline{\text{NMI}}$ function to generate the non-maskable interrupt request.

3.3.2.3 Interrupt channel assignments

The interrupt vector assignments are defined in the following table.

- Vector number the value stored on the stack when an interrupt is serviced.
- IRQ number non-core interrupt source count, which is the vector number minus 16.

The IRQ number is used within ARM's NVIC documentation.

Address	Vector	IRQ ¹	NVIC IPR register number ²	Source module	Source description
ARM Core System Ha	andler Vect	ors			
0x0000_0000	0	—	—	ARM core	Initial Stack Pointer
0x0000_0004	1	—	_	ARM core	Initial Program Counter

 Table 3-6.
 Interrupt vector assignments

Table continues on the next page ...

Address	Vector	IRQ ¹	NVIC IPR register number ²	Source module	Source description
0x0000_0008	2	—	_	ARM core	Non-maskable Interrupt (NMI)
0x0000_000C	3	—	—	ARM core	Hard Fault
0x0000_0010	4	_	_	—	—
0x0000_0014	5	—	_	—	
0x0000_0018	6	—	_	—	
0x0000_001C	7	—	—	—	—
0x0000_0020	8	—	—	—	
0x0000_0024	9	—	—	—	—
0x0000_0028	10	_	_	—	—
0x0000_002C	11	_	_	ARM core	Supervisor call (SVCall)
0x0000_0030	12	_	_	—	—
0x0000_0034	13	_	_	—	—
0x0000_0038	14	-	-	ARM core	Pendable request for system service (PendableSrvReq)
0x0000_003C	15	—	—	ARM core	System tick timer (SysTick)
Non-Core Vectors				1	
0x0000_0040	16	0	0	DMA	DMA channel 0 transfer complete
0x0000_0044	17	1	0	DMA	DMA channel 1 transfer complete
0x0000_0048	18	2	0	DMA	DMA channel 2 transfer complete
0x0000_004C	19	3	0	DMA	DMA channel 3 transfer complete
0x0000_0050	20	4	1	DMA	DMA channel 0, 1, 2, 3 error
0x0000_0054	21	5	1	FTFA	Command complete and read collision
0x0000_0058	22	6	1	PMC	Low-voltage detect, low-voltage warning
0x0000_005C	23	7	1	LLWU	Low Leakage Wakeup
0x0000_0060	24	8	2	l ² C0	—
0x0000_0064	25	9	2	—	<u> </u>
0x0000_0068	26	10	2	SPI0	Single interrupt vector for all sources
0x0000_006C	27	11	2	—	
0x0000_0070	28	12	3	UART0	Status and error
0x0000_0074	29	13	3	UART1	Status and error
0x0000_0078	30	14	3	—	
0x0000_007C	31	15	3	ADC0	-
0x0000_0080	32	16	4	ADC1	—
0x0000_0084	33	17	4	FTM0	Single interrupt vector for all sources
0x0000_0088	34	18	4	FTM1	Single interrupt vector for all sources
0x0000_008C	35	19	4	FTM2	Single interrupt vector for all sources
0x0000_0090	36	20	5	CMP0	—
0x0000_0094	37	21	5	CMP1	—

Table 3-6. Interrupt vector assignments (continued)

Address	Vector	IRQ ¹	NVIC IPR register number ²	Source module	Source description
0x0000_0098	38	22	5	—	—
0x0000_009C	39	23	5	WDOG/EWM	—
0x0000_00A0	40	24	6	—	—
0x0000_00A4	41	25	6	DAC0	—
0x0000_00A8	42	26	6	—	—
0x0000_00AC	43	27	6	MCG	—
0x0000_00B0	44	28	7	LPTMR0	—
0x0000_00B4	45	29	7	PDB	—
0x0000_00B8	46	30	7	Port control module	Pin detect (Port A)
0x0000_00BC	47	31	7	Port control module	Pin detect (Port B, C, D, and E)

 Table 3-6.
 Interrupt vector assignments (continued)

1. Indicates the NVIC's interrupt source number.

2. Indicates the NVIC's IPR register number used for this IRQ. The equation to calculate this value is: IRQ div 4

3.3.2.3.1 Determining the bitfield and register location for configuring a particular interrupt

Suppose you need to configure the SPI0 interrupt. The following table is an excerpt of the SPI0 row from Interrupt channel assignments.

Table 3-7.	Interrupt	vector	assignments
------------	-----------	--------	-------------

Address	Vector	IRQ ¹	NVIC IPR register number ²	Source module	Source description
0x0000_0068	26	10	2	SPI0	Single interrupt vector for all sources

1. Indicates the NVIC's interrupt source number.

2. Indicates the NVIC's IPR register number used for this IRQ. The equation to calculate this value is: IRQ div 4.

- The NVIC registers you would use to configure the interrupt are:
 - NVICIPR2
- To determine the particular IRQ's bitfield location within these particular registers:

• NVICIPR2 bitfield starting location = 8 * (IRQ mod 4) + 6 = 22

Since the NVICIPR bitfields are 2-bit wide (4 priority levels), the NVICIPR2 bitfield range is 22-23

Therefore, the following bitfield locations are used to configure the SPI0 interrupts:

• NVICIPR2[23:22]

3.3.3 Asynchronous wake-up interrupt controller (AWIC) configuration

This section summarizes how the module has been configured in the chip. Full documentation for this module is provided by ARM and can be found at **arm.com**.

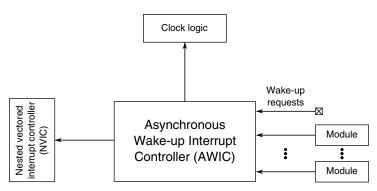


Figure 3-3. Asynchronous wake-up interrupt controller configuration

Table 3-8.	Reference	links to	related	information
------------	-----------	----------	---------	-------------

Торіс	Related module	Reference
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
	Nested vectored interrupt controller (NVIC)	NVIC
Wake-up requests		AWIC wake-up sources

3.3.3.1 Wake-up sources

The device uses the following internal and external inputs to the AWIC module.

Wake-up source	Description
Available system resets	RESET pin and WDOG when LPO is its clock source
Low-voltage detect	Power management controller - functional in Stop mode
Low-voltage warning	Power management controller - functional in Stop mode
Pin interrupts	Port control module - any enabled pin interrupt is capable of waking the system
ADCx	The ADC is functional when using internal clock source
СМР	Interrupt in normal or trigger mode

 Table 3-9.
 AWIC stop wake-up sources

Table continues on the next page ...

Wake-up source	Description
l ² Cx	Address match wakeup
UART	Any interrupt provided clock remains enabled
NMI	NMI pin
LPTMR	Any interrupt provided clock remains enabled
SPI	Slave mode interrupt
MCG	Multi-clock source interrupt

 Table 3-9. AWIC stop wake-up sources (continued)

3.4 System Modules

3.4.1 SIM Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

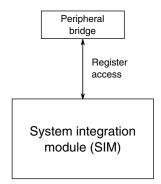


Figure 3-4. SIM configuration

Table 3-10.	Reference links to related information
-------------	--

Торіс	Related module	Reference
Full description	SIM	SIM
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management

3.4.2 System Mode Controller (SMC) Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

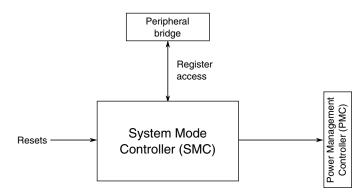


Figure 3-5. System Mode Controller configuration

Table 3-11.	Reference	links t	o related	information
-------------	-----------	---------	-----------	-------------

Торіс	Related module	Reference
Full description	System Mode Controller (SMC)	SMC
System memory map		System memory map
Power management		Power management
	Power management controller (PMC)	PMC
	Low-Leakage Wakeup Unit (LLWU)	LLWU
	Reset Control Module (RCM)	Reset

3.4.2.1 VLLS2 not supported

VLLS2 power mode is not supported on this device.

3.4.2.2 LLS not supported

LLS power mode is not supported on this device.

3.4.3 PMC Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

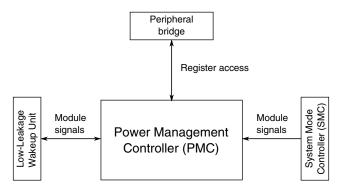


Figure 3-6. PMC configuration

Table 3-12.	Reference	links to	related	information
-------------	-----------	----------	---------	-------------

Торіс	Related module	Reference
Full description	PMC	PMC
System memory map		System memory map
Power management		Power management
Full description	System Mode Controller (SMC)	System Mode Controller
	Low-Leakage Wakeup Unit (LLWU)	LLWU
	Reset Control Module (RCM)	Reset

3.4.4 Low-Leakage Wake-up Unit (LLWU) Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

Chapter 3 Chip Configuration

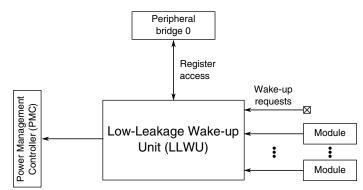


Figure 3-7. Low-Leakage Wake-up Unit configuration

Table 3-13.	Reference links to related information
-------------	--

Торіс	Related module	Reference
Full description	LLWU	LLWU
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management chapter
	Power Management Controller (PMC)	Power Management Controller (PMC)
	System Mode Controller (SMC)	System Mode Controller
Wake-up requests		LLWU wake-up sources

3.4.4.1 LLWU interrupt

NOTE

Do not mask the LLWU interrupt when in LLS mode. Masking the interrupt prevents the device from exiting stop mode when a wakeup is detected.

3.4.4.2 Wake-up Sources

The device uses the following internal peripheral and external pin inputs as wakeup sources to the LLWU module. LLWU_Px are external pin inputs, and LLWU_M0IF-M7IF are connections to the internal peripheral interrupt flags.

NOTE

In addition to the LLWU wakeup sources, the device also wakes from low power modes when NMI or RESET pins are enabled and the respective pin is asserted.

LLWU pin	Module source or pin name
LLWU_P3	PTA4
LLWU_P5	PTB0
LLWU_P6	PTC1
LLWU_P7	PTC3
LLWU_P8	PTC4
LLWU_P9	PTC5
LLWU_P10	PTC6
LLWU_P12	PTD0
LLWU_P13	PTD2
LLWU_P14	PTD4
LLWU_P15	PTD6
LLWU_M0IF	LPTMR0
LLWU_M1IF	СМРО
LLWU_M2IF	CMP1
LLWU_M3IF	Reserved
LLWU_M4IF	Reserved
LLWU_M5IF	Reserved
LLWU_M6IF	Reserved
LLWU_M7IF	Reserved

Table 3-14. Wakeup Sources

3.4.5 MMDVSQ Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

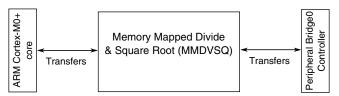


Figure 3-8. MMDVSQ configuration

Table 3-15.	Reference links to related information
-------------	--

Торіс	Related module	Reference
Full description	Memory Mapped Divide & Square root module(MMDVSQ)	MMDVSQ
System memory map		System memory map

Table continues on the next page ...

Chapter 3 Chip Configuration

Торіс	Related module	Reference
Clocking		Clock distribution
Private Peripheral Bus (PPB)	ARM Cortex-M0+ core	ARM Cortex-M0+ core

Table 3-15. Reference links to related information (continued)

3.4.6 MCM Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

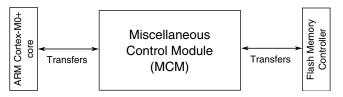
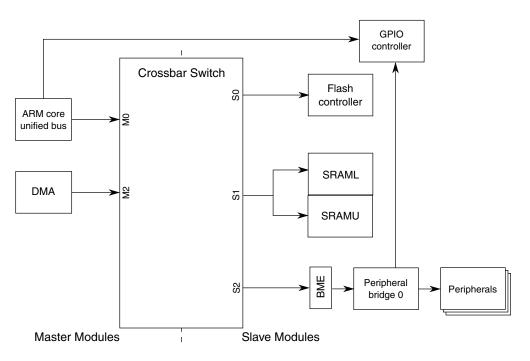


Figure 3-9. MCM configuration


Table 3-16.	Reference links to related information
-------------	--

Торіс	Related module	Reference
Full description	Miscellaneous control module (MCM)	МСМ
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
Private Peripheral Bus (PPB)	ARM Cortex-M0+ core	ARM Cortex-M0+ core
Transfer	Flash memory controller	Flash memory controller

3.4.7 Crossbar-Light Switch Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

Figure 3-10. Crossbar-Light switch integration

Table 3-17.	Reference	links t	to related	information
-------------	-----------	---------	------------	-------------

Торіс	Related module	Reference
Full description	Crossbar switch	Crossbar Switch
System memory map		System memory map
Clocking		Clock Distribution
Crossbar switch master	ARM Cortex-M0+ core	ARM Cortex-M0+ core
Crossbar switch master	DMA controller	DMA controller
Crossbar switch slave	Flash memory controller	Flash memory controller
Crossbar switch slave	SRAM controller	SRAM configuration
Crossbar switch slave	Peripheral bridge	Peripheral bridge
2-ported peripheral	GPIO controller	GPIO controller

3.4.7.1 Crossbar-Light Switch Master Assignments

The masters connected to the crossbar switch are assigned as follows:

Master module	Master port number
ARM core unified bus	0
DMA	2

3.4.7.2 Crossbar Switch Slave Assignments

This device contains 3 slaves connected to the crossbar switch.

The slave assignment is as follows:

Slave module	Slave port number
Flash memory controller	0
SRAM controller	1
Peripheral bridge 0	2

3.4.8 Peripheral Bridge Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

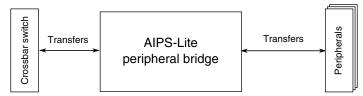


Figure 3-11. Peripheral bridge configuration

 Table 3-18.
 Reference links to related information

Торіс	Related module	Reference
Full description	Peripheral bridge (AIPS-Lite)	Peripheral bridge (AIPS-Lite)
System memory map		System memory map
Clocking		Clock Distribution
Crossbar switch	Crossbar switch	Crossbar switch

3.4.8.1 Number of peripheral bridges

This device contains one peripheral bridge.

oysiem Modules

3.4.8.2 Memory maps

The peripheral bridges are used to access the registers of most of the modules on this device. See AIPS0 Memory Map for the memory slot assignment for each module.

3.4.9 DMA request multiplexer configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

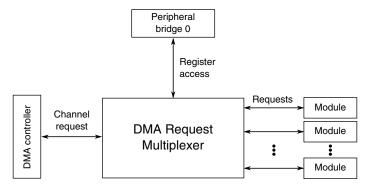


Figure 3-12. DMA request multiplexer configuration

 Table 3-19.
 Reference links to related information

Торіс	Related module	Reference
Full description	DMA request multiplexer	DMA Mux
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
Channel request	DMA controller	DMA Controller
Requests		DMA request sources

3.4.9.1 Periodic trigger not supported

The periodic trigger capability is not supported with this device. Information related to this must be ignored.

3.4.9.2 DMA MUX Request Sources

This device includes a DMA request mux that allows up to 63 DMA request signals to be mapped to any of the 4 DMA channels. Because of the mux there is no hard correlation between any of the DMA request sources and a specific DMA channel. Some of the modules support Asynchronous DMA operation as indicated by the last column in the following DMA source assignment table.

Source number	Source module	Source description	Async DMA capable	
0		Channel disabled ²		
1	Reserved	Not used		
2	UART0	Receive		
3	UART0	Transmit		
4	UART1	Receive		
5	UART1	Transmit		
6	Reserved			
7	Reserved	_		
8	Reserved	_		
9	Reserved			
10	Reserved			
11	Reserved	_		
12	Reserved	_		
13	Reserved	_		
14	Reserved	_		
15	Reserved	_		
16	SPI0	Receive		
17	SPI0	Transmit		
18	Reserved	_		
19	Reserved	_		
20	Reserved	_		
21	Reserved	_		
22	l ² C0	Transmit/Receive/Arbitration lost/others		
23	Reserved			
24	FTM0	Channel 0		
25	FTM0	Channel 1		
26	FTM0	Channel 2		
27	FTM0	Channel 3		
28	FTM0	Channel 4		
29	FTM0	Channel 5		
30	Reserved	_		

Table 3-20. DMA request sources - MUX 0¹

Table 3-20.	DMA reque	st sources - MUX 0	(continued)
-------------	-----------	--------------------	-------------

Source number			Async DMA capable
31	Reserved	_	
32	FTM1	Channel 0	
33	FTM1	Channel 1	
34	FTM2	Channel 0	
35	FTM2	Channel 1	
36	Reserved	_	
37	Reserved	_	
38	Reserved	_	
39	Reserved		
40	ADC0	Conversion complete	Yes
41	ADC1	Conversion complete	Yes
42	CMP0	Rising/falling edge of CMP0_OUT	Yes
43	CMP1	Rising/falling edge of CMP1_OUT	Yes
44	Reserved		
45	DAC0	Buffer pointer reaches upper or lower limit	
46	Reserved	_	
47	Reserved	_	
48	PDB	Programmable interrupt delay event	
49	Port control module	Port A	Yes
50	Port control module	Port B	Yes
51	Port control module	Port C	Yes
52	Port control module	Port D	Yes
53	Port control module	Port E	Yes
54	DMA MUX	Always enabled	
55	DMA MUX	Always enabled	
56	DMA MUX	Always enabled	
57	DMA MUX	Always enabled	
58	DMA MUX	Always enabled	
59	DMA MUX	Always enabled	
60	DMA MUX	Always enabled	
61	DMA MUX	Always enabled	
62	DMA MUX	Always enabled	
63	DMA MUX	Always enabled	

If Async DMA capable field for a source is empty, it implies it is No.
 Configuring a DMA channel to select source 0 or any of the reserved sources disables that DMA channel.

3.4.10 DMA Controller Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

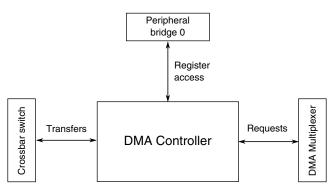
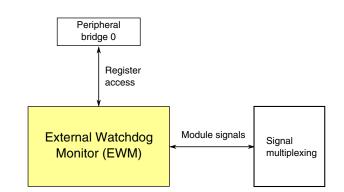


Figure 3-13. DMA Controller configuration


Table 3-21.	Reference links	to related	information
-------------	------------------------	------------	-------------

Торіс	Related module	Reference
Full description	DMA controller	DMA controller
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
Crossbar switch	Crossbar switch	Crossbar switch
Requests		DMA request sources

3.4.11 External Watchdog Monitor (EWM) Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

Figure 3-14. External Watchdog Monitor configuration

Table 3-22. Re	eference links	to related	information
----------------	----------------	------------	-------------

Торіс	Related module	Reference
Full description	External Watchdog Monitor (EWM)	EWM
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
Signal multiplexing	Port Control Module	Signal multiplexing

3.4.11.1 EWM clocks

This table shows the EWM clocks and the corresponding chip clocks.

Table 3-23. EWM clock connections

Module clock	Chip clock
Low Power Clock	1 kHz LPO Clock

3.4.11.2 EWM low-power modes

The EWM module operates normally in Wait mode. This table shows the EWM low-power modes and the corresponding chip low-power modes.

Module mode	Chip mode
Wait	Wait, VLPW
Stop	Stop, VLPS

Table 3-24. EWM low-power modes

3.4.11.3 EWM_OUT pin state in low power modes

When the CPU enters a Run mode from Wait or Stop recovery, the pin resumes its previous state before entering Wait or Stop mode. When the CPU enters Run mode from Power Down, the pin returns to its reset state.

3.4.12 Watchdog Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

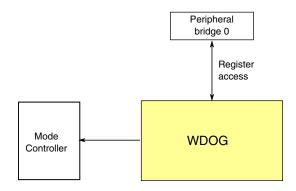


Figure 3-15. Watchdog configuration

 Table 3-25.
 Reference links to related information

Торіс	Related module	Reference
Full description	Watchdog	Watchdog
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
	Mode Controller (MC)	

3.4.12.1 WDOG clocks

This table shows the WDOG module clocks and the corresponding chip clocks.

Table 3-26. WDOG clock connections

Module clock	Chip clock
LPO Oscillator	1 kHz LPO Clock or MCGIRCLK (Depending on SIM_WDOGCTRL[WDGCLKS])

Table continues on the next page ...

Module clock	Chip clock
Alt Clock	Bus Clock
Fast Test Clock	Bus Clock
System Bus Clock	Bus Clock

Table 3-26. WDOG clock connections (continued)

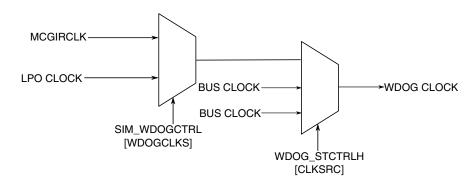


Figure 3-16. WDOG clock connections

3.4.12.2 WDOG low-power modes

This table shows the WDOG low-power modes and the corresponding chip low-power modes.

Table 3-27.	WDOG Iov	w-power modes
-------------	----------	---------------

Module mode	Chip mode
Wait	Wait, VLPW
Stop	Stop, VLPS
Power Down	VLLSx

3.5 Clock Modules

3.5.1 MCG Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

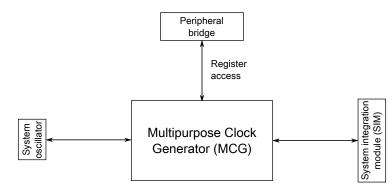


Figure 3-17. MCG configuration

Торіс	Related module	Reference
Full description	MCG	MCG
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
Signal multiplexing	Port control	Signal multiplexing

3.5.2 OSC Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

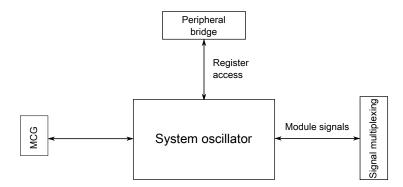


Figure 3-18. OSC configuration

Table 3-29.	Reference	links to	related	information
-------------	-----------	----------	---------	-------------

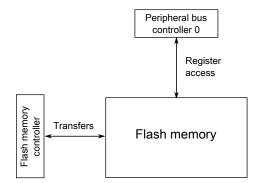
Торіс	Related module	Reference
Full description	OSC	OSC
System memory map		System memory map
Clocking		Clock distribution

Table continues on the next page...

memories and Memory Interfaces

Торіс	Related module	Reference
Power management		Power management
Signal multiplexing	Port control	Signal multiplexing
Full description	MCG	MCG

Table 3-29. Reference links to related information (continued)


3.5.2.1 OSC modes of operation with MCG

The most common method of controlling the OSC block is through MCG clock source selection MCG_C1[CLKS] and the MCG_C2 register bits to configure for crystal or external clock operation. The OSC_CR also provides control for enabling the OSC and configuring internal load capacitors for the EXTAL and XTAL pins. See the OSC and MCG chapters for more details.

3.6 Memories and Memory Interfaces

3.6.1 Flash Memory Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

Торіс	Related module	Reference
Full description	Flash memory	Flash memory
System memory map		System memory map
Clocking		Clock Distribution

Table continues on the next page...

Chapter 3 Chip Configuration

Торіс	Related module	Reference
Transfers	Flash memory controller	Flash memory controller
Register access	Peripheral bridge	Peripheral bridge

Table 3-30. Reference links to related information (continued)

3.6.1.1 Flash Memory Sizes

The devices covered in this document contain 1 program flash block consisting of 1 KB sectors.

The amounts of flash memory for the devices covered in this document are:

Device	Program flash (KB)	Block 0 (P-Flash) address range
MKV10Z32VLC7	32	0x0000_0000 - 0x0000_7FFF
MKV10Z32VFM7	32	0x0000_0000 - 0x0000_7FFF
MKV10Z32VLF7	32	0x0000_0000 - 0x0000_7FFF
MKV10Z16VLC7	16	0x0000_0000 - 0x0000_3FFF
MKV10Z16VFM7	16	0x0000_0000 - 0x0000_3FFF
MKV10Z16VLF7	16	0x0000_0000 - 0x0000_3FFF

Table 3-31. Flash memory size

3.6.1.2 Flash Memory Map

The flash memory and the flash registers are located at different base addresses as shown in the following figure. The base address for each is specified in System memory map.

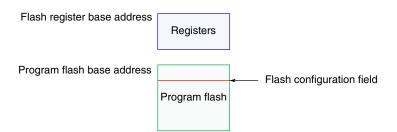


Figure 3-20. Flash memory map

The on-chip Flash is implemented in a portion of the allocated Flash range to form a contiguous block in the memory map beginning at address 0x0000_0000. See Flash Memory Sizes for details of supported ranges.

wemories and Memory Interfaces

Accesses to the flash memory ranges outside the amount of Flash on the device causes the bus cycle to be terminated with an error followed by the appropriate response in the requesting bus master. Read collision events in which flash memory is accessed while a flash memory resource is being manipulated by a flash command also generates a bus error response.

3.6.1.3 Flash Security

How flash security is implemented on this device is described in Chip Security.

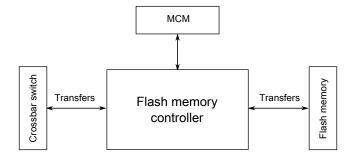
3.6.1.4 Flash Modes

The flash memory chapter defines two modes of operation - NVM normal and NVM special modes. On this device, the flash memory only operates in NVM normal mode. All references to NVM special mode should be ignored.

3.6.1.5 Erase All Flash Contents

In addition to software, the entire flash memory may be erased external to the flash memory via the SW-DP debug port by setting MDM-AP CONTROL[0]. MDM-AP STATUS[0] is set to indicate the mass erase command has been accepted. MDM-AP STATUS[0] is cleared when the mass erase completes.

3.6.1.6 FTFA_FOPT Register


The flash memory's FTFA_FOPT register allows the user to customize the operation of the MCU at boot time. See FOPT boot options for details of its definition.

3.6.2 Flash Memory Controller Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

See MCM_PLACR register description for details on the reset configuration of the FMC.

Figure 3-21. Flash memory controller configuration

Table 3-32. Refe	erence links to related	information
------------------	-------------------------	-------------

Торіс	Related module	Reference
Full description	Flash memory controller	Flash memory controller
System memory map		System memory map
Clocking		Clock Distribution
Transfers	Flash memory	Flash memory
Transfers	Crossbar switch	Crossbar Switch
Register access	MCM	МСМ

3.6.3 SRAM Configuration

This section summarizes how the module has been configured in the chip.

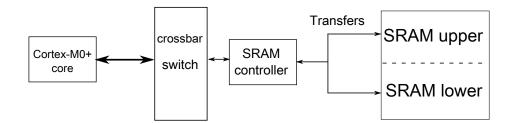


Figure 3-22. SRAM configuration

Table 3-33.	Reference	links	to relate	d information
-------------	-----------	-------	-----------	---------------

Торіс	Related module	Reference
Full description	SRAM	SRAM
System memory map		System memory map
Clocking		Clock Distribution
ARM Cortex-M0+ core		ARM Cortex-M0+ core

3.6.3.1 SRAM Sizes

This device contains SRAM which could be accessed by bus masters through the crossbar switch. The amount of SRAM for the devices covered in this document is shown in the following table.

Device	SRAM (KB)
MKV10Z32VLC7	8
MKV10Z32VFM7	8
MKV10Z32VLF7	8
MKV10Z16VLC7	8
MKV10Z16VFM7	8
MKV10Z16VLF7	8

Table 3-34. SRAM memory size

3.6.3.2 SRAM Ranges

The on-chip SRAM is split into two ranges, 1/4 is allocated SRAM_L and 3/4 is allocated to SRAM_U.

The on-chip RAM is implemented such that the SRAM_L and SRAM_U ranges form a contiguous block in the memory map. As such:

- SRAM_L is anchored to 0x1FFF_FFFF and occupies the space before this ending address.
- SRAM_U is anchored to 0x2000_0000 and occupies the space after this beginning address.

Valid address ranges for SRAM_L and SRAM_U are then defined as:

- SRAM_L = [0x2000_0000–(SRAM_size/4)] to 0x1FFF_FFFF
- SRAM_U = 0x2000_0000 to [0x2000_0000+(SRAM_size*(3/4))-1]

This is illustrated in the following figure.

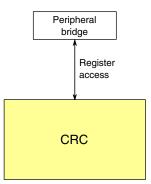


Figure 3-23. SRAM blocks memory map

For example, for a device containing 16 KB of SRAM the ranges are:

- SRAM_L: 0x1FFF_F000 0x1FFF_FFF
- SRAM_U: 0x2000_0000 0x2000_2FFF

3.6.3.3 SRAM retention in low power modes


The SRAM is retained down to VLLS3 mode. In VLLS1 and VLLS0 no SRAM is retained.

3.7 Security

3.7.1 CRC Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

Figure 3-24. CRC configuration

Table 3-35. Reference links to related information

Торіс	Related module	Reference
Full description	CRC	CRC
System memory map		System memory map
Power management		Power management

3.8 Analog

3.8.1 16-bit SAR ADC Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

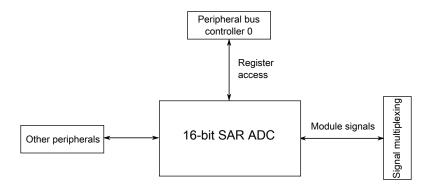


Figure 3-25. 16-bit SAR ADC configuration

Table 3-36. Reference links to related information

Торіс	Related module	Reference
Full description	16-bit SAR ADC	16-bit SAR ADC
System memory map		System memory map

Table continues on the next page...

Chapter 3 Chip Configuration

Торіс	Related module	Reference
Clocking		Clock distribution
Power management		Power management
Signal multiplexing	Port control	Signal multiplexing

Table 3-36. Reference links to related information (continued)

3.8.1.1 ADC Instantiation Information

This device contains two 16-bit successive approximation ADCs with up to 32 channels and 12 external channels each.

The ADC supports both software and hardware triggers. The hardware trigger sources are listed in the Module-to-Module section.

The number of ADC channels present on the device is determined by the pinout of the specific device package. For details regarding the number of ADC channel available on a particular package, refer to the signal multiplexing chapter of this MCU.

3.8.1.2 DMA Support on ADC

Applications may require continuous sampling of the ADC that may have considerable load on the CPU. The ADC supports DMA request functionality for higher performance when the ADC is sampled at a very high rate. The ADC can trigger the DMA (via DMA req) on conversion completion.

3.8.1.3 ADC0 Connections/Channel Assignment

NOTE

As indicated by the following sections, each ADCx_DPx input and certain ADCx_DMx inputs may operate as single-ended ADC channels in single-ended mode.

3.8.1.3.1 ADC0 Channel Assignment

ADC Channel (SC1n[ADCH])	Channel	Input signal (SC1n[DIFF]= 1)	Input signal (SC1n[DIFF]= 0)
00000	DAD0	ADC0_DP0 and ADC0_DM0	ADC0_SE0
00001	DAD1	ADC0_DP1 and ADC0_DM1	ADC0_SE1

Table continues on the next page ...

ADC Channel (SC1n[ADCH])	Channel	Input signal (SC1n[DIFF]= 1)	Input signal (SC1n[DIFF]= 0)	
00010	DAD2	Reserved	ADC0_SE2	
00011	DAD3	Reserved	ADC0_SE3	
00100 ¹	AD4a	Reserved	ADC0_SE4	
00101 ¹	AD5a	Reserved	ADC0_SE5	
00110 ¹	AD6a	Reserved	ADC0_SE6	
00111 ¹	AD7a	Reserved	ADC0_SE7	
00100 ¹	AD4b	Reserved	Reserved	
00101 ¹	AD5b	Reserved	Reserved	
00110 ¹	AD6b	Reserved	Reserved	
00111 ¹	AD7b	Reserved	Reserved	
01000	AD8	Reserved	ADC0_SE8	
01001	AD9	Reserved	ADC0_SE9	
01010	AD10	Reserved	ADC0_SE10	
01011	AD11	Reserved	ADC0_SE11	
01100	AD12	Reserved	Reserved	
01101	AD13	Reserved	Reserved	
01110	AD14	Reserved	Reserved	
01111	AD15	Reserved	Reserved	
10000	AD16	Reserved	Reserved	
10001	AD17	Reserved	Reserved	
10010	AD18	Reserved	Reserved	
10011	AD19	Reserved	Reserved	
10100	AD20	Reserved	Reserved	
10101	AD21	Reserved	Reserved	
10110	AD22	Reserved	Reserved	
10111	AD23	Reserved	Reserved	
11000	AD24	Reserved	Reserved	
11001	AD25	Reserved	Reserved	
11010	AD26	Temperature Sensor (Diff)	Temperature Sensor (S.E)	
11011	AD27	Bandgap (Diff) ²	Bandgap (S.E) ²	
11100	AD28	Reserved	Reserved	
11101	AD29	-VREFH (Diff)	VREFH (S.E)	
11110	AD30	Reserved	VREFL	
11111	AD31	Module Disabled	Module Disabled	

1. ADCx_CFG2[MUXSEL] bit selects between ADCx_SEn channels a and b. Refer to MUXSEL description in ADC chapter for details.

 This is the PMC bandgap 1V reference voltage. Prior to reading from this ADC channel, ensure that you enable the bandgap buffer by setting the PMC_REGSC[BGBE] bit. Refer to the device data sheet for the bandgap voltage (V_{BG}) specification.

3.8.1.4 ADC1 Connections/Channel Assignment

NOTE

As indicated in the following tables, each ADCx_DPx input and certain ADCx_DMx inputs may operate as single-ended ADC channels in single-ended mode.

3.8.1.4.1 ADC1 Channel Assignment

ADC Channel (SC1n[ADCH])			Input signal (SC1n[DIFF]= 0)
00000	DAD0	Reserved	ADC1_SE0
00001	DAD1	ADC1_DP1 and ADC1_DM1	ADC1_SE1
00010	DAD2	ADC1_DP2 and ADC1_DM2	ADC1_SE2
00011	DAD3	Reserved	ADC1_SE3
00100 ¹	AD4a	Reserved	ADC1_SE4
00101 ¹	AD5a	Reserved	ADC1_SE5
00110 ¹	AD6a	Reserved	ADC1_SE6
00111 ¹	AD7a	Reserved	ADC1_SE7
00100 ¹	AD4b	Reserved	Reserved
00101 ¹	AD5b	Reserved	Reserved
00110 ¹	AD6b	Reserved	Reserved
00111 ¹	AD7b	Reserved	Reserved
01000	AD8	Reserved	ADC1_SE8
01001	AD9	Reserved	ADC1_SE9
01010	AD10	Reserved	ADC1_SE10
01011	AD11	Reserved	ADC1_SE11
01100	AD12	Reserved	Reserved
01101	AD13	Reserved	Reserved
01110	AD14	Reserved	Reserved
01111	AD15	Reserved	Reserved
10000	AD16	Reserved	Reserved
10001	AD17	Reserved	Reserved
10010	AD18	Reserved	Reserved
10011	AD19	Reserved	Reserved
10100	AD20	Reserved	Reserved
10101	AD21	Reserved	Reserved
10110	AD22	Reserved	Reserved
10111	AD23	Reserved	Reserved
11000	AD24	Reserved	Reserved
11001	AD25	Reserved	Reserved
11010	AD26	Temperature Sensor (Diff)	Temperature Sensor (S.E)

Table continues on the next page ...

ADC Channel (SC1n[ADCH])	Channel	Input signal (SC1n[DIFF]= 1)	Input signal (SC1n[DIFF]= 0)
11011	AD27	Bandgap (Diff)	Bandgap (S.E)
11100	AD28	Reserved	Reserved
11101	AD29	-VREFH (Diff)	VREFH (S.E)
11110	AD30	Reserved	VREFL
11111	AD31	Module Disabled	Module Disabled

1. ADCx_CFG2[MUXSEL] bit selects between ADCx_SEn channels a and b. Refer to MUXSEL description in ADC chapter for details.

3.8.1.5 ADC Analog Supply and Reference Connections

3.8.1.6 ADC Reference Options

The ADC supports the following references:

- VREFH/VREFL connected as the primary reference option
- VDDA connected as the V_{ALT} reference option

3.8.1.7 Alternate clock

For this device, the user can select the output of the third clock divider as the alternate clock source of the ADC. The user can also select OSCERCLK or IRCLK. For more details, see SIM_SOPT7[ADCALTCLKSRC].

NOTE

This clock option is only usable when the clock output frequency is less than 24 MHz.

3.8.2 CMP Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

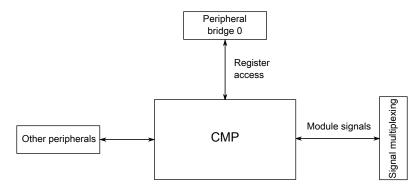


Figure 3-26. CMP configuration

Торіс	Related module	Reference
Full description	Comparator (CMP)	Comparator
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
Signal multiplexing	Port control	Signal multiplexing

3.8.2.1 CMP instantiation information

The device includes two high speed comparator and two 8-input multiplexors for both the inverting and non-inverting inputs of the comparator. Each CMP input channel connects to both muxes. Two of the channels are connected to internal sources, leaving resources to support up to 6 input pins. See the channel assignment table for a summary of CMP input connections for this device.

The CMP also includes one 6-bit DAC with a 64-tap resistor ladder network, which provides a selectable voltage reference for applications where voltage reference is needed for internal connection to the CMP.

Also instantiated is a feed from the 12-bit DAC output to each of the CMPs.

Both the CMPs can be optionally on in all modes except VLLS0.

The CMP has several module to module interconnects in order to facilitate ADC triggering, FTM triggering, and UART IR interfaces. For complete details on the CMP module interconnects please refer to the Module-to-Module section.

3.8.2.2 CMP input connections

The following table shows the fixed internal connections to the CMP.

CMP Inputs	СМРО
INO	CMP0_IN0
IN1	CMP0_IN1
IN2	Reserved
IN3	12-bit DAC0 reference
IN4	CMP0_IN4
IN5	CMP0_IN5
IN6	Bandgap ¹
IN7	6-bit DAC0 reference

Table 3-38. CMP0 input connections

1. This is the PMC bandgap 1V reference voltage. Prior to using as CMP input, ensure that you enable the bandgap buffer by setting the PMC_REGSC[BGBE] bit. Refer to the device data sheet for the bandgap voltage (V_{BG}) specification.

CMP Inputs	CMP1
INO	CMP1_IN0
IN1	CMP1_IN1
IN2	Reserved
IN3	12-bit DAC0 reference
IN4	CMP1_IN4
IN5	CMP1_IN5
IN6	Bandgap ¹
IN7	6-bit DAC0 reference

Table 3-39. CMP1 input connections

1. This is the PMC bandgap 1V reference voltage. Prior to using as CMP input, ensure that you enable the bandgap buffer by setting the PMC_REGSC[BGBE] bit. Refer to the device data sheet for the bandgap voltage (V_{BG}) specification.

3.8.2.3 CMP external references

The 6-bit DAC sub-block supports selection of two references. For this device, the references are connected as follows:

- VREFH V_{in1} input. When using VREFH, any ADC conversion using this same reference at the same time is negatively impacted.
- VDD V_{in2} input

3.8.2.4 CMP trigger mode

The CMP and 6-bit DAC sub-block supports trigger mode operation when the CMP_CR1[TRIGM] is set. When trigger mode is enabled, the trigger event will initiate a compare sequence that must first enable the CMP and DAC prior to performing a CMP operation and capturing the output. In this device, control for this two staged sequencing is provided from the LPTMR. The LPTMR triggering output is always enabled when the LPTMR is enabled. The first signal is supplied to enable the CMP and DAC and is asserted at the same time as the TCF flag is set. The delay to the second signal that triggers the CMP to capture the result of the compare operation is dependent on the LPTMR configuration. In Time Counter mode with prescaler enabled, the delay is 1/2 Prescaler output period. In Time Counter mode with prescaler bypassed, the delay is 1/2 Prescaler clock period.

The delay between the first signal from LPTMR and the second signal from LPTMR must be greater than the Analog comparator initialization delay as defined in the device datasheet.

3.8.3 12-bit DAC Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

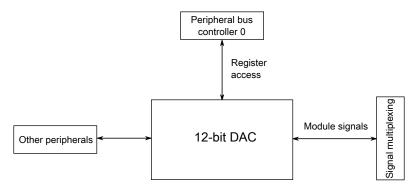


Figure 3-27. 12-bit DAC configuration

Table 3-40.	Reference	links to	related	information
-------------	-----------	----------	---------	-------------

Торіс	Related module	Reference
Full description	12-bit DAC	12-bit DAC
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
Signal multiplexing	Port control	Signal multiplexing

3.8.3.1 12-bit DAC Instantiation Information

This device contains one 12-bit digital-to-analog converter (DAC) with programmable reference generator output. The DAC includes a two word FIFO for DMA support.

3.8.3.2 12-bit DAC Output

The output of the DAC can be placed on an external pin or selected as an input to the analog comparator or ADC.

3.8.3.3 12-bit DAC Analog Supply and Reference Connections

This device has separate VDDA from digital VDD and separate VSSA from VSS. VDDA and VSSA provide power to ADC0, ADC1, and DAC0.

This device contains separate VREFH and VREFL pins. On 32-pin packages, these are connected to VDDA and VSSA respectively using wire bonding. In 48-pin packages, these are separate from VDDA and VSSA.

3.8.3.4 12-bit DAC Reference

For this device VREFH and VDDA are selectable as the DAC reference. VREFH is connected to the DACREF_1 input and VDDA is connected to the DACREF_2 input. Use DACx_C0[DACRFS] control bit to select between these two options.

Be aware that if the DAC and ADC use the same reference simultaneously, some degradation of ADC accuracy is to be expected due to DAC switching.

3.9 Timers

3.9.1 FlexTimer Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

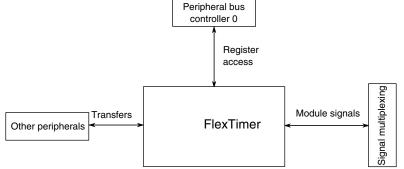


Figure 3-28. FTM configuration

 Table 3-41.
 Reference links to related information

Торіс	Related module	Reference
Full description	FlexTimer Module	FlexTimer Module
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
Signal multiplexing	Port control	Signal multiplexing

3.9.1.1 Instantiation Information

This device contains three FlexTimer modules.

The following table shows how these modules are configured.

 Table 3-42.
 FTM Instantiations

FTM instance	Number of channels	Features/usage
FTM0	6	3-phase motor
FTM1	2	Quadrature decoder or general purpose
FTM2	2	Quadrature decoder or general purpose

All three FTMs can be synchronized with each other or run independently. FTM1 and FTM2 will be enhanced to support Hall Sensor detect and chopper mode and possibly blanking mode.

The table below summarizes the features of FTM modules.

Table 3-43. FTM modules features

Feature	FTM0	FTM1/FTM2
Number of channels	6	2

Table continues on the next page...

rmers

Table 3-43.	FTM modules features	(continued)
		(

Feature	FTM0	FTM1/FTM2
Initial counting value	yes	yes
Periodic TOF	yes	yes
Input capture mode	yes	yes
Channel input filter	channels 0, 1, 2, and 3	channels 0 and 1
Output compare mode	yes	yes
Edge-Aligned PWM (EPWM)	yes	yes
Center-Aligned PWM (CPWM)	yes	yes
Combine mode	yes	yes
Complementary mode	yes	yes
PWM synchronization	yes	yes
Inverting	yes	yes
Software output control (SWOC)	yes	yes
Deadtime insertion	yes	yes
Output mask	yes	yes
Fault control	yes	yes
Number of fault inputs	4	2
Fault input filter	fault inputs 0, 1, 2, and 3	fault inputs 0 and 1
Polarity control	yes	yes
Initialization	yes	yes
Channel match trigger	yes	yes
Initialization trigger	yes	yes
Capture test mode	yes	yes
DMA	yes	yes
Dual edge capture mode	yes	yes
Quadrature decoder mode	no	yes
Quadrature decoder input filter	no	yes
BDM modes	yes	yes
Intermediary load	no	yes (only FTM2)
Global time base enable	yes	yes
FTM_CnSC[ICRST]	no	yes (only FTM2)

3.9.1.2 External Clock Options

By default each FTM is clocked by the system clock (the FTM refers to it as system clock). Each module contains a register setting that allows the module to be clocked from an external clock instead. There are three external FTM_CLKINx pins that can be selected by any FTM module via the SOPT4 register in the SIM module (SIM_SOPT4). Each of the 3 FTMs can be clocked by an independent external clock if required.

3.9.1.3 Fixed frequency clock

The fixed frequency clock for each FTM is MCGFFCLK.

3.9.1.4 FTM Interrupts

The FlexTimer has multiple sources of interrupt. However, these sources are OR'd together to generate a single interrupt request per FTM module to the interrupt controller. When an FTM interrupt occurs, read the FTM status registers (FTMx_FMS, FTMx_SC, and FTMx_STATUS) to determine the exact interrupt source.

3.9.1.5 FTM Fault Detection Inputs

The following fault detection input options for the FTM modules are selected via the SIM_SOPT4 register in the SIM module. The external pin option is selected by default.

- FTM0 FAULT0 = FTM0_FLT0 pin or CMP0_OUT
- FTM0 FAULT1 = FTM0_FLT1 pin or CMP1_OUT
- FTM0 FAULT2 = FTM0_FLT2 pin
- FTM0 FAULT3 = FTM0_FLT3 pin
- FTM1 FAULT0 = FTM1_FLT0 pin or CMP0_OUT
- FTM1 FAULT1 = CMP1_OUT
- FTM2 FAULT0 = FTM2_FLT0 pin or CMP0_OUT
- FTM2 FAULT1 = CMP1_OUT

3.9.1.6 FTM Hardware Triggers

The FTM synchronization hardware triggers are connected in the chip as follows:

• FTM0 hardware trigger 0 - TRIG0 = SIM_SOPT8[FTM0SYNCBIT]/CMP0_OUT or FTM1 match

- FTM0 hardware trigger 1 TRIG1 = PDB0 channel 1 trigger out or FTM2_match
- FTM0 hardware trigger 2 TRIG2 = CMP0_OUT or CMP1_OUT (selectable via SIM control bit)
- FTM1 hardware trigger 0 TRIG0 = SIM_SOPT8[FTM1SYNCBIT]/CMP0_OUT or FTM0_match
- FTM1 hardware trigger 1 TRIG1 = PDB0 channel 1 trigger out or FTM2_match
- FTM1 hardware trigger 2 TRIG2 = CMP0_OUT or CMP1_OUT (selectable via SIM control bit)
- FTM2 hardware trigger 0 TRIG0 = SIM_SOPT8[FTM2SYNCBIT]/CMP0_OUT or FTM0_match
- FTM2 hardware trigger 1 TRIG1 = PDB0 channel 1 trigger out or FTM1_match
- FTM2 hardware trigger 2 TRIG 2 = CMP0_OUT or CMP1_OUT (selectable via SIM control bit)

For the triggers with more than one option, SIM_SOPT4 register controls the selection.

FTM0SYNCBIT, FTM1SYNCBIT, and FTM2SYNCBIT fields must be in the same SIM_SOPT8 register to allow the user to synchronize all three timers.

3.9.1.7 Input capture options for FTM module instances

The following channel 0 input capture source options for FTM1, and FTM2 are selected via the SIM_SOPT4 register. The external pin option is selected by default.

- FTM1 channel 0 input capture = FTM1_CH0 pin or CMP0 output or CMP1 output
- FTM2 channel 0 input capture = FTM2_CH0 pin or CMP0 output or CMP1 output

3.9.1.8 FTM output triggers for other modules

FTM output triggers can be selected as input triggers for the PDB, which then can be used to provide triggers to other peripherals for example the ADC modules.

FTM0 all 6 channels when configured as output compare or PWM mode, will provide an output signal on a compare event (match trigger). Each of the 6 channels' output signals and CNTINIT flag are OR'd together and this composite signal is used to trigger other peripheral actions via the PDB0 ch 1000.

Similarly FTM1's two output channel compare match trigger flag signals and CNTINIT flag are OR'd together and the composite signal is used to trigger other peripherals via PDB0 ch 1001.

Similarly FTM2's two output channel compare match trigger flag signals and CNTINIT flag are OR'd together and the composite signal is used to trigger other peripherals via PDB0 ch 1010.

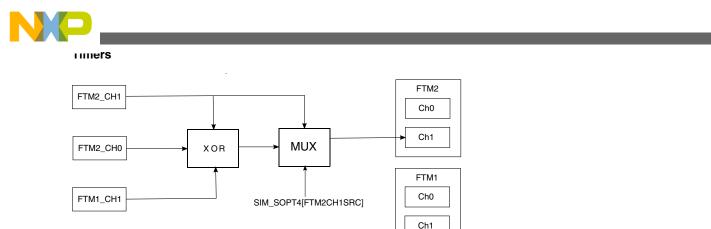
FTM1's channel 0 output is also applied as an option to both UART0 and UART1 TXD input signal. This option is selected via the SIM_SOPT5 register and the FTM1 channel 0 signal is modulated with the corresponding TXD input pin signal.

FTM0 - Channel 0,1,2,3,4,5 and CNTINIT flag signals to PDB0 input channel 1000

FTM1 - Channel 0,1 and CNTINIT flag signals to PDB0 input channel 1001

FTM1 - Channel 0 output also applied to UART0 and UART1 TXD input (modulated with TXD pin)

FTM2 - Channel 0,1 and CNTINIT flag signals to PDB0 input channel 1010


3.9.1.9 FTM Hall sensor support

For 3 phase motor control sensor-ed applications the use of Hall sensors, generally 3 sensors placed 120 degrees apart around the rotor, are deployed to detect position and speed. Each of the 3 sensors provides a pulse that applied to an input capture pin, can then be analyzed and both speed and position can be deduced.

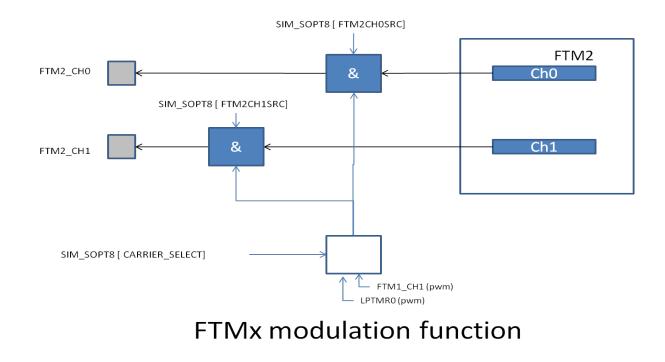
This device has two 2-channel FTMs: FTM1 and FTM2, and thus provides 4 input capture pins. To simplify the calculations required by the CPU on each hall sensor's input, if all 3 inputs are "exclusively OR'd " into one timer channel and the free running counter is refreshed on every edge then this can simplify the speed calculation, removing the need to perform subtractions of previous edge captures with subsequent edge captures.

Thus, via the SIM module and SIM_SOPT4 register, the FTM2CH1SRC bit provides the choice of normal FTM2_CH1 input or the XOR of FTM2_CH0, FTM2_CH1 and FTM1_CH1 pins that will be applied to FTM2_CH1.

Note: If the user utilizes FTM1_CH1 to be an input to FTM2_CH1, FTM1_CH0 can still be utilized for other functions.

3.9.1.10 FTM modulation implementation

The FTM0 and FTM2 can support a modulation function where the output channels when configured as PWM or Output Compare mode will modulate another timer output when the channel signal is asserted. This function is supported via the SIM module.


Any of the 6 channels of FTM0 and any of the two channels of FTM2 can support this modulation function.

The SIM_SOPT8 register has a control bit to select one of two input carrier signals to be modulated. The SIM_SOPT8[CARRIER_SELECT] bit will select either the output of FTM1_CH1 or the output of the LPTMR0 Prescaler.

Note: If FTM1_CH1 is used as the carrier input signal to be modulated, then the user must configure FTM1_CH1 to provide a signal that has a higher frequency of the FTM0 or FTM2 channel output. Also it limits the use of the FTM1_CH0 function, as the FTM1_CH1 will be programmed to provide a 50% duty PWM signal and limit the start and modulus values for the free running counter.

The SIM_SOPT8 register has eight control bits FTMxCHySRC bits that allow the user to select normal PWM/Output Compare mode on the corresponding FTM timer channel or modulate the selected carrier signal on when the channel is asserted. The diagram below shows the implementation for FTM2. FTM0 has similar implementation on each of its 6 channels. See SIM Block Guide for further information.

3.9.1.11 FTM Global Time Base

This chip provides the optional FTM global time base feature (see Global time base (GTB)).

FTM0 provides the only source for the FTM global time base. The other FTM modules can share the time base as shown in the following figure:

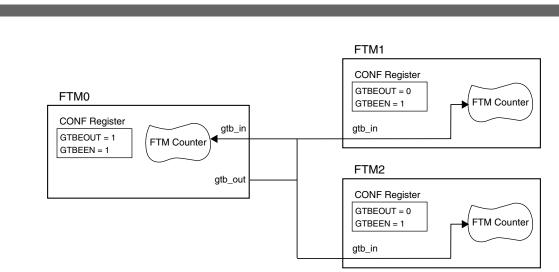


Figure 3-29. FTM Global Time Base Configuration

3.9.1.12 FTM BDM and debug halt mode

In the FTM chapter, references to the chip being in "BDM" are the same as the chip being in "debug halt mode".

3.9.2 Low-power timer configuration

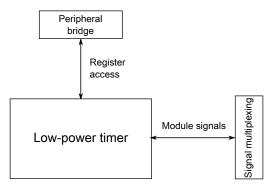


Figure 3-30. LPTMR configuration

Table 3-44.	Reference	links t	o related	information
-------------	-----------	---------	-----------	-------------

Торіс	Related module	Reference
Full description	Low-power timer	Low-power timer
System memory map		System memory map
Clocking		Clock Distribution
Power management		Power management
Signal Multiplexing	Port control	Signal Multiplexing

mers

3.9.2.1 LPTMR Instantiation Information

The low-power timer (LPTMR) allows operation during all power modes. The LPTMR can operate as a real-time interrupt or pulse accumulator. It includes a 15-bit prescaler (real-time interrupt mode) or glitch filter (pulse accumulator mode).

The LPTMR can be clocked from the internal reference clock, the internal 1 kHz LPO, OSCERCLK, or an external 32.768 kHz crystal.

An interrupt is generated (and the counter may reset) when the counter equals the value in the 16-bit compare register.

3.9.2.2 LPTMR pulse counter input options

The LPTMR_CSR[TPS] bitfield configures the input source used in pulse counter mode. The following table shows the chip-specific input assignments for this bitfield.

LPTMR_CSR[TPS]	Pulse counter input number	Chip input
00	0	CMP0 output
01	1	LPTMR_ALT1 pin
10	2	LPTMR_ALT2 pin
11	3	LPTMR_ALT3 pin

3.9.2.3 LPTMR prescaler/glitch filter clocking options

The prescaler and glitch filter of the LPTMR module can be clocked from one of four sources determined by the LPTMR0_PSR[PCS] bitfield. The following table shows the chip-specific clock assignments for this bitfield.

NOTE

The chosen clock must remain enabled if the LPTMR is to continue operating in all required low-power modes.

LPTMR0_PSR[PCS]	Prescaler/glitch filter clock number	Chip clock
00	0	MCGIRCLK — internal reference clock (not available in VLLS modes)
01	1	LPO — 1 kHz clock (not available in VLLS0 mode)

Table continues on the next page...

rmers

LPTMR0_PSR[PCS]	Prescaler/glitch filter clock number	Chip clock
10	2	ERCLK32K (not available in VLLS0 mode when using 32 kHz oscillator)
11	3	OSCERCLK — external reference clock

See Clock Distribution for more details on these clocks.

3.9.3 PDB Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

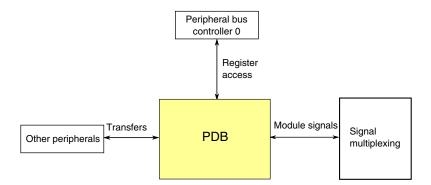


Figure 3-31. PDB configuration

Table 3-45.	Reference links to related information
-------------	--

Торіс	Related module	Reference
Full description	PDB	PDB
System memory map		System memory map
Clocking		Clock distribution
Power management		Power management
Signal multiplexing	Port control	Signal multiplexing

3.9.3.1 PDB Instantiation

3.9.3.1.1 PDB Output Triggers Table 3-46. PDB output triggers

Number of PDB channels for ADC trigger	2
Number of pre-triggers per PDB channel	2

Table continues on the next page...

Chapter 3 Chip Configuration

Table 3-46. PDB output triggers (continued)

Number of DAC triggers	1
Number of PulseOut	1

3.9.3.1.2 PDB Input Trigger Connections Table 3-47. PDB Input Trigger Options

PDB Trigger	PDB Input
0000	External Trigger (PDB0_EXTRG)
0001	CMP 0
0010	CMP 1
0011	Reserved
0100	DMA Ch 0 Transfer Done
0101	DMA Ch 1 Transfer Done
0110	DMA Ch 2 Transfer Done
0111	DMA Ch 3 Transfer Done
1000	FTM0 Init and Channel Match Trigger Outputs
1001	FTM1 Init and Channel Match Trigger Outputs
1010	FTM2 Init and Channel Match Trigger Outputs
1011	Reserved
1100	Reserved
1101	Reserved
1110	LPTMR Output
1111	Software Trigger

3.9.3.2 PDB Module Interconnections

PDB trigger outputs	Connection
Channel 0 triggers	ADC0 trigger
Channel 1 triggers	ADC1 trigger and synchronous input 1 of FTM0, FTM1, and FTM2
DAC triggers	DAC0 trigger
Pulse-out	Pulse-out connected to each CMP module's sample/window input to control sample operation

3.9.3.3 Back-to-back acknowledgement connections

The application code can set the PDB*x*_CH*n*C1[BB] bits to configure the PDB pretriggers as a single chain or several chains.

3.9.3.4 PDB Interval Trigger Connections to DAC

In this MCU, PDB interval trigger connections to DAC are implemented as follows.

• PDB interval trigger 0 connects to DAC0 hardware trigger input.

3.9.3.5 DAC External Trigger Input Connections

In this MCU, the following DAC external trigger inputs are implemented.

• DAC external trigger input 0: ADC0_SC1A[COC0]

3.9.3.6 Pulse-Out Connection

Individual PDB Pulse-Out signals are connected to each CMP block and used for sample window.

3.9.3.7 Pulse-Out Enable Register Implementation

The following table shows the comparison of pulse-out enable register at the module and chip level.

Register	Module implementation	Chip implementation
POnEN	7:0 - POEN	0 - POEN[0] for CMP0
	31:8 - Reserved	1 - POEN[1] for CMP1
		31:2 - Reserved

Table 3-48. PDB pulse-out enable register

3.10 Communication interfaces

3.10.1 SPI configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

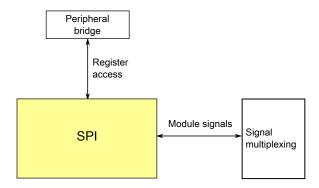


Figure 3-32. SPI configuration

Table 3-49.	Reference links to related information
-------------	--

Торіс	Related module	Reference
Full description	SPI	SPI
System memory map		System memory map
Clocking		Clock Distribution
Signal Multiplexing	Port control	Signal Multiplexing

3.10.1.1 SPI Instantiation Information

This device contains one SPI module. It has 4-byte RX and TX FIFO, as well as DMA support.

3.10.1.2 SPI clocking

The SPI module is clocked by the system clock (the SPI refers to it as system clock). The module has an internal divider, with a minimum divide is 2. So, the SPI can run at a maximum frequency of system clock/2.

communication interfaces

3.10.1.3 Number of CTARs

SPI CTAR registers define different transfer attribute configurations. The SPI module supports up to eight CTAR registers. This device supports two CTARs on the instances of the SPI.

In master mode, the CTAR registers define combinations of transfer attributes, such as frame size, clock phase, clock polarity, data bit ordering, baud rate, and various delays. In slave mode only CTAR0 is used, and a subset of its bitfields sets the slave transfer attributes.

3.10.1.4 TX FIFO size

 Table 3-50.
 SPI transmit FIFO size

SPI Module	Transmit FIFO size
SPIO	4

3.10.1.5 RX FIFO Size

SPI supports up to 16-bit frame size during reception.

Table 3-51. SPI receive FIFO size

SPI Module	Receive FIFO size
SPIO	4

3.10.1.6 Number of PCS signals

The following table shows the number of peripheral chip select signals available per SPI module.

Table 3-52. SPI PCS signals

SPI Module	PCS Signals
SPIO	SPI_PCS[4:0]

3.10.1.7 SPI Operation in Low Power Modes

In VLPR and VLPW modes the SPI is functional; however, the reduced system frequency also reduces the max frequency of operation for the SPI. In VLPR and VLPW modes the max SPI_CLK frequency is 1 MHz.

In stop and VLPS modes, the clocks to the SPI module are disabled. The module is not functional, but it is powered so that it retains state.

There is one way to wake from stop mode via the SPI, which is explained in the following section.

3.10.1.8 Using GPIO Interrupt to Wake from stop mode

Here are the steps to use a GPIO to create a wakeup upon reception of SPI data in slave mode:

- 1. Point the GPIO interrupt vector to the desired interrupt handler.
- 2. Enable the GPIO input to generate an interrupt on either the rising or falling edge (depending on the polarity of the chip select signal).
- 3. Enter Stop or VLPS mode and Wait for the GPIO interrupt.

NOTE

It is likely that in using this approach the first word of data from the SPI host might not be received correctly. This is dependent on the transfer rate used for the SPI, the delay between chip select assertion and presentation of data, and the system interrupt latency.

3.10.1.9 SPI Doze Mode

The Doze mode for the SPI module is the same as the Wait and VLPW modes for the chip.

3.10.1.10 SPI Interrupts

The SPI has multiple sources of interrupt requests. However, these sources are OR'd together to generate a single interrupt request to the interrupt controller. When an SPI interrupt occurs, read the SPI_SR to determine the exact interrupt source.

communication interfaces

3.10.1.11 SPI clocks

This table shows the SPI module clocks and the corresponding chip clocks.

Table 3-53. S	PI clock connections
---------------	----------------------

Module clock	Chip clock
System Clock	System Clock

3.10.2 I2C Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

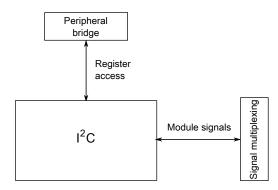


Figure 3-33. I2C configuration

 Table 3-54.
 Reference links to related information

Торіс	Related module	Reference
Full description	l ² C	I ² C
System memory map		System memory map
Clocking		Clock Distribution
Power management		Power management
Signal Multiplexing	Port control	Signal Multiplexing

3.10.2.1 IIC Instantiation Information

This device has one IIC module.

When the package pins associated with IIC have their mux select configured for IIC operation, the pins (SCL and SDA) are driven in a pseudo open drain configuration.

NOTE

Pseudo open drain means that the pins are not true open drain. The IIC SDA and SCL pins will drive a logic 0 (connect to VSS) and release a logic 1 as tri-state. A pull-up resistor tied to VDD is connected to SDA and SCL lines to ensure a reliable logic 1. The SDA and SCL pins cannot be connected to a pullup resistor that is higher than the VDD of the device.

3.10.3 UART Configuration

This section summarizes how the module has been configured in the chip. For a comprehensive description of the module itself, see the module's dedicated chapter.

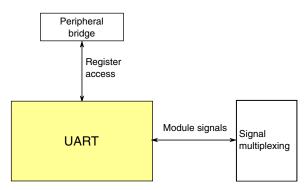


Figure 3-34. UART configuration

Table 3-55.	Reference links to related information	
-------------	--	--

Торіс	Related module	Reference
Full description	UART	UART
System memory map		System memory map
Clocking		Clock Distribution
Power management		Power management
Signal Multiplexing	Port control	Signal Multiplexing

3.10.3.1 UART configuration

This device contains two UART modules. This section describes how each module is configured on this device.

- 1. Standard features of all UARTs:
 - RS-485 support
 - Hardware flow control (RTS/CTS)

ommunication interfaces

- 9-bit UART to support address mark with parity
- MSB/LSB configuration on data
- 2. UART0 is clocked from the system clock. UART1 is clocked from the bus clock.
- 3. UART0 contains 8-entry transmit and 8-entry receive FIFOs.
- 4. UART1 contains a 1-entry transmit and receive FIFOs.

3.10.3.2 UART wakeup

The UART can be configured to generate an interrupt/wakeup on the first active edge that it receives.

3.10.3.3 UART interrupts

The UART has multiple sources of interrupt requests. However, some of these sources are OR'd together to generate a single interrupt request. See below for the mapping of the individual interrupt sources to the interrupt request:

The status interrupt combines the following interrupt sources:

Source	UART 0	UART 1
Transmit data empty	x	x
Transmit complete	х	x
Idle line	x	x
Receive data full	х	х
LIN break detect	х	х
RxD pin active edge	x	x
Initial character detect	x	

The error interrupt combines the following interrupt sources:

Source	UART 0	UART 1
Receiver overrun	x	x
Noise flag	x	x
Framing error	x	x
Parity error	x	x
Transmitter buffer overflow	x	x
Receiver buffer overflow	x	x
Receiver buffer underflow	x	x

3.11 Human-machine interfaces (HMI)

3.11.1 GPIO Configuration

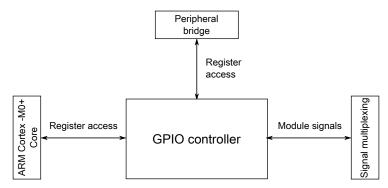


Figure 3-35. GPIO configuration

Table 3-56. Reference links to related information

Торіс	Related module	Reference
Full description	GPIO	GPIO
System memory map		System memory map
Clocking		Clock Distribution
Power management		Power management
Crossbar switch	Crossbar switch	Crossbar switch
Signal Multiplexing	Port control	Signal Multiplexing

3.11.1.1 GPIO Instantiation Information

The device includes eight pins, PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7, with high current drive capability out of which PTD4, PTD5, PTD6, and PTD7 also support high-speed capability. These pins can be used to drive LED or power MOSFET directly. The high drive capability applies to all functions which are multiplexed on these pins (UART, FTM, SPI...etc)

PTC6 and PTC7 are true open drain pins. These pins cannot drive a logic one without a pull-up resistor.

пишал-machine interfaces (HMI)

3.11.1.1.1 Pull Devices and Directions

The pull devices are enabled out of POR only on RESET_B, NMI_b and respective SWD signals. Other pins can be enabled by writing to PORTx_PCRn[PE] field.

All the pins have controllable pull direction using PORTx_PCRn[PS]. When enabled, all the pins default to pullup except for SWD_CLK.

3.11.1.2 GPIO accessibility in the memory map

The GPIO is multi-ported and can be accessed directly by the core with zero wait states at base address 0xF800_0000. It can also be accessed by the core and DMA masters through the cross bar/AIPS interface at 0x400F_F000 and at an aliased slot (15) at address 0x4000_F000. All BME operations to the GPIO space can be accomplished referencing the aliased slot (15) at address 0x4000_F000. Only some of the BME operations can be accomplished referencing GPIO at address 0x400F_F000.

NP

Chapter 4 Memory Map

4.1 Introduction

This device contains various memories and memory-mapped peripherals which are located in a 4 GB memory space. This chapter describes the memory and peripheral locations within that memory space.

4.2 System memory map

The following table shows the high-level device memory map.

System 32-bit Address Range	Destination Slave	Access	
0x0000_0000-0x0000_7FFF ¹	Program flash and read-only data	All masters	
	(Includes exception vectors in first 196 bytes)		
0x0000_8000-0x1FFF_EFFF	Reserved	—	
0x1FFF_F000-0x1FFF_FFFF ²	SRAM_L: Lower SRAM	All masters	
0x2000_0000-0x2000_0FFF ²	SRAM_U: Upper SRAM	All masters	
0x2000_1000-0x3FFF_FFF	Reserved	-	
0x4000_0000-0x4007_FFFF	AIPS Peripherals	Cortex-M0+ core & DMA	
0x4008_0000-0x400F_EFFF	Reserved	-	
0x400F_F000-0x400F_FFFF	General purpose input/output (GPIO)	Cortex-M0+ core & DMA	
0x4010_0000-0x43FF_FFFF	Reserved	-	
0x4400_0000-0x5FFF_FFFF	Bit Manipulation Engine (BME) access to AIPS Peripherals for slots 0-127 ³	Cortex-M0+ core	
0x6000_0000-0xDFFF_FFF	Reserved	-	
0xE000_0000-0xE00F_FFFF	Private Peripherals	Cortex-M0+ core	
0xE010_0000-0xEFFF_FFF	Reserved	-	
0xF000_0000-0xF000_0FFF	Micro Trace Buffer (MTB) registers	Cortex-M0+ core	

Table 4-1. System memory map

Table continues on the next page...

System 32-bit Address Range	Destination Slave	Access
0xF000_1000-0xF000_1FFF	MTB Data Watchpoint and Trace (MTBDWT) registers	Cortex-M0+ core
0xF000_2000-0xF000_2FFF	ROM table	Cortex-M0+ core
0xF000_3000-0xF000_3FFF	Miscellaneous Control Module (MCM)	Cortex-M0+ core
0xF000_4000-0xF000_4FFF	Memory Mapped Divide and Square Root (MMDVSQ)	Cortex-M0+ core
0xF000_5000-0xF7FF_FFFF	Reserved	
0xF800_0000-0xFFFF_FFF	IOPORT: GPIO (single cycle)	Cortex-M0+ core

 Table 4-1.
 System memory map (continued)

1. The program flash always begins at 0x0000_0000 but the end of implemented flash varies depending on the amount of flash implemented for a particular device. See Flash Memory Sizes for details.

2. This range varies depending on SRAM sizes. See SRAM Ranges for details.

3. Includes BME operations to GPIO at slot 15 (based at 0x4000_F000).

4.3 Flash Memory Map

The flash memory and the flash registers are located at different base addresses as shown in the following figure. The base address for each is specified in System memory map.

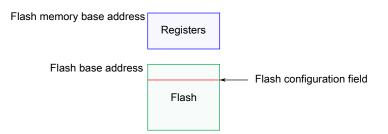


Figure 4-1. Flash memory map

The on-chip Flash is implemented in a portion of the allocated Flash range to form a contiguous block in the memory map beginning at address 0x0000_0000. See Flash memory sizes for details of supported ranges.

Accesses to the flash memory ranges outside the amount of Flash on the device causes the bus cycle to be terminated with an error followed by the appropriate response in the requesting bus master. Read collision events in which flash memory is accessed while a flash memory resource is being manipulated by a flash command also generates a bus error response.

4.3.1 Alternate Non-Volatile IRC User Trim Description

The following non-volatile locations (4 bytes) are reserved for custom IRC user trim supported by some development tools. An alternate IRC trim to the factory loaded trim can be stored at this location. To override the factory trim, user software must load new values into the MCG trim registers.

Non-Volatile Byte Address	Alternate IRC Trim Value	
0x0000_03FC	Reserved	
0x0000_03FD	Reserved	
0x0000_03FE (bit 0)	SCFTRIM	
0x0000_03FE (bit 4:1)	FCTRIM	
0x0000_03FE (bit 5)	FCFTRIM	
0x0000_03FF	SCTRIM	

4.4 SRAM memory map

The on-chip RAM is split between SRAM_L and SRAM_U. The RAM is also implemented such that the SRAM_L and SRAM_U ranges form a contiguous block in the memory map. See SRAM ranges for details.

Accesses to the SRAM_L and SRAM_U memory ranges outside the amount of RAM on the device causes the bus cycle to be terminated with an error followed by the appropriate response in the requesting bus master.

4.5 Bit Manipulation Engine

The Bit Manipulation Engine (BME) provides hardware support for atomic read-modifywrite memory operations to the peripheral address space. By combining the basic load and store instruction support in the Cortex-M instruction set architecture with the concept of decorated storage provided by the BME, the resulting implementation provides a robust and efficient read-modify-write capability to this class of ultra low-end microcontrollers. See the Bit Manipulation Engine Block Guide (BME) for a detailed description of BME functionality.

4.6 Peripheral bridge (AIPS-Lite) memory map

The peripheral memory map is accessible via one slave port on the crossbar in the 0x4000_0000–0x400F_FFFF region. The device implements one peripheral bridge that defines a 1024 KB address space.

The three regions associated with this space are:

- A 128 KB region, partitioned as 32 spaces, each 4 KB in size and reserved for onplatform peripheral devices. The AIPS controller generates unique module enables for all 32 spaces.
- A 384 KB region, partitioned as 96 spaces, each 4 KB in size and reserved for offplatform modules. The AIPS controller generates unique module enables for all 96 spaces.
- The last slot is a 4 KB region beginning at 0x400F_F000 for accessing the GPIO module. The GPIO slot (slot 128) is an alias of slot 15. This block is also directly interfaced to the core and provides direct access without incurring wait states associated with accesses via the AIPS controller.

Modules that are disabled via their clock gate control bits in the SIM registers disable the associated AIPS slots. Access to any address within an unimplemented or disabled peripheral bridge slot results in a transfer error termination.

For programming model accesses via the peripheral bridges, there is generally only a small range within the 4 KB slots that is implemented. Accessing an address that is not implemented in the peripheral results in a transfer error termination.

4.6.1 Read-after-write sequence and required serialization of memory operations

In some situations, a write to a peripheral must be completed fully before a subsequent action can occur. Examples of such situations include:

- Exiting an interrupt service routine (ISR)
- Changing a mode
- Configuring a function

In these situations, the application software must perform a read-after-write sequence to guarantee the required serialization of the memory operations:

- 1. Write the peripheral register.
- 2. Read the written peripheral register to verify the write.
- 3. Continue with subsequent operations.

4.6.2 Peripheral Bridge (AIPS-Lite) Memory Map

Table 4-2. Peripheral bridge 0 slot assignments

System 32-bit base address	Slot number	Module	
0x4000_0000	0	—	
0x4000_1000	1	—	
0x4000_2000	2	—	
0x4000_3000	3	—	
0x4000_4000	4	—	
0x4000_5000	5	—	
0x4000_6000	6	—	
0x4000_7000	7	—	
0x4000_8000	8	DMA controller	
0x4000_9000	9	DMA controller transfer control descriptors	
0x4000_A000	10	—	
0x4000_B000	11	—	
0x4000_C000	12	—	
0x4000_D000	13	—	
0x4000_E000	14	—	
0x4000_F000	15	GPIO controller (aliased to 0x400F_F000)	
0x4001_0000	16	—	
0x4001_1000	17		
0x4001_2000	18	—	
0x4001_3000	19	—	
0x4001_4000	20	-	
0x4001_5000	21	-	
0x4001_6000	22	—	
0x4001_7000	23	—	
0x4001_8000	24	—	
0x4001_9000	25	—	
0x4001_A000	26	—	
0x4001_B000	27	 _	
0x4001_C000	28	 	
0x4001_D000	29	-	
0x4001_E000	30	-	
0x4001_F000	31	-	
0x4002_0000	32	Flash memory	
0x4002_1000	33	DMA channel mutiplexer 0	
0x4002_2000	34	—	

Table continues on the next page ...

Table 4-2.	Peripheral bridg	e 0 slot assi	gnments	(continued)
------------	------------------	---------------	---------	-------------

System 32-bit base address	Slot number	Module	
0x4002_3000	35		
0x4002_4000	36	—	
0x4002_5000	37	—	
0x4002_6000	38	-	
0x4002_7000	39	—	
0x4002_8000	40	-	
0x4002_9000	41	-	
0x4002_A000	42	—	
0x4002_B000	43	-	
0x4002_C000	44	SPI0	
0x4002_D000	45	—	
0x4002_E000	46	-	
0x4002_F000	47	—	
0x4003_0000	48	—	
0x4003_1000	49		
0x4003_2000	50	CRC	
0x4003_3000	51	—	
0x4003_4000	52	—	
0x4003_5000	53		
0x4003_6000	54	PDB0	
0x4003_7000	55	—	
0x4003_8000	56	FlexTimer 0 (FTM0) - 6 channel	
0x4003_9000	57	FlexTimer 1 (FTM1) - 2 channel	
0x4003_A000	58	FlexTimer 2 (FTM2) - 2 channel	
0x4003_B000	59	Analog-to-digital converter (ADC0)	
0x4003_C000	60	Analog-to-digital converter (ADC1)	
0x4003_D000	61	—	
0x4003_E000	62	—	
0x4003_F000	63	DAC0	
0x4004_0000	64	Low-power timer (LPTMR)	
0x4004_1000	65	-	
0x4004_2000	66	-	
0x4004_3000	67	-	
0x4004_4000	68	-	
0x4004_5000	69	-	
0x4004_6000	70	<u> </u>	
0x4004_7000	71	SIM low-power logic	
0x4004_8000	72	System integration module (SIM)	
0x4004_9000	73	Port A multiplexing control	

Table continues on the next page...

Table 4-2. Peripheral bridge 0 slot assignments (continued)

System 32-bit base address	Slot number	Module		
0x4004_A000	74	Port B multiplexing control		
0x4004_B000	75	Port C multiplexing control		
0x4004_C000	76	Port D multiplexing control		
0x4004_D000	77	Port E multiplexing control		
0x4004_E000	78	_		
0x4004_F000	79			
0x4005_0000	80	_		
0x4005_1000	81	—		
0x4005_2000	82	Watchdog timer (gen2008)		
0x4005_3000	83	—		
0x4005_4000	84	—		
0x4005_5000	85	—		
0x4005_6000	86			
0x4005_7000	87	—		
0x4005_8000	88	—		
0x4005_9000	89	—		
0x4005_A000	90	—		
0x4005_B000	91	—		
0x4005_C000	92			
0x4005_D000	93	—		
0x4005_E000	94	—		
0x4005_F000	95	—		
0x4006_0000	96	—		
0x4006_1000	97	External Watchdog Monitor (EWM)		
0x4006_2000	98	_		
0x4006_3000	99	—		
0x4006_4000	100	Multi-purpose Clock Generator (MCG)		
0x4006_5000	101	System oscillator (OSC)		
0x4006_6000	102	I ² C 0		
0x4006_7000	103	—		
0x4006_8000	104			
0x4006_9000	105	_		
0x4006_A000	106	UART 0		
0x4006_B000	107	UART 1		
0x4006_C000	108	 		
0x4006_D000	109	-		
0x4006_E000	110	-		
0x4006_F000	111	-		
0x4007_0000	112	_		

Table continues on the next page...

Private Peripheral Bus (PPB) memory map

System 32-bit base address	Slot number	Module	
0x4007_1000	113	_	
0x4007_2000	114	—	
0x4007_3000	115	Analog comparator (CMP) / 6-bit digital-to-analog converter (DAC)	
0x4007_4000	116	—	
0x4007_5000	117	—	
0x4007_6000	118	—	
0x4007_7000	119	—	
0x4007_8000	120	—	
0x4007_9000	121	—	
0x4007_A000	122	—	
0x4007_B000	123	—	
0x4007_C000	124	Low-leakage wakeup unit (LLWU)	
0x4007_D000	125	Power management controller (PMC)	
0x4007_E000	126	System Mode controller (SMC)	
0x4007_F000	127	Reset Control Module (RCM)	
0x400F_F000	128	GPIO controller	

 Table 4-2.
 Peripheral bridge 0 slot assignments (continued)

4.6.3 Modules Restricted Access in User Mode

In user mode, for MCG, RCM, SIM (slot 71 and 72), SMC, LLWU, and PMC, reads are allowed, but writes are blocked and generate bus error.

4.7 Private Peripheral Bus (PPB) memory map

The PPB is part of the defined ARM bus architecture and provides access to select processor-local modules. These resources are only accessible from the core; other system masters do not have access to them.

System 32-bit Address Range	Resource	Additional Range Detail	Resource
0xE000_0000-0xE000_DFFF	Reserved		

Table 4-3. PPB memory map

Table continues on the next page ...

System 32-bit Address Range	Resource	Additional Range Detail	Resource	
0xE000_E000-0xE000_EFFF	System Control Space	0xE000_E000-0xE000_E00F	Reserved	
	(SCS)	0xE000_E010-0xE000_E0FF	SysTick	
		0xE000_E100-0xE000_ECFF	NVIC	
		0xE000_ED00-0xE000_ED8F	System Control Block	
		0xE000_ED90-0xE000_EDEF	Reserved	
		0xE000_EDF0-0xE000_EEFF	Debug	
		0xE000_EF00-0xE000_EFFF	Reserved	
0xE000_F000-0xE00F_EFFF	Reserved	•		
0xE00F_F000-0xE00F_FFFF	Core ROM Space (CRS)			

Table 4-3. PPB memory map (continued)

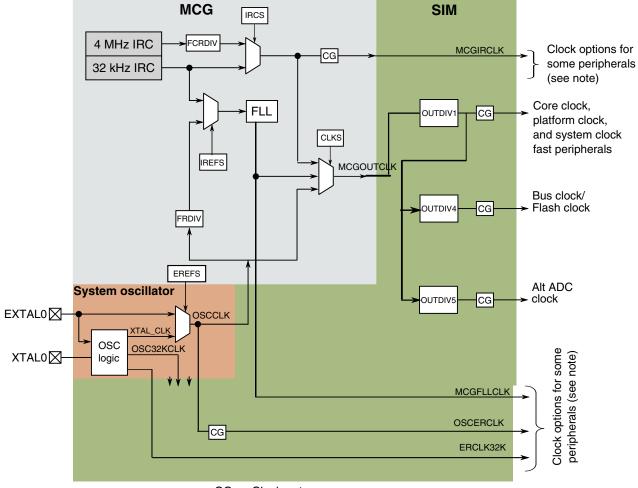
Chapter 5 Clock Distribution

5.1 Introduction

This chapter includes the clock architecture for the device, the overview of the clocks, and a terminology section.

The Cortex M0+ resides within a synchronous core platform, where the processor and bus masters, flash, and peripheral clocks can be configured independently. The clock distribution figure shows how clocks from the MCG and XOSC modules are distributed to the microcontroller's other functional units. Some modules in the microcontroller have selectable clock input.

5.2 Programming model


The selection and multiplexing of system clock sources are controlled and programmed via the MCG module. The setting of clock dividers and module clock gating for the system is programmed via the SIM module. See those sections for detailed register and bit descriptions.

5.3 High-level device clocking diagram

The following system oscillator, MCG, and SIM module registers control the multiplexers, dividers, and clock gates shown in the following figure:

	OSC	MCG	SIM
Multiplexers	MCG_Cx	MCG_Cx	SIM_SOPT1, SIM_SOPT2
Dividers	—	MCG_Cx	SIM_CLKDIVx
Clock gates	OSC_CR	MCG_C1	SIM_SCGCx

CG - Clock gate

Note: See subsequent sections for details on where these clocks are used.

Figure 5-1. Clocking diagram

5.4 Clock definitions

The following table describes the clocks in the previous block diagram.

Clock name	Description
Core clock	MCGOUTCLK divided by OUTDIV1, clocks the ARM Cortex- M0+ core
Platform clock	MCGOUTCLK divided by OUTDIV1, clocks the crossbar switch and NVIC
System clock	MCGOUTCLK divided by OUTDIV1, clocks the bus masters directly. Also drives high-speed peripherals FTM0, FTM1,FTM2, SPI, and UART0.
Bus clock	System clock divided by OUTDIV4, clocks the bus slaves and peripherals.

Table continues on the next page ...

Chapter 5 Clock Distribution

Clock name	Description
Flash clock	Flash memory clock. On this device it is the same as the bus clock.
MCGIRCLK	MCG output of the slow or fast internal reference clock
MCGOUTCLK	MCG output of either IRC, MCGFLLCLK or MCG's external reference clock that sources the core, system, bus, and flash clock.
MCGFLLCLK	MCG output of the FLL. MCGFLLCLK may clock some modules. Additionally, this clock is used for UART0, and FTM modules.
OSCCLK	System oscillator output of the internal oscillator or sourced directly from EXTAL. Used as MCG external reference clock.
OSCERCLK	System oscillator output sourced from OSCCLK that may clock some on-chip modules
ALTADC_CLK	Alternative clock for ADC0 and ADC1 SAR conversion
LPO	PMC 1 kHz output
MCGFFCLK	Fixed frequency clock

5.4.1 Device clock summary

The following table provides more information regarding the on-chip clocks.

 Table 5-1.
 Clock Summary

Clock name	Run mode clock frequency	VLPR mode clock frequency	Clock source	Clock is disabled when
MCGOUTCLK	Up to 75 MHz	Up to 4 MHz	MCG	In all Stop modes except for Partial Stop modes
MCGFLLCLK	Up to 75 MHz	N/A	MCG	MCG clock controls do not enable and in all Stop modes
Core clock	Up to 75 MHz	Up to 4 MHz	MCGOUTCLK clock divider	In all Wait and Stop modes
Platform clock	Up to 75 MHz	Up to 4 MHz	MCGOUTCLK clock divider	In all Stop modes
System clock	Up to 75 MHz	Up to 4 MHz	MCGOUTCLK clock divider	In all Stop modes and Compute Operation
Bus clock	Up to 25 MHz	Up to 1 MHz ¹	MCGOUTCLK clock divider	In all Stop modes except for Partial Stop2 mode, and Compute Operation
SWD Clock	Up to 25 MHz	Up to 1 MHz	SWD_CLK pin	In all stop modes
Flash clock	Up to 25 MHz	Up to 1 MHz in BLPE Up to 800 kHz in BLPI	MCGOUTCLK clock divider	In all stop modes except for partial STOP2 mode

Table continues on the next page...

internal clocking requirements

Clock name	Run mode clock frequency	VLPR mode clock frequency	Clock source	Clock is disabled when
Internal reference (MCGIRCLK)	30-40 kHz Slow IRC or 4 MHz Fast IRC	4 MHz Fast IRC only	MCG	MCG_C1[IRCLKEN] cleared, Stop/VLPS mode and MCG_C1[IREFSTEN] cleared, or VLLS mode
External reference (OSCERCLK) External reference 32kHz (ERCLK32K)	Up to 48 MHz (bypass), 30-40 kHz or 3-32 MHz (crystal) 30-40 kHz	Up to 16 MHz (bypass), 30-40 kHz (low-range crystal) or 3-16 MHz (high-range crystal) 30-40 kHz	System OSC System OSC	System OSC's OSC_CR[ERCLKEN] cleared, or Stop mode and OSC_CR[EREFSTEN] cleared, or VLLS0 and oscillator not in external clock mode. System OSC's OSC_CR[ERCLKEN] cleared, or VLLS0 and oscillator
LPO	1 kHz	1 kHz	PMC	not in external clock mode. in VLLS0
ALTCLK	Up to 24 MHz	Up to 1 MHz or use internal RC clock.	MCGIRCLK, SIM_CLKDIV1[OUTDIV 5], or OSCERCLK	There is no CGC bit to disable MCGIRCLK and OSCERCLK. SIM_CLKDIV1[OUTDIV 5] can be disabled via SIM_CLKDIV1[OUTDIV 5EN]

Table 5-1. Clock Summary (continued)

1. If in BLPI mode, where clocking is derived from the fast internal reference clock, the Bus clock and flash clock frequency needs to be limited to 800 kHz if executing from flash.

5.5 Internal clocking requirements

The clock dividers are programmed via the SIM module's CLKDIV registers. The following requirements must be met when configuring the clocks for this device:

- 1. The core, platform, and system clocks are programmable from a divide-by-1 through divide-by-16 setting. The core, platform, and system clock frequencies must be 75 MHz or slower.
- 2. The bus clock and flash clock frequencies are divided from the system clock and are programmable from a divide-by-1 through divide-by-8 setting. The bus clock and flash clock must be programmed to 25 MHz or slower.

- 3. The ALTADC_CLK must provide a frequency of less than 24 MHz to ensure the ADC provides a $1.1 \,\mu s$ or less conversion time. 24 MHz is the maximum clock speed for reliable ADC operation.
- 4. The system clock is also for FTM0, FTM1, FTM2, SPI, and UART0. These peripherals can support high-speed operation and have internal prescalers to support slower clock operations.

The following is a common clock configuration for this device:

Clock	Frequency
Core clock	75 MHz
Platform clock	75 MHz
System clock	75 MHz
Bus and flash clock	25 MHz
ALTADC_CLK	20-24 MHz

5.5.1 Clock divider values after reset

Each clock divider is programmed via the SIM module's CLKDIV1 registers. Two bits in the flash memory's FTFA_FOPT register controls the reset value of the core clock, system clock, bus clock, flash clock, and alternative ADC clock with dividers as shown below:

FTFA_FOPT [4,0]	Core/system clock	Bus/Flash clock	Description
00	0x7 (divide by 8)	0x1 (divide by 2)	Low-power boot
01	0x3 (divide by 4)	0x1 (divide by 2)	Low-power boot
10	0x1 (divide by 2)	0x1 (divide by 2)	Low-power boot
11	0x0 (divide by 1)	0x1 (divide by 2)	Fast clock boot

This gives the user flexibility in selecting between a lower frequency, low-power boot option and a higher frequency, higher power option during and after reset.

The Flash Erased state defaults to Fast Clocking mode, because these bits reside in flash, which is logic 1 in the Flash Erased state. To enable a lower power boot option, program the appropriate bits in FTFA_FOPT. During the reset sequence, if either of the control bits is cleared, the system is in a slower clock configuration. On any system reset, the clock dividers return to this configurable reset state.

Clock Gating

5.5.2 VLPR mode clocking

The clock dividers cannot be changed while in VLPR mode. They must be programmed prior to entering VLPR mode to guarantee operation. Maximum frequency limitations for VLPR mode are as follows :

- The core/system clocks are less than or equal to 4 MHz, and
- The bus and flash clocks are less than or equal to 1 MHz

NOTE

When the MCG is in BLPI and clocking is derived from the Fast IRC, the clock divider controls (MCG_SC[FCRDIV], SIM_CLKDIV1[OUTDIV1], and SIM_CLKDIV1[OUTDIV4]) must be programmed so that the resulting flash clock nominal frequency is 800 kHz or less. In this case, one example of correct configuration is MCG_SC[FCRDIV]=000b, SIM_CLKDIV1[OUTDIV1]=0000b, and SIM_CLKDIV1[OUTDIV4]=100b, resulting in a divide by 5 setting.

5.6 Clock Gating

The clock to each module can be individually gated on and off using the SIM module's SCGC*x* registers. These bits are cleared after any reset, which disables the clock to the corresponding module to conserve power. Prior to initializing a module, set the corresponding bit in the SCGC*x* register to enable the clock. Before disabling a clock to a specific module, disable the module to ensure that a predictable behavior occurs when the clock is enabled again.

Any bus access to a peripheral that has its clock disabled generates an error termination.

5.7 Module clocks

The following table summarizes the clocks associated with each module.

Module	Bus interface clock	Internal clocks	I/O interface clocks
Core modules			
ARM Cortex-M0+ core	Platform clock	Core clock	_
NVIC	Platform clock	—	—

Table 5-2. Module clocks

Table continues on the next page...

Module	Bus interface clock	Internal clocks	I/O interface clocks
DAP	Platform clock	_	SWD_CLK
		n modules	
DMA	System clock	_	_
DMA Mux	Bus clock	_	_
Port control	Bus clock	_	_
Crossbar Switch	Platform clock	_	_
Peripheral bridges	System clock	Bus clock	_
LLWU, PMC, SIM, RCM	Bus clock	LPO	_
Mode controller	Bus clock	_	_
MCM	Platform clock	_	_
EWM	Bus clock	LPO	_
Watchdog timer	Bus clock	LPO, MCGIRCLK	_
	CI	ocks	
MCG	Bus clock	MCGOUTCLK, MCGFLLCLK, MCGIRCLK, OSCERCLK	-
OSC	Bus clock	OSCERCLK	—
	Memory and m	emory interfaces	
Flash Controller	Platform clock	Flash clock	—
Flash memory Flash clock —		—	—
	Aı	nalog	
ADC0 / ADC1	Bus clock	Alt ADC clock, MCGIRCLK, OSCERCLK	—
CMP0 and CMP1	CMP0 and CMP1 Bus clock		—
DAC	Bus clock	—	—
	Ti	mers	
FTM0, FTM1, FTM2,	System clock	MCGFFCLK, MCGIRCLK, OSCERCLK	FTM_CLKIN0, FTM_CLKIN1, FTM_CLKIN2
LPTMR	Bus clock	LPO, OSCERCLK, MCGIRCLK, ERCLK32K	—
PDB0	Bus clock	—	—
	Communica	tion interfaces	
SPI0	System clock	—	SPI0_SCK
l ² C0	Bus clock	—	I2C0_SCL
UART0	System clock	—	—
UART1	Bus clock	—	—
	Human-mac	hine interfaces	
GPIO	Platform clock	—	_

Table 5-2. Module clocks (continued)

wouule clocks

5.7.1 PMC 1-kHz LPO clock

The Power Management Controller (PMC) generates a 1 kHz clock that is enabled in all modes of operation, including all low-power modes except VLLS0. This 1 kHz source is commonly referred to as the LPO clock or 1 kHz LPO clock.

5.7.2 LPTMR clocking

The prescaler and glitch filters in each of the LPTMR*x* modules can be clocked as shown in the following figure.

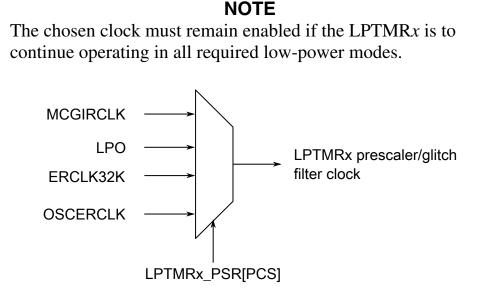
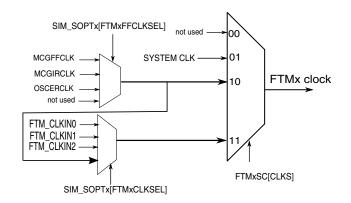


Figure 5-2. LPTMRx prescaler/glitch filter clock generation

5.7.3 Flex Timer (FTM) clocking


The Flextimers have the option to be clocked as shown below.

FTM0, FTM1, and FTM2 are clocked by several clock sources. The FTMs each have three options: System clock, Fixed Frequency clock, and External clock. The system input clock to the FTMx can come from various sources, such as the MCG system clock, the MCGIRCLK, and the OSCERCLK. The external clock source for each FTM can come from three possible input pins, therefore providing the option to clock each FTM with a different clock frequency.

NOTE

The chosen clock must remain enabled if the FTM is to continue operating in all required low-power modes.

Figure 5-3. FlexTimer clock generation

NOTE It is recommended to set both SIM_SOPTx[FTMxCLKSEL] and FTMxSC[CLKS] as 2'b11, when MCGIRCLK and OSCERCLK are used as FTMx clock.

5.7.4 UART clocking

The UART0 is clocked by the system clock and UART1 is clocked by the bus clock.

NOTE

The chosen clock must remain enabled if the UARTs are to continue operating in all required low-power modes.

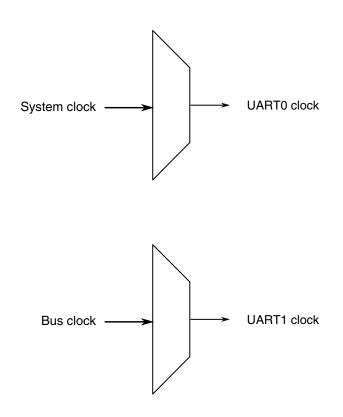


Figure 5-4. UARTx clock generation

5.7.5 SPI clocking

The SPI module has a selectable clock as shown in the following figure. The SPI is clocked by the system clock.

NOTE

The chosen clock must remain enabled if the SPI is to continue operating in all required low-power modes.

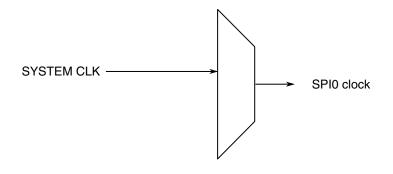
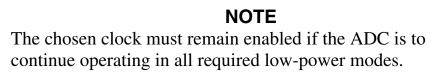



Figure 5-5. SPI0 clock generation

5.7.6 ADC clocking

The ADC0 and ADC1 modules have a selectable clock as shown in the following figure. The ADC is always clocked by the bus clock, but it has the additional option to clock the ADC SAR circuit with an alternative clock. This allows the ADC to have an independent divide from the CPU clock and ensure minimum conversion times can be fulfilled for various CPU frequencies.

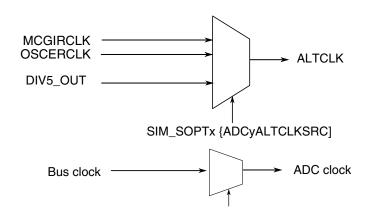


Figure 5-6. ADC0 and ADC1 clock generation

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

Chapter 6 Reset and Boot

6.1 Introduction

The following reset sources are supported in this MCU:

Table 6-1.	Reset sources
	Description

Reset sources	Description
POR reset	Power-on reset (POR)
System resets	 External pin reset (PIN) Low-voltage detect (LVD) Low leakage wakeup (LLWU) reset Multipurpose clock generator loss of clock (LOC) reset Stop mode acknowledge error (SACKERR) Software reset (SW) Lockup reset (LOCKUP) MDM DAP system reset Watchdog timer reset
Debug reset	Debug reset

Each of the system reset sources has an associated bit in the system reset status (SRS) registers. See the Reset Control Module for register details.

The MCU can exit and reset in functional mode where the CPU is executing code (default) or the CPU is in a debug halted state. There are several boot options that can be configured. See Boot information for more details.

6.2 Reset

This section discusses basic reset mechanisms and sources. Some modules that cause resets can be configured to cause interrupts instead. Consult the individual peripheral chapters for more information.

6.2.1 Power-on reset (POR)

When power is initially applied to the MCU or when the supply voltage drops below the power-on reset re-arm voltage level (V_{POR}), the POR circuit causes a POR reset condition.

As the supply voltage rises, the LVD circuit holds the MCU in reset until the supply has risen above the LVD low threshold (V_{LVDL}). The POR and LVD bits in reset status register are set following a POR.

6.2.2 System reset sources

Resetting the MCU provides a way to start processing from a known set of initial conditions. System reset begins with the on-chip regulator in full regulation and system clocking generation from an internal reference. When the processor exits reset, it performs the following:

- Reads the start SP (SP_main) from vector-table offset 0
- Reads the start PC from vector-table offset 4
- LR is set to 0xFFFF_FFFF

The on-chip peripheral modules are disabled and the non-analog I/O pins are initially configured as disabled. The pins with analog functions assigned to them default to their analog function after reset.

During and following a reset, the SWD pins have their associated input pins configured as:

- SWD_CLK in pull-down (PD)
- SWD_DIO in pull-up (PU)

6.2.2.1 External pin reset (RESET)

This pin is open drain and has an internal pullup device. Asserting $\overline{\text{RESET}}$ wakes the device from any mode.

The $\overline{\text{RESET}}$ pin can be disabled by programming $\overline{\text{RESET}}_{PIN}_{CFG}$ option bit to 0. When this option selected, there could be a short period of contention during a POR ramp where the device drives the pin out low prior to establishing the setting of this option and releasing the RESET function on the pin.

6.2.2.1.1 Reset pin filter

The RESET pin filter supports filtering from both the 1 kHz LPO clock and the bus clock. The RPFC[RSTFLTSS], RPFC[RSTFLTSRW], and RPFW[RSTFLTSEL] fields in the reset control (RCM) register set control this functionality; see the RCM chapter. The filters are asynchronously reset by Chip POR. The reset value for each filter assumes the RESET pin is negated.

For all stop modes where LPO clock is still active (Stop, VLPS, VLLS3, and VLLS1), the only filtering option is the LPO based digital filter. The filtering logic either switches to bypass operation or has continued filtering operation depending on the filtering mode selected. When entering VLLS0, the RESET pin filter is disabled and bypassed.

The LPO filter has a fixed filter value of 3. Due to a synchronizer on the input data, there is also some associated latency (2 cycles). As a result, 5 cycles are required to complete a transition from low to high or high to low.

6.2.2.2 Low-voltage detect (LVD)

The chip includes a system for managing low voltage conditions to protect memory contents and control MCU system states during supply voltage variations. The system consists of a power-on reset (POR) circuit and an LVD circuit with a user-selectable trip voltage. The LVD system is always enabled in normal run, wait, or stop mode. The LVD system is disabled when entering VLPx or VLLSx modes.

The LVD can be configured to generate a reset upon detection of a low voltage condition by setting the PMC's LVDSC1[LVDRE] bit to 1. The low voltage detection threshold is determined by the PMC's LVDSC1[LVDV] field. After an LVD reset has occurred, the LVD system holds the MCU in reset until the supply voltage has risen above the low voltage detection threshold. The RCM's SRS0[LVD] bit is set following either an LVD reset or POR.

6.2.2.3 Low leakage wakeup (LLWU)

The LLWU module provides the means for a number of external pins and a number of internal peripherals to wake the MCU from low leakage power modes. The LLWU module is functional only in low leakage power modes. In VLLSx modes, all enabled inputs to the LLWU can generate a system reset.

After a system reset, the LLWU retains the flags indicating the input source of the last wakeup until the user clears them.

NOTE

Some flags are cleared in the LLWU and some flags are required to be cleared in the peripheral module. Refer to the individual peripheral chapters for more information.

6.2.2.4 Multipurpose clock generator loss-of-clock (LOC)

The MCG module supports an external reference clock.

If the MCG_C6[CME] bit in the MCG module is set, the clock monitor is enabled. If the external reference falls below f_{loc_low} or f_{loc_high} , as controlled by the MCG_C2[RANGE] field in the MCG module, the MCU resets. The RCM_SRS0[LOC] bit is set to indicate this reset source.

NOTE

To prevent unexpected loss of clock reset events, all clock monitors must be disabled before entering any low power modes, including VLPR and VLPW.

6.2.2.5 Stop mode acknowledge error (SACKERR)

This reset is generated if the core attempts to enter stop mode or Compute Operation, but not all modules acknowledge stop mode within 1025 cycles of the 1 kHz LPO clock.

A module might not acknowledge the entry to stop mode if an error condition occurs. The error can be caused by a failure of an external clock input to a module.

6.2.2.6 Software reset (SW)

The SYSRESETREQ bit in the NVIC application interrupt and reset control register can be set to force a software reset on the device. (See ARM's NVIC documentation for the full description of the register fields, especially the VECTKEY field requirements.) Setting SYSRESETREQ generates a software reset request. This reset forces a system reset of all major components except for the debug module. A software reset causes the RCM's SRS1[SW] bit to set.

6.2.2.7 Lockup reset (LOCKUP)

The LOCKUP gives immediate indication of seriously errant kernel software. This is the result of the core being locked because of an unrecoverable exception following the activation of the processor's built in system state protection hardware.

The LOCKUP condition causes a system reset and also causes the RCM's SRS1[LOCKUP] bit to set.

6.2.2.8 MDM-AP system reset request

Set the system reset request bit in the MDM-AP control register to initiate a system reset. This is the primary method for resets via the SWD interface. The system reset is held until this bit is cleared.

Set the core hold reset bit in the MDM-AP control register to hold the core in reset as the rest of the chip comes out of system reset.

6.2.2.9 Watchdog timer reset

The watchdog timer (WDOG) monitors the operation of the system by expecting periodic communication from the software. This communication is generally known as servicing (or refreshing) the watchdog. If this periodic refreshing does not occur, the watchdog issues a system reset. The WDOG reset causes RCM_SRS0[WDOG] to set. The watchdog can also be initially tested to verify if it is working and resetting the MCU before deploying for application use. RCM_SRS0[WDOG], along with WDOG_STCTRLH[TESTWDOG], allow the user to identify if the watchdog has forced a reset.

6.2.3 MCU Resets

A variety of resets are generated by the MCU to reset different modules.

6.2.3.1 POR Only

The POR Only reset asserts on the POR reset source only. It resets the PMC.

The POR Only reset also causes all other reset types to occur.

6.2.3.2 Chip POR not VLLS

The Chip POR not VLLS reset asserts on POR and LVD reset sources. It resets parts of the SMC and SIM. It also resets the LPTMR.

The Chip POR not VLLS reset also causes these resets to occur: Chip POR, Chip Reset not VLLS, and Chip Reset (including Early Chip Reset).

6.2.3.3 Chip POR

The Chip POR asserts on POR, LVD, and VLLS Wakeup reset sources. It resets the Reset Pin Filter registers and parts of the SIM and MCG.

The Chip POR also causes the Chip Reset (including Early Chip Reset) to occur.

6.2.3.4 Chip Reset not VLLS

The Chip Reset not VLLS reset asserts on all reset sources except a VLLS Wakeup that does not occur via the $\overline{\text{RESET}}$ pin. It resets parts of the SMC, LLWU, and other modules that remain powered during VLLS mode.

The Chip Reset not VLLS reset also causes the Chip Reset (including Early Chip Reset) to occur.

6.2.3.5 Early Chip Reset

The Early Chip Reset asserts on all reset sources. It resets only the flash memory module. It negates before flash memory initialization begins ("earlier" than when the Chip Reset negates).

6.2.3.6 Chip Reset

Chip Reset asserts on all reset sources and only negates after flash initialization has completed and the $\overline{\text{RESET}}$ pin has also negated. It resets the remaining modules (the modules not reset by other reset types).

6.2.4 Reset Pin

For all reset sources except a VLLS Wakeup that does not occur via the $\overline{\text{RESET}}$ pin, the $\overline{\text{RESET}}$ pin is driven low by the MCU for at least 128 bus clock cycles and until flash initialization has completed.

After flash initialization has completed, the $\overline{\text{RESET}}$ pin is released, and the internal Chip Reset negates after the $\overline{\text{RESET}}$ pin is pulled high. Keeping the $\overline{\text{RESET}}$ pin asserted externally delays the negation of the internal Chip Reset.

The $\overline{\text{RESET}}$ pin can be disabled by programming $\overline{\text{RESET}}_{PIN}_{CFG}$ option bit to 0. When this option is selected, there could be a short period of contention during a POR ramp where the device drives the pin out low prior to establishing the setting of this option and releasing the RESET function on the pin.

6.2.5 Debug resets

The following sections detail the debug resets available on the device.

6.2.5.1 Resetting the Debug subsystem

Use the CDBGRSTREQ bit within the DP CTRL/STAT register to reset the debug modules. However, as explained below, using the CDBGRSTREQ bit does not reset all debug-related registers.

CDBGRSTREQ resets the debug-related registers within the following modules:

- SW-DP
- AHB-AP
- MDM-AP (MDM control and status registers)

CDBGRSTREQ does not reset the debug-related registers within the following modules:

- CM0+ core (core debug registers: DHCSR, DCRSR, DCRDR, DEMCR)
- BPU
- DWT
- NVIC
- Crossbar bus switch¹
- AHB-AP¹
- Private peripheral bus¹

^{1.} CDBGRSTREQ does not affect AHB resources so that debug resources on the private peripheral bus are available during System Reset.

6.3 Boot

This section describes the boot sequence, including sources and options.

Some configuration information such as clock trim values stored in factory programmed flash locations is autoloaded.

6.3.1 Boot sources

The CM0+ core adds support for a programmable Vector Table Offset Register (VTOR) to relocate the exception vector table. This device supports booting from internal flash and RAM.

This device supports booting from internal flash with the reset vectors located at addresses 0x0 (initial SP_main), 0x4 (initial PC), and RAM with relocating the exception vector table to RAM.

6.3.2 FOPT boot options

The flash option register (FOPT) in flash memory module (FTFA) allows the user to customize the operation of the MCU at boot time. The register contains read-only bits that are loaded from the NVM's option byte in the flash configuration field. The default setting for all values in the FOPT register is logic 1 since it is copied from the option byte residing in flash, which has all bits as logic 1 in the flash erased state. To configure for alternate settings, program the appropriate bits in the NVM option byte. The new settings will take effect on subsequent POR, VLLSx recoveries, and any system reset. For more details on programming the option byte, refer to the flash memory chapter.

The MCU uses the FTFA_FOPT register bits to configure the device at reset as shown in the following table.

Bit Num	Field	Value	Definition	
7-6	Reserved	Reserve	Reserved for future expansion.	

 Table 6-2.
 Flash Option Register (FTFA_FOPT) Bit Definitions

Table continues on the next page ...

Table 6-2. Flash Option Register (FTFA_FOPT) Bit Definitions (continued)

Bit Num	Field	Value	Definition
5	FAST_INIT	Select initialization speed on POR, VLLSx, and any system reset .	
		0	Slower initialization. The Flash initialization will be slower with the benefit of reduced average current during this time. The duration of the recovery will be controlled by the clock divider selection determined by the LPBOOT setting.
		1	Fast Initialization. The Flash has faster recoveries at the expense of higher current during these times.
3	RESET_PIN_CFG	Enable/disable control for the RESET pin.	
		0	RESET pin is disabled following a POR and cannot be enabled as RESET function. When this option is selected, there could be a short period of contention during a POR ramp where the device drives the pin out low prior to establishing the setting of this option and releasing the RESET function on the pin.
			This bit is preserved through system resets and low power modes. When RESET pin function is disabled it cannot be used as a source for low power mode wakeup.
			NOTE: When the reset pin has been disabled and security has been enabled by means of the FSEC register, a mass erase can be performed only by setting both the mass erase and system reset request bits in the MDM-AP register.
		1	RESET pin is dedicated. The port is configured with pullup enabled, open drain, passive filter enabled.
2	NMI_DIS	Enable/disable control for the NMI function.	
		0	NMI interrupts are always blocked. The associated pin continues to default to NMI pin controls with internal pullup enabled. When NMI pin function is disabled it cannot be used as a source for low power mode wakeup.
		1	NMI pin/interrupts reset default to enabled.
1	Reserved	Reserved for future expansion.	
4,0	LPBOOT	Control the reset value of OUTDIV1 value in SIM_CLKDIV1 register. Larger divide value selections produce lower average power consumption during POR, VLLSx recoveries and reset sequencing and after reset exit. The recovery times are also extended if the FAST_INIT option is not selected.	
		00	Core and system clock divider (OUTDIV1) is 0x7 (divide by 8)
		01	Core and system clock divider (OUTDIV1) is 0x3 (divide by 4)
		10	Core and system clock divider (OUTDIV1) is 0x1 (divide by 2)
		11	Core and system clock divider (OUTDIV1) is 0x0 (divide by 1)

6.3.3 Boot sequence

At power up, the on-chip regulator holds the system in a POR state until the input supply is above the POR threshold. The system continues to be held in this static state until the internally regulated supplies have reached a safe operating voltage as determined by the LVD. The Reset Controller logic then controls a sequence to exit reset.

סטטנ

- 1. A system reset is held on internal logic, the RESET pin is driven out low, and the MCG is enabled in its default clocking mode.
- 2. Required clocks are enabled (System Clock, Flash Clock, and any Bus Clocks that do not have clock gate control reset to disabled).
- 3. The system reset on internal logic continues to be held, but the Flash Controller is released from reset and begins initialization operation while the Reset Control logic continues to drive the $\overline{\text{RESET}}$ pin out low.
- 4. Early in reset sequencing the NVM option byte is read and stored to the Flash Memory module's FOPT register. If the bits associated with LPBOOT are programmed for an alternate clock divider reset value, the system/core clock is switched to a slower clock speed. If the FAST_INIT bit is programmed clear, the Flash initialization switches to slower clock resulting longer recovery times.
- 5. When Flash Initialization completes, the RESET pin is released. If RESET continues to be asserted (an indication of a slow rise time on the RESET pin or external drive in low), the system continues to be held in reset. Once the RESET pin is detected high, the Core clock is enabled and the system is released from reset.
- 6. When the system exits reset, the processor sets up the stack, program counter (PC), and link register (LR). The processor reads the start SP (SP_main) from vector-table offset 0. The core reads the start PC from vector-table offset 4. LR is set to 0xFFFF_FFF. What happens next depends on the NMI input and the NMI control bit in the Flash Memory module's FOPT register:
 - If the NMI input is high or the NMI function is disabled in the FOPT register, the CPU begins execution at the PC location.
 - If the NMI input is low and the NMI function is enabled in the FOPT register, this results in an NMI interrupt. The processor executes an Exception Entry and reads the NMI interrupt handler address from vector-table offset 8. The CPU begins execution at the NMI interrupt handler.

Subsequent system resets follow this same reset flow.

Chapter 7 Power Management

7.1 Introduction

This chapter describes the various chip power modes and functionality of the individual modules in these modes.

7.2 Clocking Modes

This section describes the various clocking modes supported on this device.

7.2.1 Partial Stop

Partial Stop is a clocking option that can be taken instead of entering Stop mode and is configured in the SMC Stop Control Register (SMC_STOPCTRL). The Stop mode is only partially entered, which leaves some additional functionality alive at the expense of higher power consumption. Partial Stop can be entered from either Run mode or VLP Run mode.

When configured for PSTOP2, only the core and system clocks are gated and the bus clock remains active. The bus masters and bus slaves clocked by the system clock enter Stop mode, but the bus slaves clocked by the bus clock remain in Run (or VLP Run) mode. The clock generators in the MCG and the on-chip regulator in the PMC also remain in Run (or VLP Run) mode. Exit from PSTOP2 can be initiated by a reset, an asynchronous interrupt from a bus master or bus slave clocked by the system clock, or a synchronous interrupt from a bus slave clocked by the bus clock. If configured, a DMA request (using the asynchronous DMA wakeup) can also be used to exit Partial Stop for the duration of a DMA transfer before the device is transitioned back into PSTOP2.

Ciucking Modes

When configured for PSTOP1, both the system clock and the bus clock are gated. All bus masters and bus slaves enter Stop mode, but the clock generators in the MCG and the onchip regulator in the PMC remain in Run (or VLP Run) mode. Exit from PSTOP1 can be initiated by a reset or an asynchronous interrupt from a bus master or bus slave. If configured, an asynchronous DMA request can also be used to exit Partial Stop for the duration of a DMA transfer before the device is transitioned back into PSTOP1.

PSTOP1 is functionally similar to STOP mode, but offers faster wakeup at the expense of higher power consumption. Another benefit is that it keeps all of the MCG clocks enabled, which can be useful for some of the asynchronous peripherals that can remain functional in Stop modes.

7.2.2 DMA Wakeup

The DMA can be configured to wake up the device on a DMA request whenever it is placed in Stop mode. The wakeup is configured per DMA channel and is supported in Compute Operation, PSTOP, Stop, and VLPS low power modes.

When a DMA wakeup is detected in PSTOP, Stop or VLPS, then the device initiates a normal exit from the low power mode. This can include restoring the on-chip regulator and internal power switches, enabling the clock generators in the MCG, enabling the system and bus clocks (but not the core clock) and negating the Stop mode signal to the bus masters and bus slaves. The only difference is that the CPU remains in the low power mode with the CPU clock disabled.

During Compute Operation, a DMA wakeup initiates a normal exit from Compute Operation. This includes enabling the clocks and negating the Stop mode signal to the bus masters and bus slaves. The core clock always remains enabled during Compute Operation.

Because the DMA wakeup enables the clocks and negates the Stop mode signals to all bus masters and slaves, software needs to ensure that bus masters and slaves that are not involved with the DMA wakeup and transfer remain in a known state. That can be accomplished by disabling the modules before entry into the low power mode or by setting the Doze enable bit in selected modules.

After the DMA request that initiated the wakeup negates and the DMA completes the current transfer, the device transitions back into the original low power mode. This includes requesting all non-CPU bus masters to enter Stop mode and then requesting bus slaves to enter Stop mode. In Stop and VLPS modes, the MCG and PMC then also enter their appropriate modes.

NOTE

If the requested DMA transfer cannot cause the DMA request to negate, then the device remains in a higher power state until the low power mode is fully exited.

If the DMA request asserts during the Stop mode entry sequence (or reentry if the request asserts during a DMA wakeup), then an enabled DMA wakeup can cause an aborted entry into the low power mode, as well as cause the SMC to assert its Stop Abort flag.

An interrupt that occurs during a DMA wakeup causes an immediate exit from the low power mode (this is optional for Compute Operation) without impacting the DMA transfer.

A DMA wakeup can be generated by either a synchronous DMA request or an asynchronous DMA request. Not all peripherals can generate an asynchronous DMA request in Stop modes. In general, though, if a peripheral can generate synchronous DMA requests and also supports asynchronous interrupts in Stop modes, then it can generate an asynchronous DMA request.

7.2.3 Compute Operation

Compute Operation is an execution or compute-only mode of operation that keeps the CPU enabled with full access to the SRAM and Flash read port, but places all other bus masters and bus slaves into their stop mode. Compute Operation can be enabled in either Run mode or VLP Run mode.

NOTE

Do not enter any stop mode without first exiting Compute Operation.

Because Compute Operation reuses the stop mode logic (including the staged entry with bus masters disabled before bus slaves), any bus master or bus slave that can remain functional in stop mode also remains functional in Compute Operation, including generation of asynchronous interrupts and DMA requests. When enabling Compute Operation in Run mode, module functionality for bus masters and slaves is the equivalent of STOP mode. When enabling Compute Operation in VLP Run mode, module functionality for bus masters and slaves is the equivalent of VLPS mode. The MCG, PMC, SRAM and Flash read port are not affected by Compute Operation, although the Flash register interface is disabled.

During Compute Operation, the AIPS peripheral space is disabled and attempted accesses generate bus errors. The private peripheral space remains accessible during Compute Operation, including the MCM, NVIC, IOPORT and SysTick. Although access to the

Ciucking Modes

GPIO registers via the IOPORT is supported, the GPIO port data input registers do not return valid data since clocks are disabled to the Port Control and Interrupt modules. By writing to the GPIO port data output registers, it is possible to control those GPIO ports that are configured as output pins.

Compute Operation is controlled by the CPO register in the MCM, which is only accessible to the CPU. Setting or clearing the CPOREQ bit in the MCM initiates entry or exit into Compute Operation. Compute Operation can also be configured to exit automatically on detection of an interrupt, which is required in order to service most interrupts. Only the core system interrupts (exceptions, including NMI and SysTick) and any edge sensitive interrupts can be serviced without exiting Compute Operation.

When entering Compute Operation, the CPOACK status bit indicates when entry has completed. When exiting Compute Operation in Run mode, the CPOACK status bit negates immediately. When exiting Compute Operation in VLP Run mode, the exit is delayed to allow the PMC to handle the change in power consumption. This delay means the CPOACK bit is polled to determine when the AIPS peripheral space can be accessed without generating a bus error.

The DMA wakeup is also supported during Compute Operation and causes the CPOACK status bit to clear and the AIPS peripheral space to be accessible for the duration of the DMA wakeup. At the completion of the DMA wakeup, the device transitions back into Compute Operation.

7.2.4 Peripheral Doze

Several peripherals support a peripheral Doze mode, where a register bit can be used to disable the peripheral for the duration of a low power mode. The Flash can also be placed in a low power state during Peripheral Doze via a register bit in the SIM.

Peripheral Doze is defined to include all of the modes of operation listed below.

- The CPU is in wait mode.
- The CPU is in stop mode, including the entry sequence and for the duration of a DMA wakeup.
- The CPU is in Compute Operation, including the entry sequence and for the duration of a DMA wakeup.

Peripheral Doze can therefore be used to disable selected bus masters or slaves for the duration of WAIT or VLPW mode. It can also be used to disable selected bus slaves immediately on entry into any stop mode (or Compute Operation), instead of waiting for

the bus masters to acknowledge the entry as part of the stop entry sequence. Finally, it can be used to disable selected bus masters or slaves that should remain inactive during a DMA wakeup.

If the Flash is not being accessed during WAIT and PSTOP modes, then the Flash Doze mode can be used to reduce power consumption, at the expense of a slightly longer wakeup when executing code and vectors from Flash. It can also be used to reduce power consumption during Compute Operation when executing code and vectors from SRAM.

7.2.5 Clock Gating

To conserve power, the clocks to most modules can be turned off using the SCGCx registers in the SIM module. These bits are cleared after any reset, which disables the clock to the corresponding module. Prior to initializing a module, set the corresponding bit in the SCGCx register to enable the clock. Before turning off the clock, make sure to disable the module. For more details, refer to the clock distribution and SIM chapters.

7.3 Power modes

The power management controller (PMC) provides multiple power options to allow the user to optimize power consumption for the level of functionality needed.

Depending on the stop requirements of the user application, a variety of stop modes are available that provide partial power down or full power down of certain logic and/or memory. I/O states are held in all modes of operation. The following table compares the various power modes available.

For each run mode there is a corresponding wait and stop mode. Wait modes are similar to ARM sleep modes. Stop modes (VLPS, STOP) are similar to ARM sleep deep mode. The very low power run (VLPR) operating mode can drastically reduce runtime power when the maximum bus frequency is not required to handle the application needs.

rower modes

The three primary modes of operation are run, wait and stop. The WFI instruction invokes both wait and stop modes for the chip. The primary modes are augmented in a number of ways to provide lower power based on application needs.

Chip mode	Description	Core mode	Normal recovery method	
Normal run	Allows maximum performance of chip. Default mode out of reset; on- chip voltage regulator is on.	Run	-	
Normal Wait - via WFI	Allows peripherals to function while the core is in sleep mode, reducing power. NVIC remains sensitive to interrupts; peripherals continue to be clocked.	Sleep	Interrupt	
Normal Stop - via WFI	Places chip in static state. Lowest power mode that retains all registers while maintaining LVD protection. NVIC is disabled; AWIC is used to wake up from interrupt; peripheral clocks are stopped.	Sleep Deep	Interrupt	
VLPR (Very Low Power Run)	On-chip voltage regulator is in a low power mode that supplies only enough power to run the chip at a reduced frequency. Only MCG modes BLPI and BLPE can be used in VLPR. Reduced frequency Flash access mode (1 MHz); LVD off; in BLPI clock mode, only the fast internal reference oscillator is available to provide a low power nominal 4MHz source for the core with the nominal bus and flash clock required to be <800kHz; alternatively, BLPE clock mode can be used with an external clock or the crystal oscillator providing the clock source.	Run		
VLPW (Very Low Power Wait) -via WFI	Same as VLPR but with the core in sleep mode to further reduce power; NVIC remains sensitive to interrupts (FCLK = ON). On-chip voltage regulator is in a low power mode that supplies only enough power to run the chip at a reduced frequency.	Sleep	Interrupt	
VLPS (Very Low Power Stop)-via WFI	Places chip in static state with LVD operation off. Lowest power mode with ADC and pin interrupts functional. Peripheral clocks are stopped, but OSC, LPTMR, CMP can be used. FTM and UART can optionally be enabled if their clock source is enabled. NVIC is disabled (FCLK = OFF); AWIC is used to wake up from interrupt. On-chip voltage regulator is in a low power mode that supplies only enough power to run the chip at a reduced frequency. All SRAM is operating (content retained and I/O states held).	Sleep Deep	Interrupt	
VLLS3 (Very Low Leakage Stop3)	Most peripherals are disabled (with clocks stopped), but OSC, LLWU, LPTMR, CMP can be used. NVIC is disabled; LLWU is used to wake up. SRAM_U and SRAM_L remain powered on (content retained and I/O states held).	Sleep Deep	Wakeup Reset ¹	
VLLS1 (Very Low Leakage Stop1)	Most peripherals are disabled (with clocks stopped), but OSC, LLWU, LPTMR, CMP can be used. NVIC is disabled; LLWU is used to wake up.	Sleep Deep	Wakeup Reset ¹	
	All of SRAM_U and SRAM_L are powered off.			
VLLS0 (Very Low Leakage Stop 0)	Most peripherals are disabled (with clocks stopped), but LLWU, LPTMR can be used. NVIC is disabled; LLWU is used to wake up.	Sleep Deep	Wakeup Reset ¹	
1° - 7	All of SRAM_U and SRAM_L are powered off.			
	LPO disabled, optional POR brown-out detection			

Table 7-1. Chip power modes

1. Follows the reset flow with the LLWU interrupt flag set for the NVIC.

7.4 Entering and exiting power modes

The WFI instruction invokes wait and stop modes for the chip. The processor exits the low-power mode via an interrupt. For VLLS modes, the wakeup sources are limited to LLWU generated wakeups, NMI pin, or $\overline{\text{RESET}}$ pin assertions. When the NMI pin or $\overline{\text{RESET}}$ pin have been disabled through associated FOPT settings, then these pins are ignored as wakeup sources. The wake-up flow from VLLSx is always through reset.

NOTE

The WFE instruction can have the side effect of entering a lowpower mode, but that is not its intended usage. See ARM documentation for more on the WFE instruction.

On VLLS recoveries, the I/O pins continue to be held in a static state after code execution begins, allowing software to reconfigure the system before unlocking the I/O. RAM is retained in VLLS3 only.

7.5 Module Operation in Low Power Modes

The following table illustrates the functionality of each module while the chip is in each of the low power modes. The standard behavior is shown with some exceptions for Compute Operation (CPO) and Partial Stop2 (PSTOP2).

(Debug modules are discussed separately; see Debug in Low-Power Modes.) Number ratings (such as 4 MHz and 1 Mbit/s) represent the maximum frequencies or maximum data rates per mode. Also, these terms are used:

- FF = Full functionality. In VLPR and VLPW the system frequency is limited, but if a module does not have a limitation in its functionality, it is still listed as FF.
- Async operation = Fully functional with alternate clock source, provided the selected clock source remains enabled
- static = Module register states and associated memories are retained.
- powered = Memory is powered to retain contents.
- low power = Memory is powered to retain contents in a lower power state
- OFF = Modules are powered off; module is in reset state upon wakeup. For clocks, OFF means disabled.
- wakeup = Modules can serve as a wakeup source for the chip.

Table 7-2.	Module	operation in low	power modes
		• p • · • • • · · · · · • · ·	

Modules	VLPR	VLPW	Stop	VLPS	VLLSx
		Core m	odules	<u> </u>	
NVIC	FF	FF	static	static	OFF
		System	modules		
Mode Controller	FF	FF	FF	FF	FF
LLWU ¹	static	static	static	static	FF ²
Regulator	low power	low power	ON	low power	low power in VLLS3, OFF in VLLS0/1
LVD	disabled	disabled	ON	disabled	disabled
Brown-out Detection	ON	ON	ON	ON	ON in VLLS1/3, optionally disabled in VLLS0 ³
DMA	FF Async operation in CPO	FF	Async operation	Async operation	OFF
Watchdog	FF	FF	static	static	OFF
	static in CPO		FF in PSTOP2		
EWM	FF	FF	static	static	
	static in CPO		FF in PSTOP2		
		Clo	cks		
1kHz LPO	ON	ON	ON	ON	ON in VLLS1/3, OFF in VLLS0
System oscillator (OSC)	OSCERCLK max of 16MHz crystal	OSCERCLK max of 16MHz crystal	OSCERCLK optional	OSCERCLK max of 16MHz crystal	limited to low range/low power in VLLS1/3, OFF in VLLS0
MCG	4 MHz IRC	4 MHz IRC	static - MCGIRCLK optional	static - MCGIRCLK optional	OFF
Core clock	4 MHz max	OFF	OFF	OFF	OFF
Platform clock	4 MHz max	4 MHz max	OFF	OFF	OFF
System clock	4 MHz max OFF in CPO	4 MHz max	OFF	OFF	OFF
Bus clock	1 MHz max OFF in CPO	1 MHz max	OFF 25 MHz max in PSTOP2 from RUN 1 MHz max in PSTOP2 from VLPR	OFF	OFF
		Memory and me	mory interfaces	·	
Flash	1 MHz max access - no program No register access in CPO	low power	low power	low power	OFF

Table continues on the next page ...

Chapter 7 Power Management

Modules	VLPR	VLPW	Stop	VLPS	VLLSx
SRAM	low power	low power	low power	low power	low power in VLLS3, OFF in VLLS0/1
		Communicat	ion interfaces		
UART0	1 Mbit/s	1 Mbit/s	static	static	OFF
	Async operation in CPO				
UART1	1 Mbit/s	1 Mbit/s	Async operation	Async operation	OFF
	Async opearation in CPO		FF in PSTOP2		
SPI0	master mode 500 kbit/s,	master mode 500 kbit/s,	static	static	OFF
	slave mode 250 kbit/s	slave mode 250 kbit/s			
	static, slave mode receive in CPO				
l ² C0	50 kbit/s	50 kbit/s	static, address	static, address	OFF
	static, address match wakeup in CPO		match wakeup FF in PSTOP2	match wakeup	
		Tim	iers		
FTM0, FTM1, and	FF	FF	static	static	OFF
FTM2	Async operation in CPO				
PDB	FF	FF	static	static	OFF
	Async operation in CPO				
LPTMR	FF	FF	Async operation	Async operation	Async operation ⁴
			FF in PSTOP2		
		Ana	alog	-	
16-bit ADC	FF ADC internal clock	FF	ADC internal clock only	ADC internal clock only	OFF
	only in CPO		FF in PSTOP2		
CMP ⁵	FF	FF	HS or LS compare	HS or LS compare	LS compare in
	HS or LS compare in CPO		FF in PSTOP2		VLLS1/3, OFF in VLLS0
6-bit DAC	FF	FF	static	static	static, OFF in
	static in CPO		FF in PSTOP2		VLLS0
12-bit DAC	FF	FF	static	static	static
	static in CPO		FF in PSTOP2		
		Human-mach	ine interfaces		

Table 7-2. Module operation in low power modes (continued)

Table continues on the next page...

Modules	VLPR	VLPW	Stop	VLPS	VLLSx
GPIO	FF IOPORT write only in CPO	FF	static output, wakeup input FF in PSTOP2	static output, wakeup input	OFF, pins latched

 Table 7-2.
 Module operation in low power modes (continued)

- 1. Using the LLWU module, the external pins available for this chip do not require the associated peripheral function to be enabled. It only requires the function controlling the pin (GPIO or peripheral) to be configured as an input to allow a transition to occur to the LLWU.
- 2. Since LPO clock source is disabled, filters will be bypassed during VLLS0.
- 3. The STOPCTRL[PORPO] bit in the SMC module controls this option.
- 4. LPO clock source is not available in VLLS0. Also, to use system OSC in VLLS0 it must be configured for bypass (external clock) operation. Pulse counting is available in all modes.
- CMP in stop or VLPS supports high speed or low speed external pin to pin or external pin to DAC compares. CMP in VLLSx only supports low speed external pin to pin or external pin to DAC compares. Windowed, sampled & filtered modes of operation are not available while in stop, VLPS or VLLSx modes.

NP

Chapter 8 Security

8.1 Introduction

This device implements security based on the mode selected from the flash module. The following sections provide an overview of flash security and details the effects of security on non-flash modules.

8.2 Flash Security

The flash module provides security information to the MCU based on the state held by the FSEC[SEC] bits. The MCU, in turn, confirms the security request and limits access to flash resources. During reset, the flash module initializes the FSEC register using data read from the security byte of the flash configuration field.

NOTE

The security features apply only to external accesses: debug. CPU accesses to the flash are not affected by the status of FSEC.

In the unsecured state all flash commands are available on the programming interfaces either from the debug port (SWD) or user code execution. When the flash is secured (FSEC[SEC] = 00, 01, or 11), the programmer interfaces are only allowed to launch mass erase operations. Additionally, in this mode, the debug port has no access to memory locations.

8.3 Security Interactions with other Modules

The flash security settings are used by the system to determine what resources are available. The following sections describe the interactions between modules and the flash security settings or the impact that the flash security has on non-flash modules.

8.3.1 Security Interactions with Debug

When flash security is active the SWD port cannot access the memory resources of the MCU.

Although most debug functions are disabled, the debugger can write to the Flash Mass Erase in Progress bit to trigger a mass erase (Erase All Blocks) command. A mass erase via the debugger is allowed even when some memory locations are protected.

When mass erase is disabled, mass erase via the debugger is blocked.

NP

Chapter 9 Debug

9.1 Introduction

This device's debug is based on the ARM CoreSightTM architecture and is configured to provide the maximum flexibility as allowed by the restrictions of the pinout and other available resources.

It provides register and memory accessibility from the external debugger interface, basic run/halt control plus two breakpoints and two watchpoints.

Only one debug interface is supported:

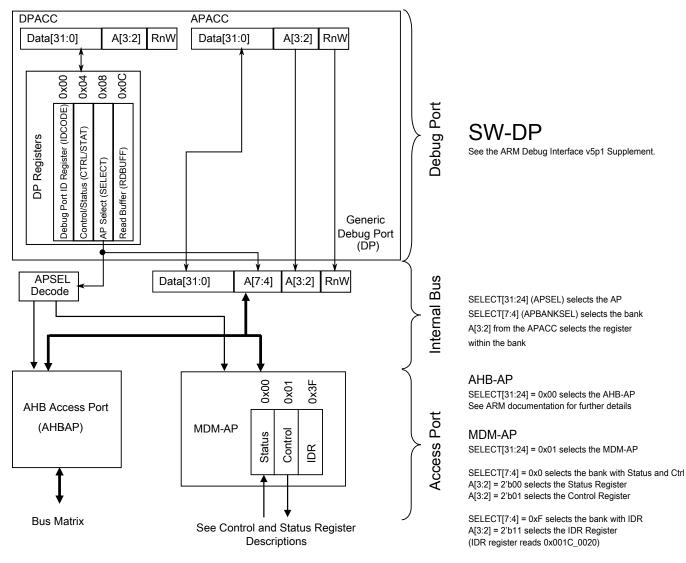
- Serial Wire Debug (SWD)
- Micro Trace Buffer (MTB)

9.2 Debug Port Pin Descriptions

The debug port pins default after POR to their SWD functionality.

Pin Name	Туре	Description
SWD_CLK		Serial Wire Clock. This pin is the clock for debug logic when in the Serial Wire Debug mode. This pin is pulled down internally.
SWD_DIO		Serial wire debug data input/output. The SWD_DIO pin is used by an external debug tool for communication and device control. This pin is pulled up internally.

 Table 9-1.
 Serial wire debug pin description


9.3 SWD status and control registers

Through the ARM Debug Access Port (DAP), the debugger has access to the status and control elements, implemented as registers on the DAP bus as shown in the following figure. These registers provide additional control and status for low-power mode recovery and typical run-control scenarios. The status register bits also provide a means for the debugger to receive updated status of the core without having to initiate a bus transaction across the crossbar switch, thus remaining less intrusive during a debug session.

It is important to note that these DAP control and status registers are not memory mapped within the system memory map and are only accessible via the Debug Access Port using SWD. The MDM-AP is accessible as Debug Access Port 1 with the available registers shown in the table below.

Address	Register	Description
0x0100_0000	Status	See MDM-AP Status Register
0x0100_0004	Control	See MDM-AP Control Register
0x0100_00FC		Read-only identification register that always reads as 0x001C_0020

Figure	9-1.	MDM	AP	Addressing
--------	------	-----	----	------------

9.3.1 MDM-AP Control Register

Bit	Name	Secure ¹	Description
0	Flash Mass Erase in Progress	Y	Set to cause mass erase. Cleared by hardware after mass erase operation completes.
			When mass erase is disabled (via MEEN and SEC settings), the erase request does not occur and the Flash Mass Erase in Progress bit continues to assert until the next system reset.
1	Debug Disable	N	Set to disable debug. Clear to allow debug operation. When set, it overrides the C_DEBUGEN bit within the DHCSR and force disables Debug logic.

Table continues on the next page ...

Table 9-3.	MDM-AP	Control register	assignments	(continued)
		••••••••••••••••••••••••••••••••••••••		(••••••

Bit	Name	Secure ¹	Description
2	Debug Request	N	Set to force the core to halt.
			If the core is in a Stop or Wait mode, this bit can be used to wake up the core and transition to a halted state.
3	System Reset Request	Y	Set to force a system reset. The system remains held in reset until this bit is cleared.
4	Core Hold Reset	N	Configuration bit to control core operation at the end of system reset sequencing.
			0 Normal operation—release the core from reset along with the rest of the system at the end of system reset sequencing.
			1 Suspend operation—hold the core in reset at the end of reset sequencing. After the system enters this suspended state, clearing this control bit immediately releases the core from reset and CPU operation begins.
5	VLLSx Debug Request (VLLDBGREQ)	N	Set to configure the system to be held in reset after the next recovery from a VLLSx mode. This bit is ignored on a VLLS wakeup via the Reset pin. During a VLLS wakeup via the Reset pin, the system can be held in reset by holding the reset pin asserted, allowing the debugger to reinitialize the debug modules.
			This bit holds the system in reset when VLLSx modes are exited to allow the debugger time to reinitialize debug IP before the debug session continues.
			The Mode Controller captures this bit logic on entry to VLLSx modes. On exit from VLLSx modes, the Mode Controller holds the system in reset until VLLDBGACK is asserted.
			The VLLDBGREQ bit clears automatically due to the POR reset generated as part of the VLLSx recovery.
6	VLLSx Debug Acknowledge (VLLDBGACK)	N	Set to release a system being held in reset following a VLLSx recovery.
			This bit is used by the debugger to release the system reset when it is being held on VLLSx mode exit. The debugger reinitializes all debug IP and then asserts this control bit to allow the Mode Controller to release the system from reset and allow CPU operation to begin.
			The VLLDBGACK bit is cleared by the debugger or can be left set because it clears automatically due to the POR reset generated as part of the next VLLSx recovery.
7	VLLSx Status Acknowledge	N	Set this bit to acknowledge the DAP VLLS Status bits have been read. This acknowledge automatically clears the status bits.
			This bit is used by the debugger to clear the sticky VLLSx mode entry status bits. This bit is asserted and cleared by the debugger.
8 – 31	Reserved for future use	N	

1. Command available in secure mode

9.3.2 MDM-AP Status Register

 Table 9-4.
 MDM-AP Status register assignments

Bit	Name	Description
0	Flash Mass Erase Acknowledge	The Flash Mass Erase Acknowledge bit is cleared after any system reset. The bit is also cleared at launch of a mass erase command due to a write of Flash Mass Erase in the Progress bit in the MDM AP Control Register. The Flash Mass Erase Acknowledge is set after flash control logic has started the mass erase operation.
		When mass erase is disabled (via MEEN and SEC settings), an erase request due to setting of Flash Mass Erase in the Progress bit is not acknowledged.
1	Flash Ready	Indicates flash has been initialized and debugger can be configured even if the system is still held in reset by the debugger.
2	System Security	Indicates the security state. When secure, the debugger does not have access to the system bus or any memory-mapped peripherals. This bit indicates when the part is locked and no system bus access is possible.
3	System Reset	Indicates the system reset state.
		0 System is in reset
		1 System is not in reset
4	Reserved	
5	Mass Erase Enable	Indicates whether the MCU can be mass-erased
		0 Mass erase is disabled
		1 Mass erase is enabled
6	Backdoor Access Key Enable	Indicates whether the MCU has the backdoor access key enabled.
		0 Disabled
		1 Enabled
7	LP Enabled	Decode of SMC_PMCTRL[STOPM] field to indicate that VLPS, or VLLSx are the selected power mode the next time the ARM Core enters Deep Sleep.
		0 Low Power Stop Mode is not enabled
		1 Low Power Stop Mode is enabled
		Usage intended for debug operation in which Run to VLPS is attempted. Per debug definition, the system actually enters the Stop state. A debugger should interpret deep sleep indication (with SLEEPDEEP and SLEEPING asserted), in conjuntion with this bit asserted as the debugger- VLPS status indication.
8	Very Low Power Mode	Indicates current power mode is VLPx. This bit is not 'sticky' and should always represent whether VLPx is enabled.
		This bit is used to throttle SWD_CLK frequency up/down.
9	Reserved	

Table continues on the next page...

Bit	Name	Description
10	VLLSx Modes Exit	This bit indicates an exit from VLLSx mode has occurred. The debugger loses communication while the system is in VLLSx (including access to this register). After communication is reestablished, this bit indicates that the system had been in VLLSx. Because the debug modules lose their state during VLLSx modes, they need to be reconfigured.
		This bit is set during the VLLSx recovery sequence. The VLLSx Mode Exit bit is held until the debugger has recognized that a VLLS mode was exited. This bit is cleared by a write of 1 to the VLLSx Status Acknowledge bit in the MDM AP Control register.
11 – 15	Reserved for future use	Always read 0.
16	Core Halted	Indicates the Core has entered debug halt mode
17	Core SLEEPDEEP	Indicates the Core has entered a low-power mode
18	Core SLEEPING	SLEEPING==1 and SLEEPDEEP==0 indicates wait or VLPW mode.
		SLEEPING==1 and SLEEPDEEP==1 indicates stop or VLPS mode.
19 – 31	Reserved for future use	Always read 0.

Table 9-4. MDM-AP Status register assignments (continued)

9.4 Debug Resets

The debug system receives the following sources of reset:

• System POR reset

Conversely, the debug system is capable of generating a system reset using the following mechanisms:

- A system reset in the DAP control register which allows the debugger to hold the system in reset.
- SYSRESETREQ bit in the NVIC application interrupt and reset control register
- A system reset in the DAP control register which allows the debugger to hold the Core in reset.

9.5 Micro Trace Buffer (MTB)

The Micro Trace Buffer (MTB) provides a simple execution trace capability for the Cortex-M0+ processor. When enabled, the MTB records changes in program flow reported by the Cortex-M0+ processor, via the execution trace interface, into a configurable region of the SRAM. Subsequently, an off-chip debugger may extract the

trace information, which would allow reconstruction of an instruction flow trace. The MTB does not include any form of load/store data trace capability or tracing of any other information.

In addition to providing the trace capability, the MTB also operates as a simple AHB-Lite SRAM controller. The system bus masters, including the processor, have read/write access to all of the SRAM via the AHB-Lite interface, allowing the memory also to be used to store program and data information. The MTB simultaneously stores the trace information into an attached SRAM and allows bus masters to access the memory. The MTB ensures that trace information write accesses to the SRAM take priority over accesses from the AHB-Lite interface.

The MTB includes trace control registers for configuring and triggering the MTB functions. The MTB also supports triggering via TSTART and TSTOP control functions in the MTB DWT module.

For more details on MTB, see the Micro Trace Buffer (MTB) chapter.

9.6 Debug in Low-Power Modes

In low-power modes in which the debug modules are kept static or powered off, the debugger cannot gather any debug data for the duration of the low-power mode. In the case that the debugger is held static, the debug port returns to full functionality as soon as the low-power mode exits and the system returns to a state with active debug. In the case that the debugger logic is powered off, the debugger is reset on recovery and must be reconfigured after the low-power mode is exited.

Power-mode entry logic monitors Debug Power Up and System Power Up signals from the debug port as indications that a debugger is active. These signals can be changed in RUN, VLPR, WAIT and VLPW. If the debug signal is active and the system attempts to enter Stop or VLPS, FCLK continues to run to support core register access. In these modes in which FCLK is left active the debug modules have access to core registers but not to system memory resources accessed via the crossbar.

With debug enabled, transitions from Run directly to VLPS result in the system entering Stop mode instead. Status bits within the MDM-AP Status register can be evaluated to determine this pseudo-VLPS state. Note with the debug enabled, transitions from Run--> VLPR --> VLPS are still possible.

In VLLS mode, all debug modules are powered off and reset at wakeup.

ບebug & Security

Going into a VLLSx mode causes all the debug controls and settings to be reset. To give time to the debugger to sync up with the hardware, the MDM-AP Control register can be configured to hold the system in reset on recovery so the debugger can regain control and reconfigure debug logic prior to the system exiting reset and resuming operation.

9.7 Debug & Security

When flash security is enabled, the debug port capabilities are limited in order to prevent exploitation of secure data. In the secure state the debugger still has access to the status register and can determine the current security state of the device. In the case of a secure device, the debugger only has the capability of performing a mass-erase operation.

Chapter 10 Signal Multiplexing and Signal Descriptions

10.1 Introduction

To optimize functionality in small packages, pins have several functions available via signal multiplexing. This chapter illustrates which of this device's signals are multiplexed on which external pin.

The Port Control block controls which signal is present on the external pin. Reference that chapter to find which register controls the operation of a specific pin.

10.2 Signal Multiplexing Integration

This section summarizes how the module is integrated into the device. For a comprehensive description of the module itself, see the module's dedicated chapter.

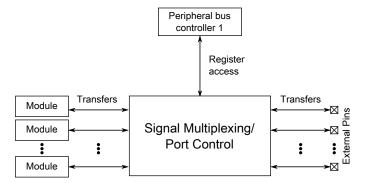


Figure 10-1. Signal multiplexing integration

Table 10-1.	Reference links t	o related information
-------------	-------------------	-----------------------

Торіс	Related module	Reference
Full description	Port control	Port control
System memory map		System memory map

Table continues on the next page ...

argual Multiplexing Integration

Торіс	Related module	Reference
Clocking		Clock Distribution
Register access	Peripheral bus controller	Peripheral bridge

 Table 10-1.
 Reference links to related information (continued)

10.2.1 Port control and interrupt module features

• Five 32-pin ports

NOTE

Not all pins are available on the device. See the following section for details.

• Port A is assigned a dedicated interrupt and Ports B, C, D, and E are grouped to share an interrupt. For DMA requests, Ports A, B, C, D, and E each have a dedicated input to the DMA MUX.

The reset state and read/write characteristics of the bit fields within the PORTx_PCRn registers is summarized in the table below.

This field of PORTx_PC Rn	Generally resets to	Except for	Resets to	Configurability
PS	1	ΡΤΑΟ	0	Yes - All GPIO are configurable
PE	0	PTA0, PTA3, and PTA4	1	Yes - All GPIO are configurable
DSE	0	No exceptions - all DSE are cleared on reset.		8 pins are configurable for High Drive (PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7). All are others are fixed for Normal Drive and the associated DSE bit is read only.
SRE	0	No exceptions	0	PTC6 and PTC7 are true open-drain pins, and have no slew rate options.
MUX	000	PTA0, PTA3 and PTA4	111	Yes - All GPIO are configurable

 Table 10-2.
 Port control register configuration summary

Table continues on the next page ...

Chapter 10 Signal Multiplexing and Signal Descriptions

This field of PORTx_PC Rn	Generally resets to	Except for	Resets to	Configurability
PFE	0	No exceptions - all PFE are cleared on reset. ¹	_	The GPIO shared with NMI_b pin is configurable. All other GPIO is fixed and read only.
IRQC	000	No exceptions - all are cleared on reset.	_	Only implemented for ports that support interrupt and DMA functionality.
ISF	0	No exceptions - all are cleared on reset.		Only implemented for ports that support interrupt and DMA functionality.

Table 10-2. Port control register configuration summary (continued)

The RESET pin has the passive analog filter fixed enabled when functioning as the RESET pin (FOPT[RESET_PIN_CFG] = 1) and fixed disabled when configured for other shared functions.

10.2.2 Clock gating

The clock to the port control module can be gated on and off using SIM_SCGC5[PORTx]. These fields are cleared after any reset, which disables the clock to the corresponding module to conserve power. Prior to initializing the corresponding module, set SIM_SCGC5[PORTx] to enable the clock. Before turning off the clock, make sure to disable the module. For more details, refer to the clock distribution chapter.

10.2.3 Signal multiplexing constraints

- 1. A given peripheral function must be assigned to a maximum of one package pin. Do not program the same function to more than one pin.
- 2. To ensure the best signal timing for a given peripheral's interface, choose the pins in closest proximity to each other.

10.3 Pinout

10.3.1 Signal Multiplexing and Pin Assignments

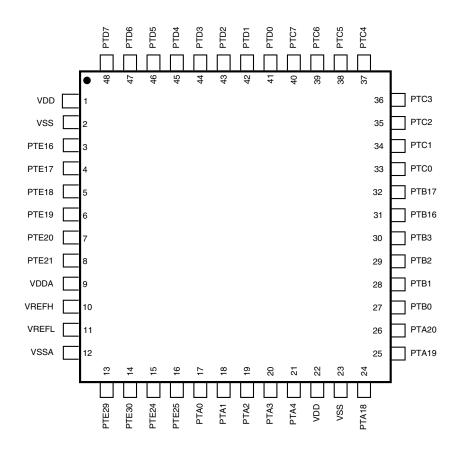
The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

NOTE

• PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, PTD7 are high current pins.

• PTC6 and PTC7 have open drain outputs

48 LQFP	32 QFN	32 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
1	1	1	VDD	VDD	VDD							
2	2	2	VSS	VSS	VSS							
3	3	3	PTE16	ADC0_SE1/ ADC0_DP1/ ADC1_SE0	ADC0_SE1/ ADC0_DP1/ ADC1_SE0	PTE16	SPI0_PCS0/ SS_b	UART1_TX	FTM_CLKIN0		FTM0_FLT3	
4	4	4	PTE17	ADC0_SE5/ ADC0_DM1/ ADC1_SE5	ADC0_SE5/ ADC0_DM1/ ADC1_SE5	PTE17	SPI0_SCK	UART1_RX	FTM_CLKIN1		LPTMR0_ALT3	
5	5	5	PTE18	ADC0_SE6/ ADC1_SE1/ ADC1_DP1	ADC0_SE6/ ADC1_SE1/ ADC1_DP1	PTE18	SPI0_SOUT	UART1_CTS_b	I2C0_SDA		SPI0_SIN	
6	6	6	PTE19	ADC0_SE7/ ADC1_SE7/ ADC1_DM1	ADC0_SE7/ ADC1_SE7/ ADC1_DM1	PTE19	SPI0_SIN	UART1_RTS_b	I2C0_SCL		SPI0_SOUT	
7	-	-	PTE20	ADC0_SE0/ ADC0_DP0	ADC0_SE0/ ADC0_DP0	PTE20		FTM1_CH0	UART0_TX			
8	-	-	PTE21	ADC0_SE4/ ADC0_DM0	ADC0_SE4/ ADC0_DM0	PTE21		FTM1_CH1	UARTO_RX			
9	7	7	VDDA	VDDA	VDDA							
10	7	7	VREFH	VREFH	VREFH							
11	8	8	VREFL	VREFL	VREFL							
12	8	8	VSSA	VSSA	VSSA							
13	-	-	PTE29	CMP1_IN5/ CMP0_IN5	CMP1_IN5/ CMP0_IN5	PTE29		FTM0_CH2		FTM_CLKIN0		
14	9	9	PTE30	ADC1_SE4/ CMP0_IN4/ CMP1_IN4/ DAC0_OUT	ADC1_SE4/ CMP0_IN4/ CMP1_IN4/ DAC0_OUT	PTE30		FTM0_CH3		FTM_CLKIN1		
15	10	10	PTE24	DISABLED		PTE24		FTM0_CH0		I2C0_SCL	EWM_OUT_b	
16	11	11	PTE25	DISABLED		PTE25		FTM0_CH1		I2C0_SDA	EWM_IN	
17	12	12	PTA0	SWD_CLK		PTA0	UART0_CTS_b	FTM0_CH5				SWD_CLK
18	13	13	PTA1	DISABLED		PTA1	UARTO_RX	FTM2_CH0	CMP0_OUT	FTM2_QD_ PHA	FTM1_CH1	
19	14	14	PTA2	DISABLED		PTA2	UARTO_TX	FTM2_CH1	CMP1_OUT	FTM2_QD_ PHB	FTM1_CH0	
20	15	15	PTA3	SWD_DIO		PTA3	UART0_RTS_b	FTM0_CH0	FTM2_FLT0	EWM_OUT_b		SWD_DIO
21	16	16	PTA4	NMI_b		PTA4/ LLWU_P3		FTM0_CH1		FTM0_FLT3		NMI_b
22	_	-	VDD	VDD	VDD							
23	-	-	VSS	VSS	VSS							
24	17	17	PTA18	EXTAL0	EXTAL0	PTA18		FTM0_FLT2	FTM_CLKIN0			


Chapter 10 Signal Multiplexing and Signal Descriptions

48 LQFP	32 QFN	32 LQFP	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
25	18	18	PTA19	XTAL0	XTAL0	PTA19	FTM0_FLT0	FTM1_FLT0	FTM_CLKIN1		LPTMR0_ALT1	
26	19	19	PTA20	RESET_b		PTA20						RESET_b
27	20	20	PTB0	ADC0_SE8/ ADC1_SE8	ADC0_SE8/ ADC1_SE8	PTB0/ LLWU_P5	I2C0_SCL	FTM1_CH0			FTM1_QD_ PHA	UART0_RX
28	21	21	PTB1	ADC0_SE9/ ADC1_SE9	ADC0_SE9/ ADC1_SE9	PTB1	I2C0_SDA	FTM1_CH1	FTM0_FLT2	EWM_IN	FTM1_QD_ PHB	UART0_TX
29	_	_	PTB2	ADC0_SE10/ ADC1_SE10/ ADC1_DM2	ADC0_SE10/ ADC1_SE10/ ADC1_DM2	PTB2	I2C0_SCL	UARTO_RTS_b	FTM0_FLT1		FTM0_FLT3	
30	-	-	PTB3	ADC1_SE2/ ADC1_DP2	ADC1_SE2/ ADC1_DP2	PTB3	I2C0_SDA	UART0_CTS_b			FTM0_FLT0	
31	_	-	PTB16	DISABLED		PTB16		UART0_RX	FTM_CLKIN2		EWM_IN	
32	_	_	PTB17	DISABLED		PTB17		UART0_TX	FTM_CLKIN1		EWM_OUT_b	
33	-	-	PTC0	ADC1_SE11	ADC1_SE11	PTC0	SPI0_PCS4	PDB0_EXTRG		CMP0_OUT	FTM0_FLT0	SPI0_PCS0/ SS_b
34	22	22	PTC1	ADC1_SE3	ADC1_SE3	PTC1/ LLWU_P6	SPI0_PCS3	UART1_RTS_b	FTM0_CH0	FTM2_CH0		
35	23	23	PTC2	ADC0_SE11/ CMP1_IN0	ADC0_SE11/ CMP1_IN0	PTC2	SPI0_PCS2	UART1_CTS_b	FTM0_CH1	FTM2_CH1		
36	24	24	PTC3	CMP1_IN1	CMP1_IN1	PTC3/ LLWU_P7	SPI0_PCS1	UART1_RX	FTM0_CH2	CLKOUT		
37	25	25	PTC4	DISABLED		PTC4/ LLWU_P8	SPI0_PCS0/ SS_b	UART1_TX	FTM0_CH3		CMP1_OUT	
38	26	26	PTC5	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ALT2			CMP0_OUT	FTM0_CH2
39	27	27	PTC6	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_SOUT	PDB0_EXTRG		UART0_RX		I2C0_SCL
40	28	28	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_SIN			UART0_TX		I2C0_SDA
41	-	-	PTD0	DISABLED		PTD0/ LLWU_P12	SPI0_PCS0/ SS_b	UART0_CTS_b	FTM0_CH0	UART1_RX		
42	_	_	PTD1	ADC0_SE2	ADC0_SE2	PTD1	SPI0_SCK	UART0_RTS_b	FTM0_CH1	UART1_TX		
43	-	-	PTD2	DISABLED		PTD2/ LLWU_P13	SPI0_SOUT	UART0_RX	FTM0_CH2			I2C0_SCL
44	-	-	PTD3	DISABLED		PTD3	SPI0_SIN	UART0_TX	FTM0_CH3			I2C0_SDA
45	29	29	PTD4	DISABLED		PTD4/ LLWU_P14	SPI0_PCS1	UARTO_RTS_b	FTM0_CH4	FTM2_CH0	EWM_IN	
46	30	30	PTD5	ADC0_SE3	ADC0_SE3	PTD5	SPI0_PCS2	UART0_CTS_b	FTM0_CH5	FTM2_CH1	EWM_OUT_b	
47	31	31	PTD6	ADC1_SE6	ADC1_SE6	PTD6/ LLWU_P15	SPI0_PCS3	UARTO_RX	FTM0_CH0	FTM1_CH0	FTM0_FLT0	
48	32	32	PTD7	DISABLED		PTD7		UART0_TX	FTM0_CH1	FTM1_CH1	FTM0_FLT1	

10.3.2 KV10 Pinouts

The following figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

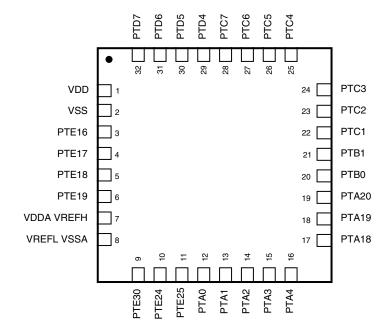


Figure 10-3. 32 QFN Pinout Diagram

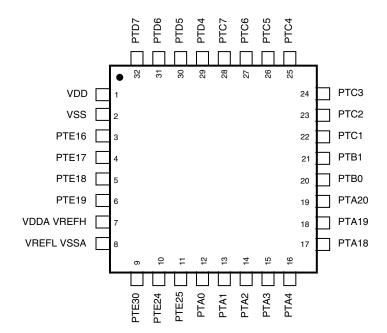


Figure 10-4. 32 LQFP Pinout Diagram

10.4 Module Signal Description Tables

The following sections correlate the chip-level signal name with the signal name used in the module's chapter. They also briefly describe the signal function and direction.

10.4.1 Core Modules

Chip signal name	Module signal name	Description	I/O
SWD_DIO	SWD_DIO	Serial Wire Debug Data Input/Output	Input /
		The SWD_DIO pin is used by an external debug tool for communication and device control. This pin is pulled up internally.	Output
SWD_CLK	SWD_CLK	Serial Wire Clock	Input
		This pin is the clock for debug logic when in the Serial Wire Debug mode. This pin is pulled down internally.	

 Table 10-3.
 SWD Signal Descriptions

10.4.2 System Modules

Table 10-4. System Signal Descriptions

Chip signal name	Module signal name	Description	I/O
NMI		Non-maskable interrupt NOTE: Driving the <u>NMI</u> signal low forces a non-maskable interrupt, if the <u>NMI</u> function is selected on the corresponding pin.	-
RESET	—	Reset bi-directional signal	I/O
VDD	_	MCU power	I
VSS		MCU ground	I

10.4.3 Clock Modules

Table 10-5. OSC Signal Descriptions

Chip signal name	Module signal name	Description	I/O
EXTAL0	EXTAL	External clock/Oscillator input	I
XTAL0	XTAL	Oscillator output	0

10.4.4 Memories and Memory Interfaces

woule Signal Description Tables

10.4.5 Analog

Chip signal name	Module signal name	Description	I/O
ADC0_DP0, ADC0_DP1	DADP3-DADP0	Differential Analog Channel Inputs	I
ADC0_DM0, ADC0_DM1	DADM3-DADM0	Differential Analog Channel Inputs	I
ADC0_SEn	AD <i>n</i>	Single-Ended Analog Channel Inputs	I
VREFH	V _{REFSH}	Voltage Reference Select High	I
VREFL	V _{REFSL}	Voltage Reference Select Low	I
VDDA	V _{DDA}	Analog Power Supply	I
VSSA	V _{SSA}	Analog Ground	I

Table 10-6. ADC0 Signal Descriptions

Table 10-7. ADC1 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
ADC1_DP1, ADC1_DP2	DADP3-DADP0	Differential Analog Channel Inputs	I
ADC1_DM1, ADC1_DM2	DADM3-DADM0	Differential Analog Channel Inputs	I
ADC1_SEn	ADn	Single-Ended Analog Channel Inputs	I
VREFH	V _{REFSH}	Voltage Reference Select High	I
VREFL	V _{REFSL}	Voltage Reference Select Low	I
VDDA	V _{DDA}	Analog Power Supply	I
VSSA	V _{SSA}	Analog Ground	I

Table 10-8. CMP0 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
CMP0_IN0, CMP0_IN1, CMP0_IN4, CMP0_IN5	IN[5:0]	Analog voltage inputs	I
CMP0_OUT	СМРО	Comparator output	0

Chapter 10 Signal Multiplexing and Signal Descriptions

Chip signal name	Module signal name	Description	I/O
CMP1_IN0, CMP1_IN1, CMP1_IN4, CMP0_IN5	IN[5:0]	Analog voltage inputs	I
CMP1_OUT	CMPO	Comparator output	0

Table 10-9. CMP1 Signal Descriptions

Table 10-10. DAC0 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
DAC0_OUT	_	DAC output	0

10.4.6 Timer Modules

Table 10-11. FTM 0 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
FTM_CLKIN[2:0]	EXTCLK	External clock. FTM external clock can be selected to drive the FTM counter.	I
FTM0_CH[5:0]	CHn	FTM channel (n), where n can be 5-0	I/O
FTM0_FLT[3:0]	FAULTj	Fault input (j), where j can be 3-0	I

Table 10-12. FTM 1 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
FTM_CLKIN[2:0]	EXTCLK	External clock. FTM external clock can be selected to drive the FTM counter.	I
FTM1_CH[1:0]	CHn	FTM channel (n), where n can be 1-0	I/O
FTM1_FLT[1:0]	FAULTj	Fault input (j), where j can be 1-0	I
FTM1_QD_PHA	PHA	Quadrature decoder phase A input. Input pin associated with quadrature decoder phase A.	I
FTM1_QD_PHB	PHB	Quadrature decoder phase B input. Input pin associated with quadrature decoder phase B.	I

Chip signal name	Module signal name	Description	I/O
FTM_CLKIN[2:0]	EXTCLK	External clock. FTM external clock can be selected to drive the FTM counter.	I
FTM2_CH[1:0]	CHn	FTM channel (n), where n can be 1-0	I/O
FTM2_FLT[1:0]	FAULTj	Fault input (j), where j can be 1-0	I
FTM2_QD_PHA	PHA	Quadrature decoder phase A input. Input pin associated with quadrature decoder phase A.	I
FTM2_QD_PHB	PHB	Quadrature decoder phase B input. Input pin associated with quadrature decoder phase B.	I

Table 10-13. FTM 2 Signal Descriptions

Table 10-14. PDB 0 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
PDB0_EXTRG	EXTRG	External Trigger Input Source	I
		If the PDB is enabled and external trigger input source is selected, a positive edge on the EXTRG signal resets and starts the counter.	

Table 10-15. LPTMR 0 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
LPTMR0_ALT[3:1]	LPTMR_ALTn	Pulse Counter Input pin	I

10.4.7 Communication Interfaces

Table 10-16. SPI 0 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
SPI0_PCS0	PCS0/SS	Peripheral Chip Select 0 (O)	I/O
SPI0_PCS[3:1]	PCS[1:3]	Peripheral Chip Selects 1–3	0
SPI0_PCS4	PCS4	Peripheral Chip Select 4	0
SPI0_SIN	SIN	Serial Data In	I
SPI0_SOUT	SOUT	Serial Data Out	0
SPI0_SCK	SCK	Serial Clock (O)	I/O

Chapter 10 Signal Multiplexing and Signal Descriptions

Chip signal name	Module signal name	Description	
I2C0_SCL	SCL	Bidirectional serial clock line of the I ² C system.	I/O
I2C0_SDA	SDA	Bidirectional serial data line of the I ² C system.	I/O

Table 10-17. I²C 0 Signal Descriptions

Table 10-18. UART 0 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
UART0_CTS	CTS	Clear to send	I
UART0_RTS	RTS	Request to send	0
UART0_TX	TXD	Transmit data	0
UART0_RX	RXD	Receive data	I

Table 10-19. UART 1 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
UART1_CTS	CTS	Clear to send	I
UART1_RTS	RTS	Request to send	0
UART1_TX	TXD	Transmit data	0
UART1_RX	RXD	Receive data	I

10.4.8 Human-Machine Interfaces (HMI)

Table 10-20. GPIO Signal Descriptions

Chip signal name	Module signal name	Description	I/O
PTA[31:0] ¹	PORTA31-PORTA0	General-purpose input/output	I/O
PTB[31:0] ¹	PORTB31-PORTB0	General-purpose input/output	I/O
PTC[31:0] ¹	PORTC31-PORTC0	General-purpose input/output	I/O
PTD[31:0] ¹	PORTD31-PORTD0	General-purpose input/output	I/O
PTE[31:0] ¹	PORTE31-PORTE0	General-purpose input/output	I/O

1. The available GPIO pins depends on the specific package. See the signal multiplexing section for which exact GPIO signals are available.

woule Signal Description Tables

Chapter 11 Port Control and Interrupts (PORT)

11.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

11.2 Overview

The Port Control and Interrupt (PORT) module provides support for port control, and external interrupt functions.

Most functions can be configured independently for each pin in the 32-bit port and affect the pin regardless of its pin muxing state.

There is one instance of the PORT module for each port. Not all pins within each port are implemented on a specific device.

11.2.1 Features

The PORT module has the following features:

- Pin interrupt on selected pins
 - Interrupt flag and enable registers for each pin
 - Support for edge sensitive (rising, falling, both) or level sensitive (low, high) configured per pin
 - Support for interrupt or DMA request configured per pin
 - Asynchronous wake-up in low-power modes
 - Pin interrupt is functional in all digital pin muxing modes
- Port control

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

• Individual pull control fields with pullup, pulldown, and pull-disable support on selected pins

- Individual drive strength field supporting high and low drive strength on selected pins
- Individual slew rate field supporting fast and slow slew rates on selected pins
- Individual input passive filter field supporting enable and disable of the individual input passive filter on selected pins
- Individual mux control field supporting analog or pin disabled, GPIO, and up to six chip-specific digital functions
- Pad configuration fields are functional in all digital pin muxing modes.

11.2.2 Modes of operation

11.2.2.1 Run mode

In Run mode, the PORT operates normally.

11.2.2.2 Wait mode

In Wait mode, PORT continues to operate normally and may be configured to exit the Low-Power mode if an enabled interrupt is detected. DMA requests are still generated during the Wait mode, but do not cause an exit from the Low-Power mode.

11.2.2.3 Stop mode

In Stop mode, the PORT can be configured to exit the Low-Power mode via an asynchronous wake-up signal if an enabled interrupt is detected.

11.2.2.4 Debug mode

In Debug mode, PORT operates normally.

11.3 External signal description

The table found here describes the PORT external signal.

Table 11-1.	Signal properties	5
-------------	-------------------	---

Name	Function	I/O	Reset	Pull	
PORTx[31:0]	External interrupt	I/O	0	-	

NOTE

Not all pins within each port are implemented on each device.

11.4 Detailed signal description

The table found here contains the detailed signal description for the PORT interface.

Signal	I/O	Description			
PORTx[31:0]	I/O	External interrupt.	External interrupt.		
		State meaning	Asserted—pin is logic 1.		
			Negated—pin is logic 0.		
		Timing	Assertion—may occur at any time and can assert asynchronously to the system clock.		
			Negation—may occur at any time and can assert asynchronously to the system clock.		

11.5 Memory map and register definition

Any read or write access to the PORT memory space that is outside the valid memory map results in a bus error. All register accesses complete with zero wait states.

PORT memory map

Absolute address (hex)	Register name		Access	Reset value	Section/ page
4004_9000	Pin Control Register n (PORTA_PCR0)	32	R/W	See section	11.5.1/185
4004_9004	Pin Control Register n (PORTA_PCR1)	32	R/W	See section	11.5.1/185
4004_9008	Pin Control Register n (PORTA_PCR2)	32	R/W	See section	11.5.1/185

Table continues on the next page...

Absolute Width Section/ address **Reset value Register name** Access (in bits) page (hex) Pin Control Register n (PORTA_PCR3) R/W 4004_900C 32 See section 11.5.1/185 4004_9010 Pin Control Register n (PORTA_PCR4) 32 R/W See section 11.5.1/185 4004 9014 Pin Control Register n (PORTA_PCR5) 32 R/W 11.5.1/185 See section 4004_9018 32 R/W Pin Control Register n (PORTA_PCR6) See section 11.5.1/185 4004_901C Pin Control Register n (PORTA_PCR7) 32 R/W See section 11.5.1/185 32 R/W 4004_9020 Pin Control Register n (PORTA_PCR8) See section 11.5.1/185 4004 9024 Pin Control Register n (PORTA_PCR9) 32 R/W See section 11.5.1/185 32 4004_9028 R/W Pin Control Register n (PORTA_PCR10) See section 11.5.1/185 4004_902C Pin Control Register n (PORTA_PCR11) 32 R/W See section 11.5.1/185 4004 9030 Pin Control Register n (PORTA_PCR12) 32 R/W See section 11.5.1/185 4004_9034 Pin Control Register n (PORTA_PCR13) 32 R/W See section 11.5.1/185 4004_9038 32 R/W Pin Control Register n (PORTA_PCR14) See section 11.5.1/185 4004_903C Pin Control Register n (PORTA_PCR15) R/W 32 See section 11.5.1/185 32 R/W 4004_9040 Pin Control Register n (PORTA_PCR16) See section 11.5.1/185 4004_9044 Pin Control Register n (PORTA_PCR17) 32 R/W See section 11.5.1/185 R/W 4004_9048 Pin Control Register n (PORTA_PCR18) 32 See section 11.5.1/185 4004_904C Pin Control Register n (PORTA_PCR19) 32 R/W See section 11.5.1/185 4004_9050 Pin Control Register n (PORTA_PCR20) 32 R/W See section 11.5.1/185 Pin Control Register n (PORTA_PCR21) R/W 4004_9054 32 See section 11.5.1/185 4004_9058 32 R/W Pin Control Register n (PORTA_PCR22) See section 11.5.1/185 4004_905C Pin Control Register n (PORTA_PCR23) 32 R/W See section 11.5.1/185 4004_9060 32 R/W Pin Control Register n (PORTA_PCR24) See section 11.5.1/185 4004_9064 Pin Control Register n (PORTA_PCR25) 32 R/W See section 11.5.1/185 4004_9068 Pin Control Register n (PORTA_PCR26) 32 R/W See section 11.5.1/185 4004_906C Pin Control Register n (PORTA_PCR27) 32 R/W See section 11.5.1/185 4004_9070 Pin Control Register n (PORTA_PCR28) 32 R/W See section 11.5.1/185 4004_9074 Pin Control Register n (PORTA_PCR29) 32 R/W See section 11.5.1/185 4004_9078 Pin Control Register n (PORTA_PCR30) 32 R/W 11.5.1/185 See section 4004_907C Pin Control Register n (PORTA_PCR31) 32 R/W See section 11.5.1/185 W 4004_9080 Global Pin Control Low Register (PORTA_GPCLR) 32 0000_0000h 11.5.2/188 (always reads 0) W 4004 9084 Global Pin Control High Register (PORTA GPCHR) 32 (always 0000 0000h 11.5.3/188 reads 0) 4004_90A0 Interrupt Status Flag Register (PORTA_ISFR) 32 w1c 0000_0000h 11.5.4/189 4004_A000 Pin Control Register n (PORTB_PCR0) R/W 32 See section 11.5.1/185 4004 A004 Pin Control Register n (PORTB_PCR1) 32 R/W See section 11.5.1/185 4004_A008 Pin Control Register n (PORTB_PCR2) 32 R/W See section 11.5.1/185

PORT memory map (continued)

Table continues on the next page...

PORT memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4004_A00C	Pin Control Register n (PORTB_PCR3)	32	R/W	See section	11.5.1/185
4004_A010	Pin Control Register n (PORTB_PCR4)	32	R/W	See section	11.5.1/185
4004_A014	Pin Control Register n (PORTB_PCR5)	32	R/W	See section	11.5.1/185
4004_A018	Pin Control Register n (PORTB_PCR6)	32	R/W	See section	11.5.1/185
4004_A01C	Pin Control Register n (PORTB_PCR7)	32	R/W	See section	11.5.1/185
4004_A020	Pin Control Register n (PORTB_PCR8)	32	R/W	See section	11.5.1/185
4004_A024	Pin Control Register n (PORTB_PCR9)	32	R/W	See section	11.5.1/185
4004_A028	Pin Control Register n (PORTB_PCR10)	32	R/W	See section	11.5.1/185
4004_A02C	Pin Control Register n (PORTB_PCR11)	32	R/W	See section	11.5.1/185
4004_A030	Pin Control Register n (PORTB_PCR12)	32	R/W	See section	11.5.1/185
4004_A034	Pin Control Register n (PORTB_PCR13)	32	R/W	See section	11.5.1/185
4004_A038	Pin Control Register n (PORTB_PCR14)	32	R/W	See section	11.5.1/185
4004_A03C	Pin Control Register n (PORTB_PCR15)	32	R/W	See section	11.5.1/185
4004_A040	Pin Control Register n (PORTB_PCR16)	32	R/W	See section	11.5.1/185
4004_A044	Pin Control Register n (PORTB_PCR17)	32	R/W	See section	11.5.1/185
4004_A048	Pin Control Register n (PORTB_PCR18)	32	R/W	See section	11.5.1/185
4004_A04C	Pin Control Register n (PORTB_PCR19)	32	R/W	See section	11.5.1/185
4004_A050	Pin Control Register n (PORTB_PCR20)	32	R/W	See section	11.5.1/185
4004_A054	Pin Control Register n (PORTB_PCR21)	32	R/W	See section	11.5.1/185
4004_A058	Pin Control Register n (PORTB_PCR22)	32	R/W	See section	11.5.1/185
4004_A05C	Pin Control Register n (PORTB_PCR23)	32	R/W	See section	11.5.1/185
4004_A060	Pin Control Register n (PORTB_PCR24)	32	R/W	See section	11.5.1/185
4004_A064	Pin Control Register n (PORTB_PCR25)	32	R/W	See section	11.5.1/185
4004_A068	Pin Control Register n (PORTB_PCR26)	32	R/W	See section	11.5.1/185
4004_A06C	Pin Control Register n (PORTB_PCR27)	32	R/W	See section	11.5.1/185
4004_A070	Pin Control Register n (PORTB_PCR28)	32	R/W	See section	11.5.1/185
4004_A074	Pin Control Register n (PORTB_PCR29)	32	R/W	See section	11.5.1/185
4004_A078	Pin Control Register n (PORTB_PCR30)	32	R/W	See section	11.5.1/185
4004_A07C	Pin Control Register n (PORTB_PCR31)	32	R/W	See section	11.5.1/185
4004_A080	Global Pin Control Low Register (PORTB_GPCLR)	32	W (always reads 0)	0000_0000h	11.5.2/188
4004_A084	Global Pin Control High Register (PORTB_GPCHR)	32	W (always reads 0)	0000_0000h	11.5.3/188
4004_A0A0	Interrupt Status Flag Register (PORTB_ISFR)	32	w1c	0000_0000h	11.5.4/189
4004_B000	Pin Control Register n (PORTC_PCR0)	32	R/W	See section	11.5.1/185
4004_B004	Pin Control Register n (PORTC_PCR1)	32	R/W	See section	11.5.1/185
4004_B008	Pin Control Register n (PORTC_PCR2)	32	R/W	See section	11.5.1/185

Table continues on the next page ...

Absolute Width Section/ address **Reset value Register name** Access (in bits) page (hex) Pin Control Register n (PORTC_PCR3) R/W 4004_B00C 32 See section 11.5.1/185 4004_B010 Pin Control Register n (PORTC_PCR4) 32 R/W See section 11.5.1/185 4004 B014 Pin Control Register n (PORTC_PCR5) 32 R/W 11.5.1/185 See section 4004_B018 32 R/W Pin Control Register n (PORTC_PCR6) See section 11.5.1/185 4004_B01C Pin Control Register n (PORTC_PCR7) 32 R/W See section 11.5.1/185 32 R/W 4004_B020 Pin Control Register n (PORTC_PCR8) See section 11.5.1/185 4004 B024 Pin Control Register n (PORTC_PCR9) 32 R/W See section 11.5.1/185 32 4004_B028 R/W Pin Control Register n (PORTC_PCR10) See section 11.5.1/185 4004_B02C Pin Control Register n (PORTC_PCR11) 32 R/W See section 11.5.1/185 4004 B030 Pin Control Register n (PORTC_PCR12) 32 R/W See section 11.5.1/185 4004_B034 Pin Control Register n (PORTC_PCR13) 32 R/W See section 11.5.1/185 4004_B038 32 R/W Pin Control Register n (PORTC_PCR14) See section 11.5.1/185 4004_B03C Pin Control Register n (PORTC_PCR15) R/W 32 See section 11.5.1/185 32 R/W 4004_B040 Pin Control Register n (PORTC_PCR16) See section 11.5.1/185 4004_B044 Pin Control Register n (PORTC_PCR17) 32 R/W See section 11.5.1/185 R/W 4004_B048 Pin Control Register n (PORTC_PCR18) 32 See section 11.5.1/185 4004_B04C Pin Control Register n (PORTC_PCR19) 32 R/W See section 11.5.1/185 4004_B050 Pin Control Register n (PORTC_PCR20) 32 R/W See section 11.5.1/185 Pin Control Register n (PORTC_PCR21) R/W 4004_B054 32 See section 11.5.1/185 4004_B058 Pin Control Register n (PORTC_PCR22) 32 R/W See section 11.5.1/185 4004_B05C Pin Control Register n (PORTC_PCR23) 32 R/W See section 11.5.1/185 4004_B060 32 R/W Pin Control Register n (PORTC_PCR24) See section 11.5.1/185 4004_B064 Pin Control Register n (PORTC_PCR25) 32 R/W See section 11.5.1/185 4004_B068 Pin Control Register n (PORTC_PCR26) 32 R/W See section 11.5.1/185 4004_B06C Pin Control Register n (PORTC_PCR27) 32 R/W See section 11.5.1/185 4004_B070 Pin Control Register n (PORTC_PCR28) 32 R/W See section 11.5.1/185 4004_B074 Pin Control Register n (PORTC_PCR29) 32 R/W See section 11.5.1/185 See section 4004_B078 Pin Control Register n (PORTC_PCR30) 32 R/W 11.5.1/185 4004_B07C Pin Control Register n (PORTC_PCR31) 32 R/W See section 11.5.1/185 W 4004_B080 Global Pin Control Low Register (PORTC_GPCLR) 32 0000_0000h 11.5.2/188 (always reads 0) W 4004 B084 Global Pin Control High Register (PORTC GPCHR) 32 (always 0000 0000h 11.5.3/188 reads 0) 4004_B0A0 Interrupt Status Flag Register (PORTC_ISFR) 32 w1c 0000_0000h 11.5.4/189 4004_C000 Pin Control Register n (PORTD_PCR0) R/W 32 See section 11.5.1/185

PORT memory map (continued)

Table continues on the next page...

32

32

R/W

R/W

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

11.5.1/185

11.5.1/185

See section

See section

4004 C004

4004_C008

Pin Control Register n (PORTD_PCR1)

Pin Control Register n (PORTD_PCR2)

PORT memory map (continued)

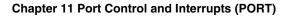

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4004_C00C	Pin Control Register n (PORTD_PCR3)	32	R/W	See section	11.5.1/185
4004_C010	Pin Control Register n (PORTD_PCR4)	32	R/W	See section	11.5.1/185
4004_C014	Pin Control Register n (PORTD_PCR5)	32	R/W	See section	11.5.1/185
4004_C018	Pin Control Register n (PORTD_PCR6)	32	R/W	See section	11.5.1/185
4004_C01C	Pin Control Register n (PORTD_PCR7)	32	R/W	See section	11.5.1/185
4004_C020	Pin Control Register n (PORTD_PCR8)	32	R/W	See section	11.5.1/185
4004_C024	Pin Control Register n (PORTD_PCR9)	32	R/W	See section	11.5.1/185
4004_C028	Pin Control Register n (PORTD_PCR10)	32	R/W	See section	11.5.1/185
4004_C02C	Pin Control Register n (PORTD_PCR11)	32	R/W	See section	11.5.1/185
4004_C030	Pin Control Register n (PORTD_PCR12)	32	R/W	See section	11.5.1/185
4004_C034	Pin Control Register n (PORTD_PCR13)	32	R/W	See section	11.5.1/185
4004_C038	Pin Control Register n (PORTD_PCR14)	32	R/W	See section	11.5.1/185
4004_C03C	Pin Control Register n (PORTD_PCR15)	32	R/W	See section	11.5.1/185
4004_C040	Pin Control Register n (PORTD_PCR16)	32	R/W	See section	11.5.1/185
4004_C044	Pin Control Register n (PORTD_PCR17)	32	R/W	See section	11.5.1/185
4004_C048	Pin Control Register n (PORTD_PCR18)	32	R/W	See section	11.5.1/185
4004_C04C	Pin Control Register n (PORTD_PCR19)	32	R/W	See section	11.5.1/185
4004_C050	Pin Control Register n (PORTD_PCR20)	32	R/W	See section	11.5.1/185
4004_C054	Pin Control Register n (PORTD_PCR21)	32	R/W	See section	11.5.1/185
4004_C058	Pin Control Register n (PORTD_PCR22)	32	R/W	See section	11.5.1/185
4004_C05C	Pin Control Register n (PORTD_PCR23)	32	R/W	See section	11.5.1/185
4004_C060	Pin Control Register n (PORTD_PCR24)	32	R/W	See section	11.5.1/185
4004_C064	Pin Control Register n (PORTD_PCR25)	32	R/W	See section	11.5.1/185
4004_C068	Pin Control Register n (PORTD_PCR26)	32	R/W	See section	11.5.1/185
4004_C06C	Pin Control Register n (PORTD_PCR27)	32	R/W	See section	11.5.1/185
4004_C070	Pin Control Register n (PORTD_PCR28)	32	R/W	See section	11.5.1/185
4004_C074	Pin Control Register n (PORTD_PCR29)	32	R/W	See section	11.5.1/185
4004_C078	Pin Control Register n (PORTD_PCR30)	32	R/W	See section	11.5.1/185
4004_C07C	Pin Control Register n (PORTD_PCR31)	32	R/W	See section	11.5.1/185
4004_C080	Global Pin Control Low Register (PORTD_GPCLR)	32	W (always reads 0)	0000_0000h	11.5.2/188
4004_C084	Global Pin Control High Register (PORTD_GPCHR)	32	W (always reads 0)	0000_0000h	11.5.3/188
4004_C0A0	Interrupt Status Flag Register (PORTD_ISFR)	32	w1c	0000_0000h	11.5.4/189
4004_D000	Pin Control Register n (PORTE_PCR0)	32	R/W	See section	11.5.1/185
4004_D004	Pin Control Register n (PORTE_PCR1)	32	R/W	See section	11.5.1/185
4004_D008	Pin Control Register n (PORTE_PCR2)	32	R/W	See section	11.5.1/185

Table continues on the next page ...

Absolute Width Section/ address **Reset value Register name** Access (in bits) page (hex) 4004_D00C Pin Control Register n (PORTE_PCR3) 32 R/W 11.5.1/185 See section 4004 D010 Pin Control Register n (PORTE PCR4) 32 R/W See section 11.5.1/185 4004_D014 Pin Control Register n (PORTE_PCR5) R/W 32 See section 11.5.1/185 4004_D018 Pin Control Register n (PORTE_PCR6) 32 R/W See section 11.5.1/185 4004_D01C Pin Control Register n (PORTE_PCR7) 32 R/W See section 11.5.1/185 4004_D020 Pin Control Register n (PORTE_PCR8) 32 R/W See section 11.5.1/185 R/W 4004 D024 Pin Control Register n (PORTE_PCR9) 32 11.5.1/185 See section 4004_D028 Pin Control Register n (PORTE_PCR10) 32 R/W See section 11.5.1/185 4004_D02C Pin Control Register n (PORTE_PCR11) 32 R/W See section 11.5.1/185 4004_D030 Pin Control Register n (PORTE_PCR12) 32 R/W See section 11.5.1/185 4004 D034 Pin Control Register n (PORTE_PCR13) 32 R/W See section 11.5.1/185 32 R/W 4004_D038 Pin Control Register n (PORTE_PCR14) See section 11.5.1/185 R/W 4004_D03C Pin Control Register n (PORTE_PCR15) 32 See section 11.5.1/185 32 R/W 4004 D040 Pin Control Register n (PORTE_PCR16) See section 11.5.1/185 4004_D044 Pin Control Register n (PORTE_PCR17) 32 R/W See section 11.5.1/185 4004_D048 Pin Control Register n (PORTE_PCR18) 32 R/W See section 11.5.1/185 4004_D04C Pin Control Register n (PORTE_PCR19) 32 R/W See section 11.5.1/185 4004_D050 Pin Control Register n (PORTE_PCR20) 32 R/W See section 11.5.1/185 4004_D054 Pin Control Register n (PORTE_PCR21) 32 R/W See section 11.5.1/185 R/W 4004_D058 Pin Control Register n (PORTE_PCR22) 32 See section 11.5.1/185 4004_D05C Pin Control Register n (PORTE_PCR23) 32 R/W See section 11.5.1/185 32 R/W 4004_D060 Pin Control Register n (PORTE_PCR24) See section 11.5.1/185 Pin Control Register n (PORTE_PCR25) R/W 4004_D064 32 See section 11.5.1/185 4004_D068 Pin Control Register n (PORTE_PCR26) 32 R/W See section 11.5.1/185 4004_D06C Pin Control Register n (PORTE_PCR27) 32 R/W See section 11.5.1/185 4004 D070 32 R/W Pin Control Register n (PORTE_PCR28) See section 11.5.1/185 4004_D074 Pin Control Register n (PORTE_PCR29) 32 R/W See section 11.5.1/185 4004_D078 32 R/W Pin Control Register n (PORTE_PCR30) See section 11.5.1/185 4004_D07C Pin Control Register n (PORTE_PCR31) 32 R/W See section 11.5.1/185 W 4004_D080 Global Pin Control Low Register (PORTE_GPCLR) 32 0000_0000h (always 11.5.2/188 reads 0) W 4004 D084 Global Pin Control High Register (PORTE_GPCHR) 32 0000_0000h (always 11.5.3/188 reads 0) 4004_D0A0 Interrupt Status Flag Register (PORTE_ISFR) 32 w1c 0000_0000h 11.5.4/189

PORT memory map (continued)

11.5.1 Pin Control Register n (PORTx_PCRn)

NOTE

See the Signal Multiplexing and Pin Assignment chapter for the reset value of this device.

See the GPIO Configuration section for details on the available functions for each pin.

Do not modify pin configuration registers associated with pins not available in your selected package. All unbonded pins not available in your package will default to DISABLE state for lowest power consumption.

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R				0				ISF		()					
w								w1c						IRC	JC	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R			0				MUX		0	DSE	0	PFE	0	SRE	PE	PS
w							IVIUX			DSE				SHE	PE	P3
Reset	0	0	0	0	0	*	*	*	0	*	0	*	0	*	*	*

Address: Base address + 0h offset + $(4d \times i)$, where i=0d to 31d

* Notes:

- MUX field: Varies by port. See Signal Multiplexing and Signal Descriptions chapter for reset values per port.
- DSE field: Varies by port. See the Signal Multiplexing and Signal Descriptions chapter for reset values per port.
- PFE field: Varies by port. See Signal Multiplexing and Signal Descriptions chapter for reset values per port.
- SRE field: Varies by port. See Signal Multiplexing and Signal Descriptions chapter for reset values per port.
- PE field: Varies by port. See Signal Multiplexing and Signal Descriptions chapter for reset values per port.
- PS field: Varies by port. See Signal Multiplexing and Signal Descriptions chapter for reset values per port.

PORTx_PCRn field descriptions

Field	Description
31–25	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
24	Interrupt Status Flag
ISF	This field is read-only for pins that do not support interrupt generation.
	The pin interrupt configuration is valid in all digital pin muxing modes.

Table continues on the next page...

Field	Description
	0 Configured interrupt is not detected.
	1 Configured interrupt is detected. If the pin is configured to generate a DMA request, then the corresponding flag will be cleared automatically at the completion of the requested DMA transfer. Otherwise, the flag remains set until a logic 1 is written to the flag. If the pin is configured for a level sensitive interrupt and the pin remains asserted, then the flag is set again immediately after it is cleared.
23–20	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
19–16 IRQC	Interrupt Configuration
	This field is read-only for pins that do not support interrupt generation.
	The pin interrupt configuration is valid in all digital pin muxing modes. The corresponding pin is configured to generate interrupt/DMA request as follows:
	0000 Flag is disabled.
	0001 Flag and DMA request on rising edge.
	0010 Flag and DMA request on falling edge.
	0011 Flag and DMA request on either edge.
	0100 Reserved.
	0101 Reserved.
	0110 Reserved.
	0111 Reserved.
	1000 Flag and Interrupt when logic 0.
	1001 Flag and Interrupt on rising-edge.
	1010 Flag and Interrupt on falling-edge.
	1011 Flag and Interrupt on either edge.
	1100 Flag and Interrupt when logic 1.
	1101 Reserved.
	1110 Reserved.
	1111 Reserved.
15–11 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
10–8	Pin Mux Control
MUX	Not all pins support all pin muxing slots. Unimplemented pin muxing slots are reserved and may result in configuring the pin for a different pin muxing slot.
	The corresponding pin is configured in the following pin muxing slot as follows:
	000 Pin disabled (analog).
	001 Alternative 1 (GPIO).
	010 Alternative 2 (chip-specific).
	011 Alternative 3 (chip-specific).
	100 Alternative 4 (chip-specific).
	101 Alternative 5 (chip-specific).
	110 Alternative 6 (chip-specific).
	111 Alternative 7 (chip-specific).
7	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

PORTx_PCRn field descriptions (continued)

Table continues on the next page...

Chapter 11 Port Control and Interrupts (PORT)

PORTx_PCRn field descriptions (continued)

Field	Description
6	Drive Strength Enable
DSE	This field is read-only for pins that do not support a configurable drive strength.
	Drive strength configuration is valid in all digital pin muxing modes.
	 Low drive strength is configured on the corresponding pin, if pin is configured as a digital output. High drive strength is configured on the corresponding pin, if pin is configured as a digital output.
5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
4	Passive Filter Enable
PFE	This field is read-only for pins that do not support a configurable passive input filter.
	Passive filter configuration is valid in all digital pin muxing modes.
	0 Passive input filter is disabled on the corresponding pin.
	1 Passive input filter is enabled on the corresponding pin, if the pin is configured as a digital input. Refer to the device data sheet for filter characteristics.
3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
2 SRE	Slew Rate Enable
SNE	This field is read-only for pins that do not support a configurable slew rate.
	Slew rate configuration is valid in all digital pin muxing modes.
	 Fast slew rate is configured on the corresponding pin, if the pin is configured as a digital output. Slow slew rate is configured on the corresponding pin, if the pin is configured as a digital output.
1	Pull Enable
PE	This field is read-only for pins that do not support a configurable pull resistor. Refer to the Chapter of Signal Multiplexing and Signal Descriptions for the pins that support a configurable pull resistor.
	Pull configuration is valid in all digital pin muxing modes.
	 Internal pullup or pulldown resistor is not enabled on the corresponding pin. Internal pullup or pulldown resistor is enabled on the corresponding pin, if the pin is configured as a digital input.
0 PS	Pull Select
r5	This bit is read only for pins that do not support a configurable pull resistor direction.
	Pull configuration is valid in all digital pin muxing modes.
	 Internal pulldown resistor is enabled on the corresponding pin, if the corresponding PE field is set. Internal pullup resistor is enabled on the corresponding pin, if the corresponding PE field is set.

11.5.2 Global Pin Control Low Register (PORTx_GPCLR)

Only 32-bit writes are supported to this register.

Address: Base address + 80h offset

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R								C)															C)							
w								GP	WE															GP۱	WD							

PORTx_GPCLR field descriptions

Field	Description
31–16 GPWE	Global Pin Write Enable
	Selects which Pin Control Registers (15 through 0) bits [15:0] update with the value in GPWD.
	0 Corresponding Pin Control Register is not updated with the value in GPWD.
	1 Corresponding Pin Control Register is updated with the value in GPWD.
15–0 GPWD	Global Pin Write Data
	Write value that is written to all Pin Control Registers bits [15:0] that are selected by GPWE.

11.5.3 Global Pin Control High Register (PORTx_GPCHR)

Only 32-bit writes are supported to this register.

Add	res	s: B	ase	add	ress	8 + 8	34h	offs	et																							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R								(C															()							
W								GP	WE															GP	WD							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PORTx_GPCHR field descriptions

Field	Description
31–16 GPWE	Global Pin Write Enable
	Selects which Pin Control Registers (31 through 16) bits [15:0] update with the value in GPWD.
	0 Corresponding Pin Control Register is not updated with the value in GPWD.
	1 Corresponding Pin Control Register is updated with the value in GPWD.
15–0 GPWD	Global Pin Write Data
	Write value that is written to all Pin Control Registers bits [15:0] that are selected by GPWE.

11.5.4 Interrupt Status Flag Register (PORTx_ISFR)

The corresponding bit is read only for pins that do not support interrupt generation.

The pin interrupt configuration is valid in all digital pin muxing modes. The Interrupt Status Flag for each pin is also visible in the corresponding Pin Control Register, and each flag can be cleared in either location.

Address: Base address + A0h offset

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R																IS	ŝF															
w																w	1c															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PORTx_ISFR field descriptions

Field	Description
31–0 ISF	 Interrupt Status Flag Each bit in the field indicates the detection of the configured interrupt of the same number as the field. 0 Configured interrupt is not detected. 1 Configured interrupt is detected. If the pin is configured to generate a DMA request, then the corresponding flag will be cleared automatically at the completion of the requested DMA transfer. Otherwise, the flag remains set until a logic 1 is written to the flag. If the pin is configured for a level sensitive interrupt and the pin remains asserted, then the flag is set again immediately after it is cleared.

11.6 Functional description

11.6.1 Pin control

Each port pin has a corresponding Pin Control register, PORT_PCRn, associated with it.

The upper half of the Pin Control register configures the pin's capability to either interrupt the CPU or request a DMA transfer, on a rising/falling edge or both edges as well as a logic level occurring on the port pin. It also includes a flag to indicate that an interrupt has occurred.

The lower half of the Pin Control register configures the following functions for each pin within the 32-bit port.

- Pullup or pulldown enable on selected pins
- Drive strength and slew rate configuration on selected pins

runctional description

- Passive input filter enable on selected pins
- Pin Muxing mode

The functions apply across all digital pin muxing modes and individual peripherals do not override the configuration in the Pin Control register. For example, if an I²C function is enabled on a pin, that does not override the pullup configuration for that pin.

When the Pin Muxing mode is configured for analog or is disabled, all the digital functions on that pin are disabled. This includes the pullup and pulldown enables, output buffer enable, input buffer enable, and passive filter enable.

The configuration of each Pin Control register is retained when the PORT module is disabled.

Whenever a pin is configured in any digital pin muxing mode, the input buffer for that pin is enabled allowing the pin state to be read via the corresponding GPIO Port Data Input Register (GPIO_PDIR) or allowing a pin interrupt or DMA request to be generated. If a pin is ever floating when its input buffer is enabled, then this can cause an increase in power consumption and must be avoided. A pin can be floating due to an input pin that is not connected or an output pin that has tri-stated (output buffer is disabled).

Enabling the internal pull resistor (or implementing an external pull resistor) will ensure a pin does not float when its input buffer is enabled; note that the internal pull resistor is automatically disabled whenever the output buffer is enabled allowing the Pull Enable bit to remain set. Configuring the Pin Muxing mode to disabled or analog will disable the pin's input buffer and results in the lowest power consumption.

11.6.2 Global pin control


The two global pin control registers allow a single register write to update the lower half of the pin control register on up to 16 pins, all with the same value.

The global pin control registers are designed to enable software to quickly configure multiple pins within the one port for the same peripheral function. However, the interrupt functions cannot be configured using the global pin control registers.

The global pin control registers are write-only registers, that always read as 0.

11.6.3 External interrupts

The external interrupt capability of the PORT module is available in all digital pin muxing modes provided the PORT module is enabled.

Each pin can be individually configured for any of the following external interrupt modes:

- Interrupt disabled, default out of reset
- Active high level sensitive interrupt
- Active low level sensitive interrupt
- Rising edge sensitive interrupt
- Falling edge sensitive interrupt
- Rising and falling edge sensitive interrupt
- Rising edge sensitive DMA request
- Falling edge sensitive DMA request
- Rising and falling edge sensitive DMA request

The interrupt status flag is set when the configured edge or level is detected on the pin . When not in Stop mode, the input is first synchronized to the bus clock to detect the configured level or edge transition.

The PORT module generates a single interrupt that asserts when the interrupt status flag is set for any enabled interrupt for that port. The interrupt negates after the interrupt status flags for all enabled interrupts have been cleared by writing a logic 1 to the ISF flag in either the PORT_ISFR or PORT_PCRn registers.

The PORT module generates a single DMA request that asserts when the interrupt status flag is set for any enabled DMA request in that port. The DMA request negates after the DMA transfer is completed, because that clears the interrupt status flags for all enabled DMA requests.

During Stop mode, the interrupt status flag for any enabled interrupt is asynchronously set if the required level or edge is detected. This also generates an asynchronous wake-up signal to exit the Low-Power mode.

Chapter 12 System Integration Module (SIM)

12.1 Introduction

The system integration module (SIM) provides system control and chip configuration registers.

12.1.1 Features

- Configuration for system clocking
 - System clock divide values
 - Architectural clock gating control
 - ERCLK32K clock selection
- Flash and System RAM size configuration
- Flextimer external clock, hardware trigger, fault source, and input capture selection
- UART receive/transmit source selection and configuration

12.2 Memory map and register definition

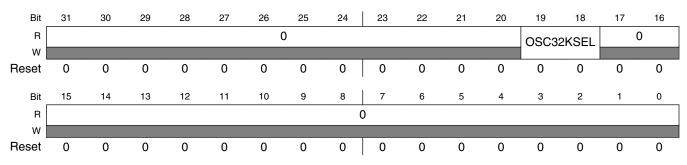
The SIM module contains many fields for selecting the clock source and dividers for various module clocks. See the Clock Distribution chapter for more information, including block diagrams and clock definitions.

NOTE

- The SIM_SOPT1 register is located at a different base address than the other SIM registers.
- The SIM regsiters can be written only in the Supervisor mode. In the User mode, write accesses are blocked and result in a bus error.
- To change SIM_FCFG1 setting, it needs to use 32-bit write operation; other size operation will result a bus error.

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4004_7000	System Options Register 1 (SIM_SOPT1)	32	R/W	0000_0000h	12.2.1/195
4004_8004	System Options Register 2 (SIM_SOPT2)	32	R/W	0000_0000h	12.2.2/196
4004_800C	System Options Register 4 (SIM_SOPT4)	32	R/W	0000_0000h	12.2.3/197
4004_8010	System Options Register 5 (SIM_SOPT5)	32	R/W	0000_0000h	12.2.4/200
4004_8018	System Options Register 7 (SIM_SOPT7)	32	R/W	0000_0000h	12.2.5/202
4004_801C	System Options Register 8 (SIM_SOPT8)	32	R/W	0000_0000h	12.2.6/205
4004_8024	System Device Identification Register (SIM_SDID)	32	R	Undefined	12.2.7/208
4004_8034	System Clock Gating Control Register 4 (SIM_SCGC4)	32	R/W	F000_0030h	12.2.8/209
4004_8038	System Clock Gating Control Register 5 (SIM_SCGC5)	32	R/W	0004_0180h	12.2.9/211
4004_803C	System Clock Gating Control Register 6 (SIM_SCGC6)	32	R/W	0000_0001h	12.2.10/212
4004_8040	System Clock Gating Control Register 7 (SIM_SCGC7)	32	R/W	0000_0100h	12.2.11/214
4004_8044	System Clock Divider Register 1 (SIM_CLKDIV1)	32	R/W	See section	12.2.12/215
4004_804C	Flash Configuration Register 1 (SIM_FCFG1)	32	R	See section	12.2.13/217
4004_8050	Flash Configuration Register 2 (SIM_FCFG2)	32	R	See section	12.2.14/218
4004_8058	Unique Identification Register Mid-High (SIM_UIDMH)	32	R	See section	12.2.15/219
4004_805C	Unique Identification Register Mid Low (SIM_UIDML)	32	R	Undefined	12.2.16/219
4004_8060	Unique Identification Register Low (SIM_UIDL)	32	R	Undefined	12.2.17/220
4004_8100	WDOG Control Register (SIM_WDOGCTRL)	32	R/W	0000_0000h	12.2.18/220

SIM memory map


12.2.1 System Options Register 1 (SIM_SOPT1)

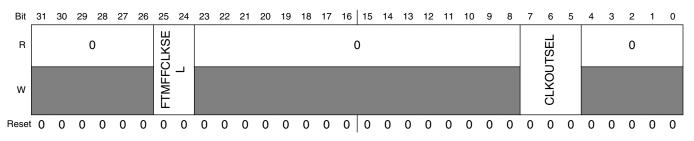
NOTE

The reset value of the SOPT1 register is as follows:

- Exit from POR and LVD: OSC32KSEL is cleared.
- Exit from VLLS or other system reset: OSC32KSEL are unaffected

Address: 4004_7000h base + 0h offset = 4004_7000h

SIM_SOPT1 field descriptions


Field	Description	
31–20	This field is reserved.	
Reserved	This read-only field is reserved and always has the value 0.	
19–18 OSC32KSEL	 32K Oscillator Clock Select Selects the 32 kHz clock source (ERCLK32K) for LPTMR. This field is reset only for POR/LVD. 00 System oscillator (OSC32KCLK) 01 Reserved 10 Reserved 11 LPO 1 kHz 	
17–0	This field is reserved.	
Reserved	This read-only field is reserved and always has the value 0.	

12.2.2 System Options Register 2 (SIM_SOPT2)

SOPT2 contains the controls for selecting many of the module clock source options on this device. See the Clock Distribution chapter for more information including clocking diagrams and definitions of device clocks.

Address: 4004_7000h base + 1004h offset = 4004_8004h

Field Description 31-26 This field is reserved. Reserved This read-only field is reserved and always has the value 0. 25-24 FTM Fixed Frequency Clock Select **FTMFFCLKSEL** Selects the fixed frequency clock for FTM0, FTM1, and FTM2 00 MCGFFCLK 01 MCGIRCLK OSCERCLK 10 11 MCGFFCLK 23-8 This field is reserved. Reserved This read-only field is reserved and always has the value 0. 7–5 **CLKOUT Select** CLKOUTSEL Selects the clock to output on the CLKOUT pin. 000 Reserved 001 Reserved 010 Bus clock 011 LPO clock (1 kHz) 100 MCGIRCLK 101 Reserved 110 OSCERCLK 111 Reserved 4 - 0This field is reserved. Reserved This read-only field is reserved and always has the value 0.

SIM_SOPT2 field descriptions

Bit FTM2ICH1SRC **FTM2ICH0SRC** FTM1ICH0SRC **FTM2CLKSEL FTM1CLKSEL** FTMOCLKSEI R W Reset Bit FTM2TRG1SR C FTM1TRG1SR C FTM0TRG2SR C FTM0TRG1SR C FTM0TRG0SR C FTM1TRG2SR C FTM1TRG0SR C **FTM2TRG0SR** FTM2TRG2SR FTM1FLT0 R **FTM2FLT0 FTM0FLT0** FTM0FLT1 O C w Reset

Address: 4004_7000h base + 100Ch offset = 4004_800Ch

SIM_SOPT4 field descriptions

Field	Description		
31–30 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.		
29–28 FTM2CLKSEL	FTM2 External Clock Pin Select		
	Selects the external pin used to drive the clock to the FTM2 module.		
	NOTE: The selected pin must also be configured for the FTM external clock function through the appropriate pin control register in the port control module.		
	00 FTM2 external clock driven by FTM_CLKIN0 pin		
	01 FTM2 external clock driven by FTM_CLKIN1 pin		
	10 FTM2 external clock driven by FTM_CLKIN2 pin		
	11 Reserved		
27–26	FTM1 External Clock Pin Select		
FTM1CLKSEL	Selects the external pin used to drive the clock to the FTM1 module.		
	NOTE: The selected pin must also be configured for the FTM external clock function through the appropriate pin control register in the port control module.		
	00 FTM1 external clock driven by FTM_CLKIN0 pin		
	01 FTM1 external clock driven by FTM_CLKIN1 pin		
	10 FTM1 external clock driven by FTM_CLKIN2 pin		
	11 Reserved		
25–24	FTM0 External Clock Pin Select		
FTM0CLKSEL	SEL Selects the external pin used to drive the clock to the FTM0 module.		

Table continues on the next page...

SIM_SOPT4 field descriptions (continued)

Description
NOTE: The selected pin must also be configured for the FTM external clock function through the appropriate pin control register in the port control module.
00 FTM0 external clock driven by FTM_CLKIN0 pin 01 FTM0 external clock driven by FTM_CLKIN1 pin
10 FTM0 external clock driven by FTM_CLKIN2 pin 11 Reserved
This field is reserved. This read-only field is reserved and always has the value 0.
FTM2 Channel 1 Input Capture Source Select
Selects the source for FTM2 channel 1 input capture. NOTE: When the FTM is not in Input Capture mode, clear this field.
 FTM2_CH1 pin is fed to FTM2 CH1 FTM2_CH1 pin XOR FTM2_CH0 pin XOR FTM1_CH1 pin is fed to FTM2 CH1
NOTE: If this field is set, then the three input pins feed FTM2 channel 1 input capture. In this case, FTM1 channel 1 cannot be used for input capture of FTM1, as it has no pin. FTM1 channel1 can be used for Output Compare mode of FTM1, though without an output.
FTM2 Channel 0 Input Capture Source Select
Selects the source for FTM2 channel 0 input capture.
NOTE: When the FTM is not in Input Capture mode, clear this field.
00 FTM2_CH0 signal
01 CMP0 output 10 CMP1 output
11 Reserved
FTM1 Channel 0 Input Capture Source Select
Selects the source for FTM1 channel 0 input capture.
NOTE: When the FTM is not in Input Capture mode, clear this field.
00 FTM1_CH0 signal
01 CMP0 output 10 CMP1 output
11 Reserved
This field is reserved. This read-only field is reserved and always has the value 0.
FlexTimer 2 Hardware Trigger 2 Source Select
Selects the source of FTM2 hardware trigger 2.
0 HSCMP0 output drives FTM2 hardware trigger 2
1 HSCMP1 output drives FTM2 hardware trigger 2
FlexTimer 2 Hardware Trigger 1 Source Select
Selects the source of FTM2 hardware trigger 1.

Table continues on the next page ...

SIM_SOPT4 field descriptions (continued)

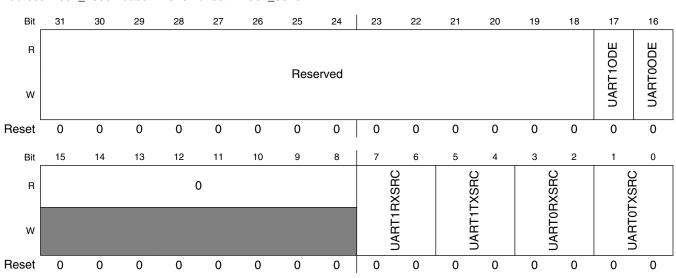

Field	Description
Field	Description 0 PDB output trigger 1 drives FTM2 hardware trigger 1
	1 FTM1 channel match drives FTM2 hardware trigger 1
13	FlexTimer 2 Hardware Trigger 0 Source Select
FTM2TRG0SRC	
	Selects the source of FTM2 hardware trigger 0.
	0 HSCMP0 output drives FTM2 hardware trigger 0
	1 FTM0 channel match drives FTM2 hardware trigger 0
12	FlexTimer 1 Hardware Trigger 2 Source Select
FTM1TRG2SRC	Selects the source of FTM1 hardware trigger 2.
	0 HSCMP0 output drives FTM1 hardware trigger 2
	1 HSCMP1 output drives FTM1 hardware trigger 2
11	FlexTimer 1 Hardware Trigger 1 Source Select
FTM1TRG1SRC	
	Selects the source of FTM1 hardware trigger 1.
	0 PDB channel 1 trigger drives FTM1 hardware trigger 1
	1 FTM2 channel match drives FTM1 hardware trigger 1
10 FTM1TRG0SRC	FlexTimer 1 Hardware Trigger 0 Source Select
	Selects the source of FTM1 hardware trigger 0.
	0 HSCMP0 output drives FTM1 hardware trigger 0
	1 FTM0 channel match drives FTM1 hardware trigger 0
9 FTM0TRG2SRC	FlexTimer 0 Hardware Trigger 2 Source Select
FIMUING23NC	Selects the source of FTM0 hardware trigger 2.
	0 HSCMP0 output drives FTM0 hardware trigger 2
	1 HSCMP1 output drives FTM0 hardware trigger 2
8	FlexTimer 0 Hardware Trigger 1 Source Select
FTM0TRG1SRC	Selects the source of FTM0 hardware trigger 1.
	0 PDB channel 1 trigger drives FTM0 hardware trigger 1
	1 FTM2 channel match drives FTM0 hardware trigger 1
7	FlexTimer 0 Hardware Trigger 0 Source Select
FTM0TRG0SRC	Selects the source of FTM0 hardware trigger 0.
	0 HSCMP0 output drives FTM0 hardware trigger 0
	1 FTM1 channel match drives FTM0 hardware trigger 0
6–4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
	FTM2 Fault 0 Select
FTM2FLT0	Selects the source of FTM2 fault 0.
	NOTE: The pin source for fault 0 must be configured for the FTM module fault function through the appropriate pin control register in the port control module.
	Table continues on the next name

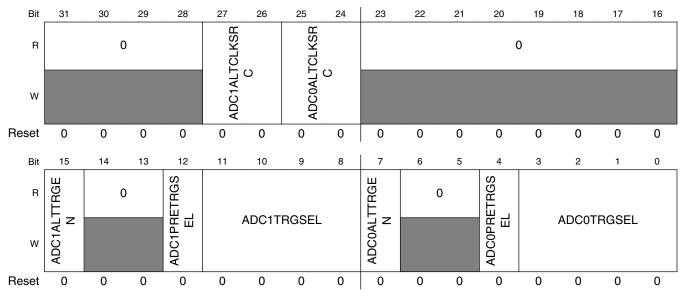
Table continues on the next page ...

SIM_SOPT4 field descriptions (continued)

Field	Description		
	0 FTM2_FLT0 pin		
	1 CMP0 out		
2	FTM1 Fault 0 Select		
FTM1FLT0	Selects the source of FTM1 fault 0.		
	NOTE: The pin source for fault 0 must be configured for the FTM module fault function through the appropriate pin control register in the port control module.		
	0 FTM1_FLT0 pin		
	1 CMP0 out		
1 FTM0FLT1	FTM0 Fault 1 Select		
	Selects the source of FTM0 fault 1.		
	NOTE: The pin source for fault 1 must be configured for the FTM module fault function through the appropriate pin control register in the port control module.		
	0 FTM0_FLT1 pin		
	1 CMP1 out		
0 FTM0FLT0	FTM0 Fault 0 Select		
	Selects the source of FTM0 fault 0.		
	NOTE: The pin source for fault 0 must be configured for the FTM module fault function through the appropriate pin control register in the port control module.		
	0 FTM0_FLT0 pin		
	1 CMP0 out		

12.2.4 System Options Register 5 (SIM_SOPT5)

Address: 4004_7000h base + 1010h offset = 4004_8010h



SIM_SOPT5 field descriptions

Field	Description		
31–18	This field is reserved.		
Reserved			
17 UART1ODE	UART1 Open Drain Enable		
o, an robe	0 Open drain is disabled on UART1		
	1 Open drain is enabled on UART1		
16 UART0ODE	UART0 Open Drain Enable		
	0 Open drain is disabled on UART0		
	1 Open drain is enabled on UART0		
15–8	This field is reserved.		
Reserved	This read-only field is reserved and always has the value 0.		
7–6 UART1RXSRC	UART 1 Receive Data Source Select		
UARTIRASHC	Selects the source for the UART 1 receive data.		
	00 UART1_RX pin		
	01 CMP0		
	10 CMP1		
	11 Reserved		
5-4	UART 1 Transmit Data Source Select		
UART1TXSRC	Selects the source for the UART 1 transmit data.		
	00 UART1_TX pin		
	01 UART1_TX pin modulated with FTM1 channel 0 output		
	10 UART1_TX pin modulated with FTM2 channel 0 output		
	11 Reserved		
3–2 UART0RXSRC	UART 0 Receive Data Source Select		
	Selects the source for the UART 0 receive data.		
	00 UART0_RX pin		
	01 CMP0		
	10 CMP1		
	11 Reserved		
1–0 UART0TXSRC	UART 0 Transmit Data Source Select		
	Selects the source for the UART 0 transmit data.		
	00 UART0_TX pin		
	01 UART0_TX pin modulated with FTM1 channel 0 output		
	10 UART0_TX pin modulated with FTM2 channel 0 output		
	11 Reserved		

12.2.5 System Options Register 7 (SIM_SOPT7)

Address: 4004_7000h base + 1018h offset = 4004_8018h

SIM_SOPT7 field descriptions

Field	Description	
31–28	This field is reserved.	
Reserved	This read-only field is reserved and always has the value 0.	
27–26	ADC1 ALT Clock Source Select	
ADC1ALTCLKSRC	Selects the source for the ADC1 ALT clock.	
	00 OUTDIV5 output	
	01 MCGIRCLK	
	10 OSCERCLK	
	11 Reserved	
25–24	ADC0 ALT Clock Source Select	
ADCOALTCLKSRC	Selects the source for the ADC0 ALT clock.	
	00 OUTDIV5 output	
	01 MCGIRCLK	
	10 OSCERCLK	
	11 Reserved	
23–16	This field is reserved.	
Reserved	This read-only field is reserved and always has the value 0.	
15	ADC1 Alternate Trigger Enable	
ADC1ALTTRGEN	Enable alternative conversion triggers for ADC1.	
	0 PDB trigger selected for ADC1	
	1 Alternate trigger selected for ADC1 as defined by ADC1TRGSEL.	

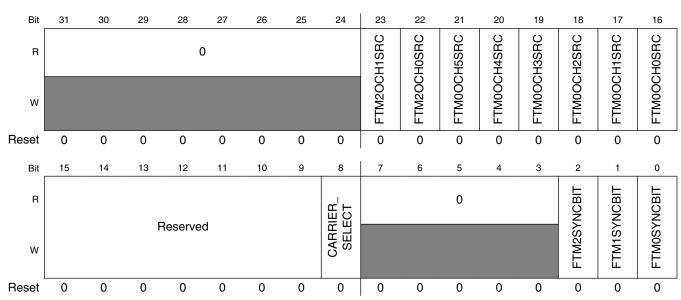
Table continues on the next page ...

SIM_SOPT7 field descriptions (continued)

Field	Description		
14–13 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.		
12	ADC1 Pre-trigger Select		
ADC1PRETRGSEL			
	Selects the ADC1 pre-trigger source when alternative triggers are enabled through ADC1ALTTRGEN.		
	0 Pre-trigger A for ADC1. Clearing this field will result in ADHWTSA=1 and ADHWTSB=0.		
	1 Pre-trigger B for ADC1. Setting this bit will result in ADHWTSA=0 and ADHWTSB=1.		
11–8 ADC1TRGSEL	ADC1 Trigger Select		
	Selects the ADC1 trigger source when alternative triggers are functional in Stop and VLPS modes.		
	0000 External trigger pin input (PDB0_EXTRG)		
	0001 HSCMP0 output		
	0010 HSCMP1 output		
	0011 Reserved		
	0100 DMA channel 0 transfer last write complete		
	0101 DMA channel 1 transfer last write complete 0110 DMA channel 2 transfer last write complete		
	0110 DMA channel 2 transfer last write complete 0111 DMA channel 3 transfer last write complete		
	1000 FTM0 initialtrig or external trig output		
	1001 FTM1 initial trig or external trig output		
	1010 FTM2 intial trig or external trig output		
	1011 Reserved		
	1100 Reserved		
	1101 Reserved		
	1110 LPTMR0 trigger		
	1011 Reserved		
7 ADC0ALTTRGEN	ADC0 Alternate Trigger Enable		
ADCOALTINGEN	Enable alternative conversion triggers for ADC0.		
	0 PDB trigger selected for ADC0		
	1 Alternate trigger selected for ADC0 as defined by ADC0TRGSEL		
6–5	This field is reserved.		
Reserved	This read-only field is reserved and always has the value 0.		
4 ADC0PRETRGSEL	ADC0 Pre-trigger Select		
	Selects the ADC0 pre-trigger source when alternative triggers are enabled through ADC0ALTTRGEN.		
	0 Pre-trigger A for ADC0. Clearing this field will result in ADHWTSA=1 and ADHWTSB=0.		
	1 Pre-trigger B for ADC0. Setting this bit will result in ADHWTSA=0 and ADHWTSB=1.		
3-0	ADC0 Trigger Select		
ADC0TRGSEL	Selects the ADC0 trigger source when alternative triggers are functional in Stop and VLPS modes		
	0000 External trigger pin input (PDB0_EXTRG)		
	0001 HSCMP0 output		
	0010 HSCMP1 output		
	0011 Reserved		
	Table continues on the next page		

Table continues on the next page ...

SIM_SOPT7 field descriptions (continued)


Field		Description
	0100	DMA channel 0 transfer last write complete
	0101	DMA channel 1 transfer last write complete
	0110	DMA channel 2 transfer last write complete
	0111	DMA channel 3 transfer last write complete
	1000	FTM0 intialtrig or external trig output
	1001	FTM1 intial trig or external trig output
	1010	FTM2 intial trig or external trig output
	1011	Reserved
	1100	Reserved
	1101	Reserved
	1110	LPTMR0 trigger
	1011	Reserved

System Options Register 8 (SIM_SOPT8) 12.2.6

NOTE

SOPT8[FTMxSYNCBIT] provides a mechanism to allow two or more FTMs to be initialized at the same time. Each of the FTMs needs FTMx SYNC[TRIG0] to be set before software synchronization can occur. The user can perform a simultaneous write of logic "1" to SOPT8[FTMxSYNCBIT], which sets FTMx_SYNC[TRIG0] input to the corresponding FTM on the same bus clock cycle. The TRIGx inputs react to a rising edge and the user must clear SOPT8[FTMxSYNCBIT] to allow other hardware trigger inputs to force a synchronization/ refresh event via FTMx_SYNC[TRIG0] input.

Address: 4004_7000h base + 101Ch offset = 4004_801Ch

SIM_SOPT8 field descriptions

Field	Description
31–24 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
23 FTM2OCH1SRC	FTM2 channel 1 output PWM/OCMP mode source select
1 11/12/00/11/3/10	Selects the source for FTM2 channel 1 PWM/OCMP mode.
	NOTE: When the FTM is not in output PWM/OCMP mode, clear this field.
	Table continues on the next page

rable continues on the next page...

SIM_SOPT8 field descriptions (continued)

Field	Description		
	0 FTM2CH1 pin is the output of FTM2 channel 1 PWM/OCMP		
	1 FTM2CH1 pin is the output of FTM2 channel 1 PWM/OCMP modulating the carrier frequency, as per CARRIER_SELECT		
22 FTM2OCH0SRC	FTM2 channel 0 output PWM/OCMP mode source select		
	Selects the source for FTM2 channel 0 PWM/OCMP mode.		
	NOTE: When the FTM is not in output PWM/OCMP mode, clear this field.		
	0 FTM2CH0 pin is the output of FTM2 channel 0 PWM/OCMP		
	1 FTM2CH0 pin is the output of FTM2 channel 0 PWM/OCMP modulating the carrier frequency, as per CARRIER_SELECT		
21 FTM0OCH5SRC	FTM0 channel 5 output PWM/OCMP mode source select		
	Selects the source for FTM0 channel 5 PWM/OCMP mode.		
	NOTE: When the FTM is not in output PWM/OCMP mode, clear this field.		
	0 FTM0CH5 pin is the output of FTM0 channel 5 PWM/OCMP		
	1 FTM0CH5 pin is the output of FTM0 channel 5 PWM/OCMP modulating the carrier frequency, as per CARRIER_SELECT		
20 FTM0OCH4SRC	FTM0 channel 4 output PWM/OCMP mode source select		
	Selects the source for FTM0 channel 4 PWM/OCMP mode.		
	NOTE: When the FTM is not in output PWM/OCMP mode, clear this field.		
	0 FTM0CH4 pin is the output of FTM0 channel 4 PWM/OCMP		
	1 FTM0CH4 pin is the output of FTM0 channel 4 PWM/OCMP modulating the carrier frequency, as per CARRIER_SELECT		
19 FTM0OCH3SRC	FTM0 channel 3 output PWM/OCMP mode source select		
	Selects the source for FTM0 channel 3 PWM/OCMP mode.		
	NOTE: When the FTM is not in output PWM/OCMP mode, clear this field.		
	0 FTM0CH3 pin is the output of FTM0 channel 3 PWM/OCMP		
	1 FTM0CH3 pin is the output of FTM0 channel 3 PWM/OCMP modulating the carrier frequency, as per CARRIER_SELECT		
18 FTM0OCH2SRC	FTM0 channel 2 output PWM/OCMP mode source select		
	Selects the source for FTM0 channel 2 PWM/OCMP mode.		
	NOTE: When the FTM is not in output PWM/OCMP mode, clear this field.		
	0 FTM0CH2 pin is the output of FTM0 channel 2 PWM/OCMP		
	1 FTM0CH2 pin is the output of FTM0 channel 2 PWM/OCMP modulating the carrier frequency, as per CARRIER_SELECT		
17 FTM0OCH1SRC	FTM0 channel 1 output PWM/OCMP mode source select		
	Selects the source for FTM0 channel 1 PWM/OCMP mode.		
	NOTE: When the FTM is not in output PWM/OCMP mode, clear this field.		
	Table continues on the next page		

Table continues on the next page...

SIM_SOPT8 field descriptions (continued)

Field	Description
	0 FTM0CH1 pin is the output of FTM0 channel 1 PWM/OCMP
	1 FTM0CH1 pin is the output of FTM0 channel 1 PWM/OCMP modulating the carrier frequency, as per CARRIER_SELECT
16 FTM0OCH0SRC	FTM0 channel 0 output PWM/OCMP mode source select
	Selects the source for FTM0 channel 0 PWM/OCMP mode.
	NOTE: When the FTM is not in output PWM/OCMP mode, clear this field.
	0 FTM0CH0 pin is the output of FTM0 channel 0 PWM/OCMP
	1 FTM0CH0 pin is the output of FTM0 channel 0 PWM/OCMP modulating the carrier frequency, as per CARRIER_SELECT
15–9 Reserved	This field is reserved.
8	Carrier frequency selection for FTM0/2 output channel
CARRIER_ SELECT	0 FTM1_CH1 output provides the carrier signal for Timer Modulation mode
GELEOT	1 LPTMR0 prescaler output provides the carrier signal for Timer Modulation mode
7–3	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
2 FTM2SYNCBIT	FlexTimer 2 Hardware Trigger 0 configure by software
	0 No effect to FTM2; this allows the hardware trigger options to function as expected. See SOPT4[FTM2TRG0SRC].
	1 If TRIG0 is enabled, this refreshes the FTM2CNTIN and all buffered registers of the FTM2 (must write 0 first then write 1); this masks the hardware trigger.
1 FTM1SYNCBIT	FlexTimer 1 Hardware Trigger 0 configure by software
	0 No effect to FTM1; this allows the hardware trigger options to function as expected. See SOPT4[FTM1TRG0SRC].
	1 If TRIG0 enabled, this refreshes the FTM1CNTIN and all buffered registers of the FTM1 (must write 0 first then write 1); this masks the hardware trigger.
0 FTM0SYNCBIT	FlexTimer 0 Hardware Trigger 0 configure by software
	0 No effect to FTM0; this allow the hardware trigger options to function as expected. See SOPT4[FTM0TRG0SRC].
	1 If TRIG0 enabled, this refreshes the FTM0CNTIN and all buffered registers of the FTM0 (must write 0 first then write 1); this masks the hardware trigger.

12.2.7 System Device Identification Register (SIM_SDID)

Address: 4004_7000h base + 1024h offset = 4004_8024h
--

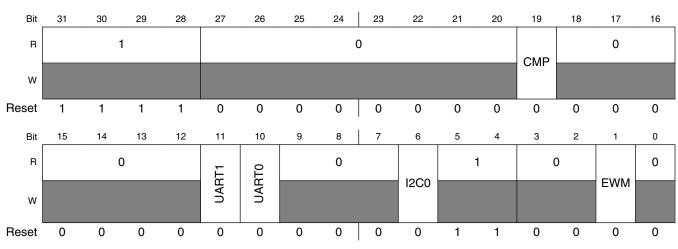
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R FAMID			SUBFAMID			SERIERID			SRAMSIZE			REVID			DIEID				0			PINID									
w																																
Reset	0	0	0	1	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	0	0	0	x*	х*	х*	x*

* Notes:

• x = Undefined at reset.

SIM_SDID field descriptions

Field	Description											
31–28	V-Family ID											
FAMID	Specifies the V-family of the device.											
	0001 MKV1xZx											
27–24 SUBFAMID	V Sub-family ID											
SOBFAMID	Specifies the V sub-family of the device.											
	0000 MKV10xxxx											
	0001 MKV11xxxx											
23–20 SERIERID	Series ID											
OLITICITO	0110 V-family - Motor control											
19–16	System SRAM Size											
SRAMSIZE	Specifies the size of the System SRAM.											
	0000 Reserved											
	0001 Reserved											
	0010 Reserved											
	0011 4 KB											
	0100 8 KB											
	0101 Reserved											
	0110 Reserved											
	0111 Reserved											
15–12 REVID	Device revision number											
TIE VID	Specifies the silicon implementation number for the device.											
11–7	Device die number											
DIEID	Specifies the silicon implementation number for the device. This field always reads as 00001.											
6–4	This field is reserved.											
Reserved	This read-only field is reserved and always has the value 0.											


Table continues on the next page ...

Field	Description
3–0 PINID	Pincount identification
	Specifies the pincount of the device.
	0000 Reserved
	0001 Reserved
	0010 32-pin
	0011 Reserved
	0100 48-pin
	0101 Reserved
	0110 Reserved
	0111 Reserved
	1000 Reserved
	1001 Reserved
	1010 Reserved
	1011 Reserved
	1100 Reserved
	1101 Reserved
	1110 Reserved
	1111 Reserved

SIM_SDID field descriptions (continued)

12.2.8 System Clock Gating Control Register 4 (SIM_SCGC4)

Address: 4004_7000h base + 1034h offset = 4004_8034h

SIM_SCGC4 field descriptions

Field	Description
	This field is reserved. This read-only field is reserved and always has the value 1.
	This field is reserved. This read-only field is reserved and always has the value 0.

Table continues on the next page ...

Field	Description
19 CMP	Comparator Clock Gate Control Controls the clock gate to both the comparator modules (CMP0 and CMP1). 0 Clock disabled 1 Clock enabled
18–12 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
11 UART1	UART1 Clock Gate Control This bit controls the clock gate to the UART1 module. 0 Clock disabled
10 UARTO	1 Clock enabled UART0 Clock Gate Control This bit controls the clock gate to the UART0 module. 0 Clock disabled 1 Clock enabled
9–7 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
6 I2C0	I2C0 Clock Gate Control This bit controls the clock gate to the I ² C0 module. 0 Clock disabled 1 Clock enabled
5–4 Reserved	This field is reserved. This read-only field is reserved and always has the value 1.
3–2 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
1 EWM	EWM Clock Gate Control This bit controls the clock gate to the EWM module. 0 Clock disabled 1 Clock enabled
0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

12.2.9 System Clock Gating Control Register 5 (SIM_SCGC5)

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R							0							1	(o
w																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	C)	Ш	Ê	C	TB	ľΤΑ	-	1	0			0			AM
w			PORTE	PORTD	PORTC	PORTB	PORTA									LPTMR
Reset	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0

Address: 4004_7000h base + 1038h offset = 4004_8038h

SIM_SCGC5 field descriptions

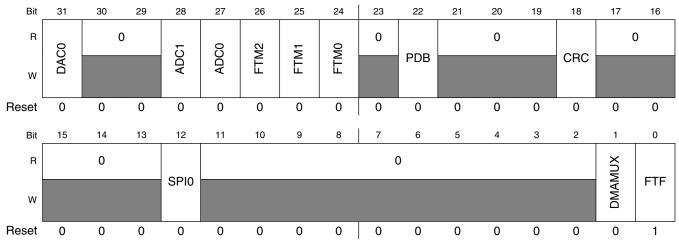

Field	Description					
31–19 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.					
18 Reserved	This field is reserved. This read-only field is reserved and always has the value 1.					
17–14 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.					
13 PORTE	Port E Clock Gate Control Controls the clock gate to the Port E module. 0 Clock disabled 1 Clock enabled					
12 PORTD	Port D Clock Gate Control Controls the clock gate to the Port D module. 0 Clock disabled 1 Clock enabled					
11 PORTC	Port C Clock Gate Control Controls the clock gate to the Port C module. 0 Clock disabled 1 Clock enabled					
10 Port B Clock Gate Control PORTB Controls the clock gate to the Port B module.						

Table continues on the next page...

Field	Description										
	0 Clock disabled										
	1 Clock enabled										
9	Port A Clock Gate Control										
PORTA	Controls the clock gate to the Port A module.										
	0 Clock disabled										
	1 Clock enabled										
8–7	This field is reserved.										
Reserved	This read-only field is reserved and always has the value 1.										
6	This field is reserved.										
Reserved	This read-only field is reserved and always has the value 0.										
5–1	This field is reserved.										
Reserved	This read-only field is reserved and always has the value 0.										
0 LPTMR	Low Power Timer Clock Gate Control										
	Controls the clock software access to the Low Power Timer module.										
	0 Access disabled										
	1 Access enabled										

12.2.10 System Clock Gating Control Register 6 (SIM_SCGC6)

Address: 4004_7000h base + 103Ch offset = 4004_803Ch

SIM_SCGC6 field descriptions

Field	Description
31 DAC0	DAC0 Clock Gate Control
	Controls the clock gate to the DAC0 module.

Table continues on the next page...

SIM_SCGC6 field descriptions (continued)

Field	Description
	0 Clock disabled
	1 Clock enabled
30–29 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
28 ADC1	ADC1 Clock Gate Control
ADOT	Controls the clock gate to the ADC1 module.
	0 Clock disabled
	1 Clock enabled
27 ADC0	ADC0 Clock Gate Control
	Controls the clock gate to the ADC0 module.
	0 Clock disabled
	1 Clock enabled
26 FTM2	FTM2 Clock Gate Control
	Controls the clock gate to the FTM2 module.
	0 Clock disabled
	1 Clock enabled
25 FTM1	FTM1 Clock Gate Control
	Controls the clock gate to the FTM1 module.
	0 Clock disabled
	1 Clock enabled
24 FTM0	FTM0 Clock Gate Control
	Controls the clock gate to the FTM0 module.
	0 Clock disabled
	1 Clock enabled
23 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
22	PDB Clock Gate Control
PDB	Controls the clock gate to the PDB module.
	0 Clock disabled
	1 Clock enabled
21–19 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
18	CRC Clock Gate Control
CRC	Controls the clock gate to the CRC module.
	0 Clock disabled
	1 Clock enabled
L	

Table continues on the next page...

	_SCGC6	field	descriptions	(continued)
--	--------	-------	--------------	-------------

Field	Description
17–13 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
12 SPI0	SPI0 Clock Gate Control Controls the clock gate to the SPI0 module.
	0 Clock disabled1 Clock enabled
11–2 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
1 DMAMUX	DMA Mux Clock Gate Control Controls the clock gate to the DMA Mux module. 0 Clock disabled 1 Clock enabled
0 FTF	 Flash Memory Clock Gate Control Controls the clock gate to the flash memory. Flash reads are still supported while the flash memory is clock gated, but entry into low power modes is blocked. O Clock disabled 1 Clock enabled

12.2.11 System Clock Gating Control Register 7 (SIM_SCGC7)

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R								()							
w																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R				0				DMA				(C			
w																
Reset	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

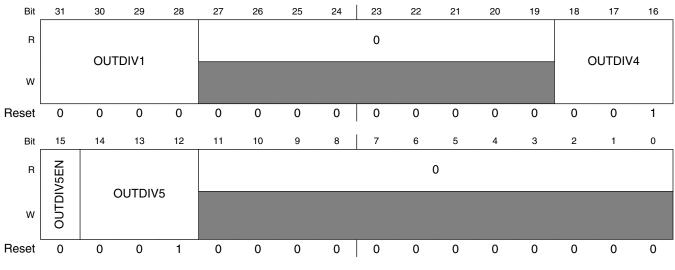
Address: 4004_7000h base + 1040h offset = 4004_8040h

SIM_SCGC7 field descriptions

Field	Description
31–9 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
DMA	DMA Clock Gate Control Controls the clock gate to the DMA module.

Table continues on the next page ...

Chapter 12 System Integration Module (SIM)


SIM_SCGC7 field descriptions (continued)

Field	Description
	0 Clock disabled
	1 Clock enabled
7–0	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

12.2.12 System Clock Divider Register 1 (SIM_CLKDIV1)

NOTE The CLKDIV1 register cannot be written to when the device is in VLPR mode.

```
Address: 4004_7000h base + 1044h offset = 4004_8044h
```


SIM_CLKDIV1 field descriptions

Description
Clock 1 Output Divider Value
This field sets the divide value for the core/system clock. At the end of reset, it is loaded with 0000 (divide by one), 0001 (divide by two), 0011 (divide by four), or 0111 (divide by eight) depending on the setting of the two FTF_FOPT[LPBOOT] configuration bits.
0000 Divide-by-1.
0001 Divide-by-2.
0010 Divide-by-3.
0011 Divide-by-4.
0100 Divide-by-5.
0101 Divide-by-6.
0110 Divide-by-7.

Table continues on the next page ...

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

SIM_CLKDIV1 field descriptions (continued)

Field	Description
	0111 Divide-by-8.
	1000 Divide-by-9.
	1001 Divide-by-10.
	1010 Divide-by-11.
	1011 Divide-by-12.
	1100 Divide-by-13.
	1101 Divide-by-14.
	1110 Divide-by-15.
	1111 Divide-by-16.
27–19 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
18–16	
OUTDIV4	Clock 4 Output Divider Value
COTENT	This field sets the divide value for the bus and flash clock and is in addition to the System clock divide
	ratio. At the end of reset, it is loaded with 001 (divide by two).
	000 Divide-by-1.
	001 Divide-by-2.
	010 Divide-by-3.
	011 Divide-by-4.
	100 Divide-by-5.
	101 Divide-by-6.
	110 Divide-by-7.
	111 Divide-by-8.
	OUTDIV5 Divider Control
OUTDIV5EN	This bit controls the OUTDIV5 divider.
	0 OUTDIV5 disabled
	1 OUTDIV5 enabled
14–12	Clock 5 Output Divider Value
OUTDIV5	
	Sets the divide value for the alternative ADC clock and is in addition to the System clock divide ratio. At the end of reset, it is loaded with 001 (divide by two).
	000 Divide-by-1
	001 Divide-by-2
	010 Divide-by-3
	011 Divide-by-4
	100 Divide-by-5
	101 Divide-by-6
	110 Divide-by-7
	111 Divide-by-8
11–0	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

12.2.13 Flash Configuration Register 1 (SIM_FCFG1)

Address: 4004_7000h base + 104Ch offset = 4004_804Ch Bit PFSIZE R W Reset х* х* х* Х* Bit R FLASHDOZE FLASHDIS W Reset

The EESIZE and DEPART filelds are not applicable.

* Notes:

• x = Undefined at reset.

SIM_FCFG1 field descriptions

Description
This field is reserved.
This read-only field is reserved and always has the value 0.
Program Flash Size
This field specifies the amount of program flash memory available on the device.
0000 8 KB of program flash memory, 0.25 KB protection region
0001 16 KB of program flash memory, 0.5 KB protection region
0011 32 KB of program flash memory, 1 KB protection region
0101 64 KB of program flash memory, 2 KB protection region
-

Table continues on the next page...

Field	Description
	0111 128 KB of program flash memory, 4 KB protection region
	1001 256 KB of program flash memory, 4 KB protection region
	1111 32 KB of program flash memory, 1 KB protection region
23–2	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
1	Flash Doze
FLASHDOZE	When set, Flash memory is disabled for the duration of Doze mode. An attempt by the DMA or other bus master to access the Flash when the Flash is disabled will result in a bus error. This field should be clear during VLP modes. The Flash will be automatically enabled again at the end of Doze mode so interrupt vectors do not need to be relocated out of Flash memory. The wakeup time from Doze mode is extended when this field is set.
	0 Flash remains enabled during Doze mode
	1 Flash is disabled for the duration of Doze mode
0 FLASHDIS	Flash Disable
	Flash accesses are disabled (and generate a bus error) and the Flash memory is placed in a low power state. This field should not be changed during VLP modes. Relocate the interrupt vectors out of Flash memory before disabling the Flash.
	0 Flash is enabled
	1 Flash is disabled

SIM_FCFG1 field descriptions (continued)

12.2.14 Flash Configuration Register 2 (SIM_FCFG2)

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	0			Μ	AXADD	DR			1				0			
w																
Reset	0	x*	x*	x*	x*	x*	х*	x *	1	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R								(0							
w																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
* Notes	:															

Address: 4004_7000h base + 1050h offset = 4004_8050h

• x = Undefined at reset.

SIM_FCFG2 field descriptions

Field	Description
	This field is reserved. This read-only field is reserved and always has the value 0.

Table continues on the next page ...

SIM_FCFG2 field descriptions (continued)

Field	Description
30–24	Max address block
MAXADDR	This field concatenated with 13 leading zeros indicates the first invalid address of program flash.
	For example, if MAXADDR = 0x20, the first invalid address of flash block 0 is 0x0004_0000. This would be the MAXADDR value for a device with 256 KB program flash.
23	This field is reserved.
Reserved	This read-only field is reserved and always has the value 1.
22–0	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

12.2.15 Unique Identification Register Mid-High (SIM_UIDMH)

Address: 4004_7000h base + 1058h offset = 4004_8058h

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R								()															U	ID							
w																																
											-	-	-	-	-	-		-L-	х*													

* Notes:

• x = Undefined at reset.

SIM_UIDMH field descriptions

Field	Description
31–16	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
15–0	Unique Identification
UID	Unique identification for the device.

12.2.16 Unique Identification Register Mid Low (SIM_UIDML)

Add	ress	s: 4(004_	_700)0h	bas	e +	105	Cho	offse	et = -	4004	4_80	05C	h																	
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R																UI	ID															
w																																
Reset	Х*	Х*	Х*	Х*	Х*	Х*	Х*	Х*	Х*	Х*	х*	Х*	Х*	Х*	Х*	x *	Х*	X *														
* N.	too																															

* Notes:

x = Undefined at reset.

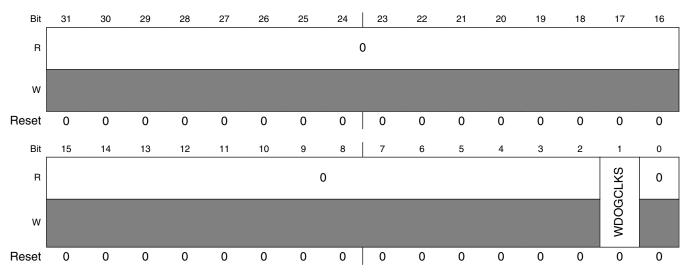
SIM_UIDML field descriptions

Field	Description
31–0 UID	Unique Identification
	Unique identification for the device.

12.2.17 Unique Identification Register Low (SIM_UIDL)

Address: 4004_7000h base + 1060h offset = 4004_8060h

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R																U	ID															
W																																
Reset	х*	x *																														


* Notes:

• x = Undefined at reset.

SIM_UIDL field descriptions

Field	Description
31–0 UID	Unique Identification
	Unique identification for the device.

12.2.18 WDOG Control Register (SIM_WDOGCTRL)

Address: 4004_7000h base + 1100h offset = 4004_8100h

SIM_WDOGCTRL field descriptions

Field	Description
31–2	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
1 WDOGCLKS	 WDOG Clock Select Selects the default clock source of the WDOG watchdog. On reset it will be the 1kHZ LPO. The software can change this to the MCGIRCLK, which can be 32KHz or 4Mhz, depending on the MCG configuration. Internal 1 kHz clock is source to WDOG MCGIRCLK is source to WDOG
0	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

12.3 Functional description

For more information about the functions of SIM, see the Introduction section.

Chapter 13 System Mode Controller (SMC)

13.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The System Mode Controller (SMC) is responsible for sequencing the system into and out of all low-power Stop and Run modes.

Specifically, it monitors events to trigger transitions between power modes while controlling the power, clocks, and memories of the system to achieve the power consumption and functionality of that mode.

This chapter describes all the available low-power modes, the sequence followed to enter/ exit each mode, and the functionality available while in each of the modes.

The SMC is able to function during even the deepest low power modes.

See AN4503: Power Management for Kinetis and ColdFire+ MCUs for further details on using the SMC.

13.2 Modes of operation

The ARM CPU has three primary modes of operation:

- Run
- Sleep
- Deep Sleep

The WFI or WFE instruction is used to invoke Sleep and Deep Sleep modes. Run, Wait, and Stop are the common terms used for the primary operating modes of Freescale microcontrollers.

would of operation

The following table shows the translation between the ARM CPU modes and the Freescale MCU power modes.

ARM CPU mode	MCU mode	
Sleep	Wait	
Deep Sleep	Stop	

Accordingly, the ARM CPU documentation refers to sleep and deep sleep, while the Freescale MCU documentation normally uses wait and stop.

In addition, Freescale MCUs also augment Stop, Wait, and Run modes in a number of ways. The power management controller (PMC) contains a run and a stop mode regulator. Run regulation is used in normal run, wait and stop modes. Stop mode regulation is used during all very low power and low leakage modes. During stop mode regulation, the bus frequencies are limited in the very low power modes.

The SMC provides the user with multiple power options. The Very Low Power Run (VLPR) mode can drastically reduce run time power when maximum bus frequency is not required to handle the application needs. From Normal Run mode, the Run Mode (RUNM) field can be modified to change the MCU into VLPR mode when limited frequency is sufficient for the application. From VLPR mode, a corresponding wait (VLPW) and stop (VLPS) mode can be entered.

Depending on the needs of the user application, a variety of stop modes are available that allow the state retention, partial power down or full power down of certain logic and/or memory. I/O states are held in all modes of operation. Several registers are used to configure the various modes of operation for the device.

The following table describes the power modes available for the device.

Mode	Description
RUN	The MCU can be run at full speed and the internal supply is fully regulated, that is, in run regulation. This mode is also referred to as Normal Run mode.
WAIT	The core clock is gated off. The system clock continues to operate. Bus clocks, if enabled, continue to operate. Run regulation is maintained.
STOP	The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid.
VLPR	The core, system, bus, and flash clock maximum frequencies are restricted in this mode. See the Power Management chapter for details about the maximum allowable frequencies.
VLPW	The core clock is gated off. The system, bus, and flash clocks continue to operate, although their maximum frequency is restricted. See the Power Management chapter for details on the maximum allowable frequencies.
VLPS	The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid.

 Table 13-1.
 Power modes

Table continues on the next page...

Table 13-1.	Power modes	(continued)
-------------	-------------	-------------

Mode	Description
VLLS3	The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid. The MCU is placed in a low leakage mode by powering down the internal logic. All system RAM contents are retained and I/O states are held. Internal logic states are not retained.
VLLS1	The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid. The MCU is placed in a low leakage mode by powering down the internal logic and all system RAM. I/O states are held. Internal logic states are not retained.
VLLS0	The core clock is gated off. System clocks to other masters and bus clocks are gated off after all stop acknowledge signals from supporting peripherals are valid. The MCU is placed in a low leakage mode by powering down the internal logic and all system RAM. I/O states are held. Internal logic states are not retained. The 1kHz LPO clock is disabled and the power on reset (POR) circuit can be optionally enabled using STOPCTRL[PORPO].

13.3 Memory map and register descriptions

Information about the registers related to the system mode controller can be found here.

Different SMC registers reset on different reset types. Each register's description provides details. For more information about the types of reset on this chip, refer to the Reset section details.

NOTE

The SMC registers can be written only in supervisor mode. Write accesses in user mode are blocked and will result in a bus error.

NOTE

Before executing the WFI instruction, the last register written to must be read back. This ensures that all register writes associated with setting up the low power mode being entered have completed before the MCU enters the low power mode. Failure to do this may result in the low power mode not being entered correctly.

Absolute address (hex)	Register name		Access	Reset value	Section/ page
4007_E000	Power Mode Protection register (SMC_PMPROT)		R/W	00h	13.3.1/226
4007_E001	Power Mode Control register (SMC_PMCTRL)		R/W	00h	13.3.2/227

SMC memory map

Table continues on the next page...

Absolute address (hex)	Register name		Access	Reset value	Section/ page
4007_E002	002 Stop Control Register (SMC_STOPCTRL)		R/W	03h	13.3.3/228
4007_E003	Power Mode Status register (SMC_PMSTAT)		R	01h	13.3.4/230

SMC memory map (continued)

13.3.1 Power Mode Protection register (SMC_PMPROT)

This register provides protection for entry into any low-power run or stop mode. The enabling of the low-power run or stop mode occurs by configuring the Power Mode Control register (PMCTRL).

The PMPROT register can be written only once after any system reset.

If the MCU is configured for a disallowed or reserved power mode, the MCU remains in its current power mode. For example, if the MCU is in normal RUN mode and AVLP is 0, an attempt to enter VLPR mode using PMCTRL[RUNM] is blocked and PMCTRL[RUNM] remains 00b, indicating the MCU is still in Normal Run mode.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Reset section details for more information.

Address: 4007_E000h base + 0h offset = 4007_E000h

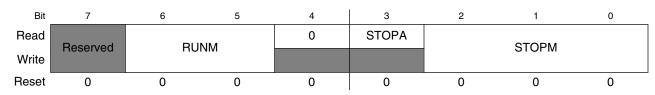
Bit	7	6	5	4	3	2	1	0
Read	0	0	AVLP	0	0	0	AVLLS	0
Write								
Reset	0	0	0	0	0	0	0	0

Field	Description
7	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
6	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
5 AVLP	 Allow Very-Low-Power Modes Provided the appropriate control bits are set up in PMCTRL, this write-once field allows the MCU to enter any very-low-power mode (VLPR, VLPW, and VLPS). 0 VLPR, VLPW, and VLPS are not allowed. 1 VLPR, VLPW, and VLPS are allowed.

Table continues on the next page...

SMC_PMPROT field descriptions (continued)

Field	Description
4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
2	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
1 AVLLS	Allow Very-Low-Leakage Stop Mode Provided the appropriate control bits are set up in PMCTRL, this write once bit allows the MCU to enter any very-low-leakage stop mode (VLLSx). 0 Any VLLSx mode is not allowed 1 Any VLLSx mode is allowed
0	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.


13.3.2 Power Mode Control register (SMC_PMCTRL)

The PMCTRL register controls entry into low-power Run and Stop modes, provided that the selected power mode is allowed via an appropriate setting of the protection (PMPROT) register.

NOTE

This register is reset on Chip POR not VLLS and by reset types that trigger Chip POR not VLLS. It is unaffected by reset types that do not trigger Chip POR not VLLS. See the Reset section details for more information.

Address: 4007_E000h base + 1h offset = 4007_E001h

SMC_PMCTRL field descriptions

Field	Description			
7 Reserved	This field is reserved. This bit is reserved for future expansion and should always be written zero.			
RUNM	Run Mode Control When written, causes entry into the selected run mode. Writes to this field are blocked if the protection level has not been enabled using the PMPROT register.			

Table continues on the next page...

SMC_PMCTRL field descriptions (continued)

Field	Description
	NOTE: RUNM may be set to VLPR only when PMSTAT=RUN. After being written to VLPR, RUNM should not be written back to RUN until PMSTAT=VLPR.
	00 Normal Run mode (RUN)
	01 Reserved
	10 Very-Low-Power Run mode (VLPR)
	11 Reserved
4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
3 STOPA	Stop Aborted
	When set, this read-only status bit indicates an interrupt or reset occured during the previous stop mode entry sequence, preventing the system from entering that mode. This field is cleared by hardware at the beginning of any stop mode entry sequence and is set if the sequence was aborted.
	0 The previous stop mode entry was successsful.
	1 The previous stop mode entry was aborted.
2–0 STOPM	Stop Mode Control
	When written, controls entry into the selected stop mode when Sleep-Now or Sleep-On-Exit mode is entered with SLEEPDEEP=1. Writes to this field are blocked if the protection level has not been enabled using the PMPROT register. After any system reset, this field is cleared by hardware on any successful write to the PMPROT register.
	NOTE: When set to VLLSx, the VLLSM field in the STOPCTRL register is used to further select the particular VLLS submode which will be entered.
	NOTE: When set to STOP, the PSTOPO bits in the STOPCTRL register can be used to select a Partial Stop mode if desired.
	000 Normal Stop (STOP)
	001 Reserved
	010 Very-Low-Power Stop (VLPS)
	011 Reserved
	100 Very-Low-Leakage Stop (VLLSx)
	101 Reserved
	110 Reseved
	111 Reserved

13.3.3 Stop Control Register (SMC_STOPCTRL)

The STOPCTRL register provides various control bits allowing the user to fine tune power consumption during the stop mode selected by the STOPM field.


NOTE

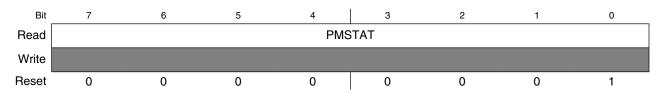
This register is reset on Chip POR not VLLS and by reset types that trigger Chip POR not VLLS. It is unaffected by reset types

that do not trigger Chip POR not VLLS. See the Reset section details for more information.

Address: 4007_E000h base + 2h offset = 4007_E002h

SMC_STOPCTRL field descriptions

Field	Description
7–6 PSTOPO	 Partial Stop Option These bits control whether a Partial Stop mode is entered when STOPM=STOP. When entering a Partial Stop mode from RUN (or VLPR) mode, the PMC, MCG and flash remain fully powered, allowing the device to wakeup almost instantaneously at the expense of higher power consumption. In PSTOP2, only system clocks are gated allowing peripherals running on bus clock to remain fully functional. In PSTOP1, both system and bus clocks are gated. 00 STOP - Normal Stop mode 01 PSTOP1 - Partial Stop with both system and bus clocks disabled 10 PSTOP2 - Partial Stop with system clock disabled and bus clock enabled 11 Reserved
5 PORPO	 POR Power Option This bit controls whether the POR detect circuit is enabled in VLLS0 mode. 0 POR detect circuit is enabled in VLLS0 1 POR detect circuit is disabled in VLLS0
4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
3 LPOPO	LPO Power Option Controls whether the 1 kHz LPO clock is enabled in VLLSx modes. NOTE: During VLLS0 mode, the LPO clock is disabled by hardware and this bit has no effect. 0 LPO clock is enabled in VLLSx 1 LPO clock is disabled in VLLSx
2–0 VLLSM	VLLS Mode Control This field controls which VLLS sub-mode to enter if STOPM = VLLSx. 000 VLLS0 001 VLLS1 010 Reserved 011 VLLS3 100 Reserved 101 Reserved 101 Reserved 110 Reserved 111 Reserved


13.3.4 Power Mode Status register (SMC_PMSTAT)

PMSTAT is a read-only, one-hot register which indicates the current power mode of the system.

NOTE

This register is reset on Chip POR not VLLS and by reset types that trigger Chip POR not VLLS. It is unaffected by reset types that do not trigger Chip POR not VLLS. See the Reset section details for more information.

Address: 4007_E000h base + 3h offset = 4007_E003h

SMC_PMSTAT field descriptions

Field	Description			
7–0 PMSTAT	Power Mode Status			
	NOTE: When debug is enabled, the PMSTAT will not update to STOP or VLPS NOTE: When a PSTOP mode is enabled, the PMSTAT will not update to STOP or VLPS			
	0000_0001 Current power mode is RUN.			
	0000_0010 Current power mode is STOP.			
	0000_0100 Current power mode is VLPR.			
	0000_1000 Current power mode is VLPW.			
	0001_0000 Current power mode is VLPS.			
	0010_0000 Reserved			
	0100_0000 Current power mode is VLLS.			
	1000_0000 Reserved			

13.4 Functional description

13.4.1 Power mode transitions

The following figure shows the power mode state transitions available on the chip. Any reset always brings the MCU back to the normal RUN state.

Figure 13-5. Power mode state diagram

The following table defines triggers for the various state transitions shown in the previous figure.

Table 13-7. Power mode transition triggers

Transition #	From	То	Trigger conditions
1	RUN	WAIT	Sleep-now or sleep-on-exit modes entered with SLEEPDEEP clear, controlled in System Control Register in ARM core. See note. ¹
	WAIT	RUN	Interrupt or Reset

Table continues on the next page...

Transition #	From	То	Trigger conditions
2	RUN	STOP	PMCTRL[RUNM]=00, PMCTRL[STOPM]=000 ²
			Sleep-now or sleep-on-exit modes entered with SLEEPDEEP set, which is controlled in System Control Register in ARM core.
			See note. ¹
	STOP	RUN	Interrupt or Reset
3	RUN	VLPR	The core, system, bus and flash clock frequencies and MCG clocking mode are restricted in this mode. See the Power Management chapter for the maximum allowable frequencies and MCG modes supported.
			Set PMPROT[AVLP]=1, PMCTRL[RUNM]=10.
	VLPR	RUN	Set PMCTRL[RUNM]=00 or
			Reset.
4	VLPR	VLPW	Sleep-now or sleep-on-exit modes entered with SLEEPDEEP clear, which is controlled in System Control Register in ARM core.
			See note. ¹
	VLPW	VLPR	Interrupt
5	VLPW	RUN	Reset
6	VLPR	VLPS	PMCTRL[STOPM]=000 ³ or 010,
			Sleep-now or sleep-on-exit modes entered with SLEEPDEEP set, which is controlled in System Control Register in ARM core.
			See note. ¹
	VLPS	VLPR	Interrupt
			NOTE: If VLPS was entered directly from RUN (transition #7), hardware forces exit back to RUN and does not allow a transition to VLPR.
7	RUN	VLPS	PMPROT[AVLP]=1, PMCTRL[STOPM]=010,
			Sleep-now or sleep-on-exit modes entered with SLEEPDEEP set, which is controlled in System Control Register in ARM core.
			See note. ¹
[VLPS	RUN	Interrupt and VLPS mode was entered directly from RUN or
			Reset
8	RUN	VLLSx	PMPROT[AVLLS]=1, PMCTRL[STOPM]=100, STOPCTRL[VLLSM]=x (VLLSx), Sleep-now or sleep-on-exit modes entered with SLEEPDEEP set, which is controlled in System Control Register in ARM core.
	VLLSx	RUN	Wakeup from enabled LLWU input source or RESET pin
9	VLPR	VLLSx	PMPROT[AVLLS]=1, PMCTRL[STOPM]=100, STOPCTRL[VLLSM]=x (VLLSx), Sleep-now or sleep-on-exit modes entered with SLEEPDEEP set, which is controlled in System Control Register in ARM core.

 Table 13-7.
 Power mode transition triggers (continued)

- 1. If debug is enabled, the core clock remains to support debug.
- If PMCTRL[STOPM]=000 and STOPCTRL[PSTOPO]=01 or 10, then only a Partial Stop mode is entered instead of STOP
 If PMCTRL[STOPM]=000 and STOPCTRL[PSTOPO]=00, then VLPS mode is entered instead of STOP. If
- PMCTRL[STOPM]=000 and STOPCTRL[PSTOPO]=01 or 10, then only a Partial Stop mode is entered instead of VLPS

13.4.2 Power mode entry/exit sequencing

When entering or exiting low-power modes, the system must conform to an orderly sequence to manage transitions safely.

The SMC manages the system's entry into and exit from all power modes. This diagram illustrates the connections of the SMC with other system components in the chip that are necessary to sequence the system through all power modes.

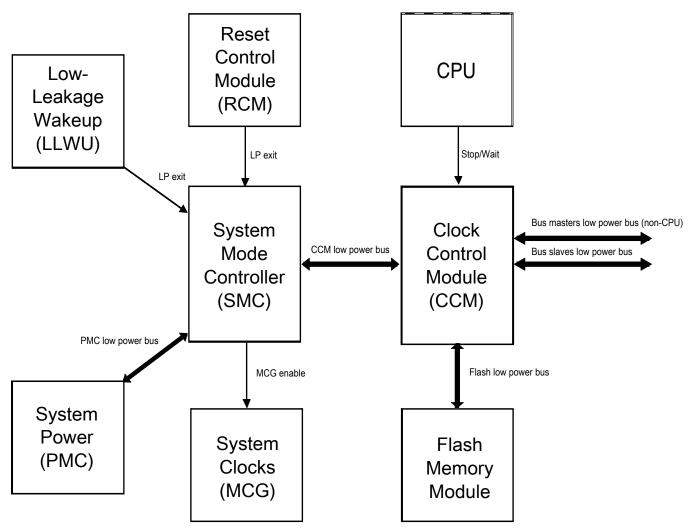


Figure 13-6. Low-power system components and connections

runctional description

13.4.2.1 Stop mode entry sequence

Entry into a low-power stop mode (Stop, VLPS, VLLSx) is initiated by CPU execution of the WFI instruction. After the instruction is executed, the following sequence occurs:

- 1. The CPU clock is gated off immediately.
- 2. Requests are made to all non-CPU bus masters to enter Stop mode.
- 3. After all masters have acknowledged they are ready to enter Stop mode, requests are made to all bus slaves to enter Stop mode.
- 4. After all slaves have acknowledged they are ready to enter Stop mode, all system and bus clocks are gated off.
- 5. Clock generators are disabled in the MCG.
- 6. The on-chip regulator in the PMC and internal power switches are configured to meet the power consumption goals for the targeted low-power mode.

13.4.2.2 Stop mode exit sequence

Exit from a low-power stop mode is initiated either by a reset or an interrupt event. The following sequence then executes to restore the system to a run mode (RUN or VLPR):

- 1. The on-chip regulator in the PMC and internal power switches are restored.
- 2. Clock generators are enabled in the MCG.
- 3. System and bus clocks are enabled to all masters and slaves.
- 4. The CPU clock is enabled and the CPU begins servicing the reset or interrupt that initiated the exit from the low-power stop mode.

13.4.2.3 Aborted stop mode entry

If an interrupt or a reset occurs during a stop entry sequence, the SMC can abort the transition early and return to RUN mode without completely entering the stop mode. An aborted entry is possible only if the reset or interrupt occurs before the PMC begins the transition to stop mode regulation. After this point, the interrupt or reset is ignored until the PMC has completed its transition to stop mode regulation. When an aborted stop mode entry sequence occurs, SMC_PMCTRL[STOPA] is set to 1.

13.4.2.4 Transition to wait modes

For wait modes (WAIT and VLPW), the CPU clock is gated off while all other clocking continues, as in RUN and VLPR mode operation. Some modules that support stop-in-wait functionality have their clocks disabled in these configurations.

13.4.2.5 Transition from stop modes to Debug mode

The debugger module supports a transition from STOP, WAIT, VLPS, and VLPW back to a Halted state when the debugger has been enabled. As part of this transition, system clocking is re-established and is equivalent to the normal RUN and VLPR mode clocking configuration.

13.4.3 Run modes

The run modes supported by this device can be found here.

- Run (RUN)
- Very Low-Power Run (VLPR)

13.4.3.1 RUN mode

This is the normal operating mode for the device.

This mode is selected after any reset. When the ARM processor exits reset, it sets up the stack, program counter (PC), and link register (LR):

- The processor reads the start SP (SP_main) from vector-table offset 0x000
- The processor reads the start PC from vector-table offset 0x004
- LR is set to 0xFFFF_FFF.

To reduce power in this mode, disable the clocks to unused modules using their corresponding clock gating control bits in the SIM's registers.

13.4.3.2 Very-Low Power Run (VLPR) mode

In VLPR mode, the on-chip voltage regulator is put into a stop mode regulation state. In this state, the regulator is designed to supply enough current to the MCU over a reduced frequency. To further reduce power in this mode, disable the clocks to unused modules using their corresponding clock gating control bits in the SIM's registers.

Before entering this mode, the following conditions must be met:

- The MCG must be configured in a mode which is supported during VLPR. See the Power Management details for information about these MCG modes.
- All clock monitors in the MCG must be disabled.

runctional description

- The maximum frequencies of the system, bus, flash, and core are restricted. See the Power Management details about which frequencies are supported.
- Mode protection must be set to allow VLP modes, that is, PMPROT[AVLP] is 1.
- PMCTRL[RUNM] is set to 10b to enter VLPR.
- Flash programming/erasing is not allowed.

NOTE

Do not increase the clock frequency while in VLPR mode, because the regulator is slow in responding and cannot manage fast load transitions. In addition, do not modify the clock source in the MCG module or any clock divider registers. Module clock enables in the SIM can be set, but not cleared.

To reenter Normal Run mode, clear PMCTRL[RUNM]. PMSTAT is a read-only status register that can be used to determine when the system has completed an exit to RUN mode. When PMSTAT=RUN, the system is in run regulation and the MCU can run at full speed in any clock mode. If a higher execution frequency is desired, poll PMSTAT until it is set to RUN when returning from VLPR mode.

Any reset always causes an exit from VLPR and returns the device to RUN mode after the MCU exits its reset flow.

13.4.4 Wait modes

This device contains two different wait modes which are listed here.

- Wait
- Very-Low Power Wait (VLPW)

13.4.4.1 WAIT mode

WAIT mode is entered when the ARM core enters the Sleep-Now or Sleep-On-Exit modes while SLEEDEEP is cleared. The ARM CPU enters a low-power state in which it is not clocked, but peripherals continue to be clocked provided they are enabled. Clock gating to the peripheral is enabled via the SIM module.

When an interrupt request occurs, the CPU exits WAIT mode and resumes processing in RUN mode, beginning with the stacking operations leading to the interrupt service routine.

A system reset will cause an exit from WAIT mode, returning the device to normal RUN mode.

13.4.4.2 Very-Low-Power Wait (VLPW) mode

VLPW is entered by the entering the Sleep-Now or Sleep-On-Exit mode while SLEEPDEEP is cleared and the MCU is in VLPR mode.

In VLPW, the on-chip voltage regulator remains in its stop regulation state. In this state, the regulator is designed to supply enough current to the MCU over a reduced frequency. To further reduce power in this mode, disable the clocks to unused modules by clearing the peripherals' corresponding clock gating control bits in the SIM.

VLPR mode restrictions also apply to VLPW.

When an interrupt from VLPW occurs, the device returns to VLPR mode to execute the interrupt service routine.

A system reset will cause an exit from VLPW mode, returning the device to normal RUN mode.

13.4.5 Stop modes

This device contains a variety of stop modes to meet your application needs.

The stop modes range from:

• a stopped CPU, with all I/O, logic, and memory states retained, and certain asynchronous mode peripherals operating

to:

• a powered down CPU, with only I/O and a small register file retained, very few asynchronous mode peripherals operating, while the remainder of the MCU is powered down.

The choice of stop mode depends upon the user's application, and how power usage and state retention versus functional needs and recovery time may be traded off.

NOTE

All clock monitors must be disabled before entering these lowpower modes: Stop, VLPS, VLPR, VLPW, and VLLSx.

The various stop modes are selected by setting the appropriate fields in PMPROT and PMCTRL. The selected stop mode is entered during the sleep-now or sleep-on-exit entry with the SLEEPDEEP bit set in the System Control Register in the ARM core.

The available stop modes are:

-unctional description

- Normal Stop (STOP)
- Very-Low Power Stop (VLPS)
- Very-Low-Leakage Stop (VLLSx)

13.4.5.1 STOP mode

STOP mode is entered via the sleep-now or sleep-on-exit with the SLEEPDEEP bit set in the System Control Register in the ARM core.

The MCG module can be configured to leave the reference clocks running.

A module capable of providing an asynchronous interrupt to the device takes the device out of STOP mode and returns the device to normal RUN mode. Refer to the device's Power Management chapter for peripheral, I/O, and memory operation in STOP mode. When an interrupt request occurs, the CPU exits STOP mode and resumes processing, beginning with the stacking operations leading to the interrupt service routine.

A system reset will cause an exit from STOP mode, returning the device to normal RUN mode via an MCU reset.

13.4.5.2 Very-Low-Power Stop (VLPS) mode

The two ways in which VLPS mode can be entered are listed here.

- Entry into stop via the sleep-now or sleep-on-exit with the SLEEPDEEP bit set in the System Control Register in the ARM core while the MCU is in VLPR mode and PMCTRL[STOPM] = 010 or 000.
- Entry into stop via the sleep-now or sleep-on-exit with the SLEEPDEEP bit set in the System Control Register in the ARM core while the MCU is in normal RUN mode and PMCTRL[STOPM] = 010. When VLPS is entered directly from RUN mode, exit to VLPR is disabled by hardware and the system will always exit back to RUN.

In VLPS, the on-chip voltage regulator remains in its stop regulation state as in VLPR.

A module capable of providing an asynchronous interrupt to the device takes the device out of VLPS and returns the device to VLPR mode.

A system reset will also cause a VLPS exit, returning the device to normal RUN mode.

13.4.5.3 Very-Low-Leakage Stop (VLLSx) modes

This device contains these very low leakage modes:

- VLLS3
- VLLS1
- VLLS0

VLLSx is often used in this document to refer to all of these modes.

All VLLSx modes can be entered from normal RUN or VLPR modes.

The MCU enters the configured VLLS mode if:

- In Sleep-Now or Sleep-On-Exit mode, the SLEEPDEEP bit is set in the System Control Register in the ARM core, and
- The device is configured as shown in Table 13-7.

In VLLS, the on-chip voltage regulator is in its stop-regulation state while most digital logic is powered off.

Before entering VLLS mode, the user should configure the Low-Leakage Wake-up (LLWU) module to enable the desired wakeup sources. The available wake-up sources in VLLS are detailed in the chip configuration details for this device.

After wakeup from VLLS, the device returns to normal RUN mode with a pending LLWU interrupt. In the LLWU interrupt service routine (ISR), the user can poll the LLWU module wake-up flags to determine the source of the wake-up.

When entering VLLS, each I/O pin is latched as configured before executing VLLS. Because all digital logic in the MCU is powered off, all port and peripheral data is lost during VLLS. This information must be restored before PMC_REGSC[ACKISO] is set.

An asserted $\overline{\text{RESET}}$ pin will cause an exit from any VLLS mode, returning the device to normal RUN mode. When exiting VLLS via the $\overline{\text{RESET}}$ pin, RCM_SRS0[PIN] and RCM_SRS0[WAKEUP] are set.

13.4.6 Debug in low power modes

When the MCU is secure, the device disables/limits debugger operation. When the MCU is unsecure, the ARM debugger can assert two power-up request signals:

- System power up, via SYSPWR in the Debug Port Control/Stat register
- Debug power up, via CDBGPWRUPREQ in the Debug Port Control/Stat register

When asserted while in RUN, WAIT, VLPR, or VLPW, the mode controller drives a corresponding acknowledge for each signal, that is, both CDBGPWRUPACK and CSYSPWRUPACK. When both requests are asserted, the mode controller handles attempts to enter STOP and VLPS by entering an emulated stop state. In this emulated stop state:

runctional description

- the regulator is in run regulation,
- the MCG-generated clock source is enabled,
- all system clocks, except the core clock, are disabled,
- the debug module has access to core registers, and
- access to the on-chip peripherals is blocked.

No debug is available while the MCU is in VLLS modes.

Entering into a VLLS mode causes all of the debug controls and settings to be powered off. To give time to the debugger to sync with the MCU, the MDM AP Control Register includes a Very-Low-Leakage Debug Request (VLLDBGREQ) bit that is set to configure the Reset Controller logic to hold the system in reset after the next recovery from a VLLS mode. This bit allows the debugger time to reinitialize the debug module before the debug session continues.

The MDM AP Control Register also includes a Very Low Leakage Debug Acknowledge (VLLDBGACK) bit that is set to release the ARM core being held in reset following a VLLS recovery. The debugger reinitializes all debug IP, and then asserts the VLLDBGACK control bit to allow the RCM to release the ARM core from reset and allow CPU operation to begin.

The VLLDBGACK bit is cleared by the debugger (or can be left set as is) or clears automatically due to the reset generated as part of the next VLLS recovery.

Chapter 14 Power Management Controller (PMC)

14.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The power management controller (PMC) contains the internal voltage regulator, power on reset (POR), low voltage detect system (LVD), and high voltage detect system (HVD).

See AN4503: Power Management for Kinetis and ColdFire+ MCUs for further details on using the PMC.

14.2 Features

A list of included PMC features can be found here.

- Internal voltage regulator
- Active POR providing brown-out detect
- Low-voltage detect supporting two low-voltage trip points with four warning levels per trip point

14.3 Low-voltage detect (LVD) system

This device includes a system to guard against low-voltage conditions. This protects memory contents and controls MCU system states during supply voltage variations.

The system is comprised of a power-on reset (POR) circuit and a LVD circuit with a user-selectable trip voltage: high (V_{LVDH}) or low (V_{LVDL}). The trip voltage is selected by LVDSC1[LVDV]. The LVD is disabled upon entering VLPx and VLLSx modes.

Low-voltage detect (LVD) system

Two flags are available to indicate the status of the low-voltage detect system:

- The Low Voltage Detect Flag in the Low Voltage Status and Control 1 Register (LVDSC1[LVDF]) operates in a level sensitive manner. LVDSC1[LVDF] is set when the supply voltage falls below the selected trip point (VLVD). LVDSC1[LVDF] is cleared by writing 1 to LVDSC1[LVDACK], but only if the internal supply has returned above the trip point; otherwise, LVDSC1[LVDF] remains set.
- The Low Voltage Warning Flag (LVWF) in the Low Voltage Status and Control 2 Register (LVDSC2[LVWF]) operates in a level sensitive manner. LVDSC2[LVWF] is set when the supply voltage falls below the selected monitor trip point (VLVW). LVDSC2[LVWF] is cleared by writing one to LVDSC2[LVWACK], but only if the internal supply has returned above the trip point; otherwise, LVDSC2[LVWF] remains set.

14.3.1 LVD reset operation

By setting LVDSC1[LVDRE], the LVD generates a reset upon detection of a low-voltage condition. The low-voltage detection threshold is determined by LVDSC1[LVDV]. After an LVD reset occurs, the LVD system holds the MCU in reset until the supply voltage rises above this threshold. The LVD field in the SRS register of the RCM module (RCM_SRS[LVD]) is set following an LVD or power-on reset.

14.3.2 LVD interrupt operation

By configuring the LVD circuit for interrupt operation (LVDSC1[LVDIE] set and LVDSC1[LVDRE] clear), LVDSC1[LVDF] is set and an LVD interrupt request occurs upon detection of a low voltage condition. LVDSC1[LVDF] is cleared by writing 1 to LVDSC1[LVDACK].

14.3.3 Low-voltage warning (LVW) interrupt operation

The LVD system contains a Low-Voltage Warning Flag (LVWF) in the Low Voltage Detect Status and Control 2 Register to indicate that the supply voltage is approaching, but is above, the LVD voltage. The LVW also has an interrupt, which is enabled by setting LVDSC2[LVWIE]. If enabled, an LVW interrupt request occurs when LVDSC2[LVWF] is set. LVDSC2[LVWF] is cleared by writing 1 to LVDSC2[LVWACK].

LVDSC2[LVWV] selects one of the four trip voltages:

- Highest: V_{LVW4}
- Two mid-levels: V_{LVW3} and V_{LVW2}
- Lowest: V_{LVW1}

14.4 I/O retention

When in VLLS modes, the I/O states are held on a wake-up event (with the exception of wake-up by reset event) until the wake-up has been acknowledged via a write to REGSC[ACKISO]. In the case of VLLS exit via a RESET pin, the I/O are released and default to their reset state. In this case, no write to REGSC[ACKISO] is needed.

14.5 Memory map and register descriptions

Details about the PMC registers can be found here.

NOTE

Different portions of PMC registers are reset only by particular reset types. Each register's description provides details. For more information about the types of reset on this chip, refer to the Reset section details.

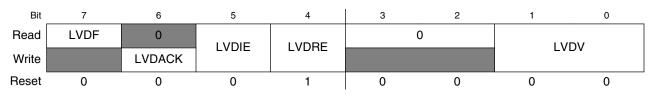
The PMC registers can be written only in supervisor mode. Write accesses in user mode are blocked and will result in a bus error.

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4007_D00	D Low Voltage Detect Status And Control 1 register (PMC_LVDSC1)	8	R/W	10h	14.5.1/244
4007_D00	1 Low Voltage Detect Status And Control 2 register (PMC_LVDSC2)	8	R/W	00h	14.5.2/245
4007_D00	2 Regulator Status And Control register (PMC_REGSC)	8	R/W	04h	14.5.3/246

PMC memory map

14.5.1 Low Voltage Detect Status And Control 1 register (PMC_LVDSC1)

This register contains status and control bits to support the low voltage detect function. This register should be written during the reset initialization program to set the desired controls even if the desired settings are the same as the reset settings.


While the device is in the very low power or low leakage modes, the LVD system is disabled regardless of LVDSC1 settings. To protect systems that must have LVD always on, configure the Power Mode Protection (PMPROT) register of the SMC module (SMC_PMPROT) to disallow any very low power or low leakage modes from being enabled.

See the device's data sheet for the exact LVD trip voltages.

NOTE

The LVDV bits are reset solely on a POR Only event. The register's other bits are reset on Chip Reset Not VLLS. For more information about these reset types, refer to the Reset section details.

Address: 4007_D000h base + 0h offset = 4007_D000h

PMC_LVDSC1 field descriptions

Field	Description
7	Low-Voltage Detect Flag
LVDF	This read-only status field indicates a low-voltage detect event.
	0 Low-voltage event not detected
	1 Low-voltage event detected
6 LVDACK	Low-Voltage Detect Acknowledge
	This write-only field is used to acknowledge low voltage detection errors. Write 1 to clear LVDF. Reads always return 0.
5	Low-Voltage Detect Interrupt Enable
LVDIE	Enables hardware interrupt requests for LVDF.
	0 Hardware interrupt disabled (use polling)
	1 Request a hardware interrupt when LVDF = 1

Table continues on the next page...

Field	Description				
4 LVDRE	Low-Voltage Detect Reset Enable				
	This write-once bit enables LVDF events to generate a hardware reset. Additional writes are ignored.				
	0 LVDF does not generate hardware resets				
	Force an MCU reset when LVDF = 1				
3–2	This field is reserved.				
Reserved	This read-only field is reserved and always has the value 0.				
1–0 LVDV	Low-Voltage Detect Voltage Select				
	Selects the LVD trip point voltage (V $_{LVD}$).				
	00 Low trip point selected (V $_{LVD} = V _{LVDL}$)				
	01 High trip point selected (V $_{LVD} = V _{LVDH}$)				
	10 Reserved				
	11 Reserved				

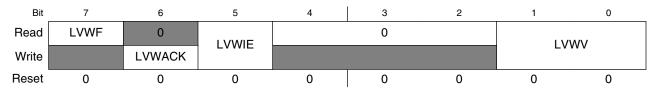
PMC_LVDSC1 field descriptions (continued)

14.5.2 Low Voltage Detect Status And Control 2 register (PMC_LVDSC2)

This register contains status and control bits to support the low voltage warning function.

While the device is in the very low power or low leakage modes, the LVD system is disabled regardless of LVDSC2 settings.

See the device's data sheet for the exact LVD trip voltages.


NOTE

The LVW trip voltages depend on LVWV and LVDV.

NOTE

LVWV is reset solely on a POR Only event. The other fields of the register are reset on Chip Reset Not VLLS. For more information about these reset types, refer to the Reset section details.

Address: 4007_D000h base + 1h offset = 4007_D001h

Field	Description				
7 LVWF	Low-Voltage Warning Flag				
	This read-only status field indicates a low-voltage warning event. LVWF is set when V_{Supply} transitions below the trip point, or after reset and V_{Supply} is already below V_{LVW} . LVWF may be 1 after power-on reset, therefore, to use LVW interrupt function, before enabling LVWIE, LVWF must be cleared by writing LVWACK first.				
	0 Low-voltage warning event not detected				
	1 Low-voltage warning event detected				
6 LVWACK	Low-Voltage Warning Acknowledge				
	This write-only field is used to acknowledge low voltage warning errors. Write 1 to clear LVWF. Reads always return 0.				
5 LVWIE	Low-Voltage Warning Interrupt Enable				
	Enables hardware interrupt requests for LVWF.				
	0 Hardware interrupt disabled (use polling)				
	1 Request a hardware interrupt when LVWF = 1				
4–2	This field is reserved.				
Reserved	This read-only field is reserved and always has the value 0.				
1–0 LVWV	Low-Voltage Warning Voltage Select				
	Selects the LVW trip point voltage (V_{LVW}). The actual voltage for the warning depends on LVDSC1[LVD				
	00 Low trip point selected ($V_{LVW} = V_{LVW1}$)				
	01 Mid 1 trip point selected ($V_{LVW} = V_{LVW2}$)				
	10 Mid 2 trip point selected ($V_{LVW} = V_{LVW3}$)				
	11 High trip point selected ($V_{LVW} = V_{LVW4}$)				

PMC_LVDSC2 field descriptions

14.5.3 Regulator Status And Control register (PMC_REGSC)

The PMC contains an internal voltage regulator. The voltage regulator design uses a bandgap reference that is also available through a buffer as input to certain internal peripherals, such as the CMP and ADC. The internal regulator provides a status bit (REGONS) indicating the regulator is in run regulation.

NOTE

This register is reset on Chip Reset Not VLLS and by reset types that trigger Chip Reset not VLLS. See the Reset section details for more information.

Address: 4007_D000h base + 2h offset = 4007_D002h

Bit	7	6	5	4	3	2	1	0
Read	0	0	Reserved	BGEN	ACKISO	REGONS	Reserved	BGBE
Write			neserveu	w1c			neserveu	DODL
Reset	0	0	0	0	0	1	0	0

PMC_REGSC field descriptions

Field	Description		
7 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.		
6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.		
5 Reserved	This field is reserved.		
4 BGEN	Bandgap Enable In VLPx Operation BGEN controls whether the bandgap is enabled in lower power modes of operation (VLPx, and VLLSx). When on-chip peripherals require the bandgap voltage reference in low power modes of operation, set BGEN to continue to enable the bandgap operation.		
	NOTE: When the bandgap voltage reference is not needed in low power modes, clear BGEN to avoid excess power consumption.		
	0 Bandgap voltage reference is disabled in VLPx , and VLLSx modes.		
	1 Bandgap voltage reference is enabled in VLPx , and VLLSx modes.		
3 ACKISO	Acknowledge Isolation Reading this field indicates whether certain peripherals and the I/O pads are in a latched state as a result of having been in a VLLS mode. Writing 1 to this field when it is set releases the I/O pads and certain peripherals to their normal run mode state.		
	NOTE: After recovering from a VLLS mode, user should restore chip configuration before clearing ACKISO. In particular, pin configuration for enabled LLWU wakeup pins should be restored to avoid any LLWU flag from being falsely set when ACKISO is cleared.		
	0 Peripherals and I/O pads are in normal run state.		
	1 Certain peripherals and I/O pads are in an isolated and latched state.		
2 REGONS	Regulator In Run Regulation Status This read-only field provides the current status of the internal voltage regulator.		
	0 Regulator is in stop regulation or in transition to/from it1 Regulator is in run regulation		
1 Reserved	This field is reserved. NOTE: This reserved bit must remain cleared (set to 0).		
0 Bandgap Buffer Enable			
BGBE	Enables the bandgap buffer.		
	0 Bandgap buffer not enabled		
	1 Bandgap buffer enabled		

memory map and register descriptions

Chapter 15 Low-Leakage Wakeup Unit (LLWU)

15.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The LLWU module allows the user to select up to 16 external pins and up to 8 internal modules as interrupt wake-up sources from low-leakage power modes.

The input sources are described in the device's chip configuration details. Each of the available wake-up sources can be individually enabled.

The $\overline{\text{RESET}}$ pin is an additional source for triggering an exit from low-leakage power modes, and causes the MCU to exit VLLS through a reset flow.

The LLWU module also includes two optional digital pin filters for the external wakeup pins.

See AN4503: Power Management for Kinetis and ColdFire+ MCUs for further details on using the LLWU.

15.1.1 Features

The LLWU module features include:

- Support for up to 16 external input pins and up to 8 internal modules with individual enable bits for MCU interrupt from low leakage modes
- Input sources may be external pins or from internal peripherals capable of running in VLLS. See the chip configuration information for wakeup input sources for this device.
- External pin wake-up inputs, each of which is programmable as falling-edge, rising-edge, or any change

muroduction

- Wake-up inputs that are activated after MCU enters a low-leakage power mode
- Optional digital filters provided to qualify an external pin detect. Note that when the LPO clock is disabled, the filters are disabled and bypassed.

15.1.2 Modes of operation

The LLWU module becomes functional on entry into a low-leakage power mode. After recovery from VLLS, the LLWU continues to detect wake-up events until the user has acknowledged the wake-up via a write to PMC_REGSC[ACKISO].

15.1.2.1 VLLS modes

All wakeup and reset events result in VLLS exit via a reset flow.

15.1.2.2 Non-low leakage modes

The LLWU is not active in all non-low leakage modes where detection and control logic are in a static state. The LLWU registers are accessible in non-low leakage modes and are available for configuring and reading status when bus transactions are possible.

When the wake-up pin filters are enabled, filter operation begins immediately. If a low leakage mode is entered within five LPO clock cycles of an active edge, the edge event will be detected by the LLWU.

15.1.2.3 Debug mode

When the chip is in Debug mode and then enters a VLLSx mode, no debug logic works in the fully-functional low-leakage mode. Upon an exit from the VLLSx mode, the LLWU becomes inactive.

15.1.3 Block diagram

The following figure is the block diagram for the LLWU module.

Chapter 15 Low-Leakage Wakeup Unit (LLWU)

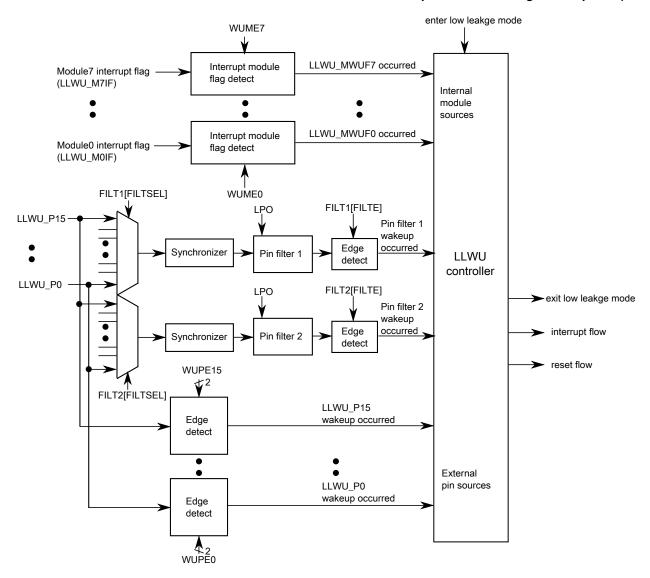


Figure 15-1. LLWU block diagram

15.2 LLWU signal descriptions

The signal properties of LLWU are shown in the table found here.

The external wakeup input pins can be enabled to detect either rising-edge, falling-edge, or on any change.

Table 15-1.	LLWU	signal	descriptions
-------------	------	--------	--------------

Signal	Description	I/O
LLWU_Pn	Wakeup inputs (n = 0-15)	I

15.3 Memory map/register definition

The LLWU includes the following registers:

- Wake-up source enable registers
 - Enable external pin input sources
 - Enable internal peripheral interrupt sources
- Wake-up flag registers
 - Indication of wakeup source that caused exit from a low-leakage power mode includes external pin or internal module interrupt
- Wake-up pin filter enable registers

NOTE

The LLWU registers can be written only in supervisor mode. Write accesses in user mode are blocked and will result in a bus error.

All LLWU registers are reset by Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. Each register's displayed reset value represents this subset of reset types. LLWU registers are unaffected by reset types that do not trigger Chip Reset not VLLS. For more information about the types of reset on this chip, refer to the Introduction details.

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4007_C000	LLWU Pin Enable 1 register (LLWU_PE1)	8	R/W	00h	15.3.1/253
4007_C001	LLWU Pin Enable 2 register (LLWU_PE2)	8	R/W	00h	15.3.2/254
4007_C002	LLWU Pin Enable 3 register (LLWU_PE3)	8	R/W	00h	15.3.3/255
4007_C003	LLWU Pin Enable 4 register (LLWU_PE4)	8	R/W	00h	15.3.4/256
4007_C004	LLWU Module Enable register (LLWU_ME)	8	R/W	00h	15.3.5/257
4007_C005	LLWU Flag 1 register (LLWU_F1)	8	R/W	00h	15.3.6/259
4007_C006	LLWU Flag 2 register (LLWU_F2)	8	R/W	00h	15.3.7/260
4007_C007	LLWU Flag 3 register (LLWU_F3)	8	R	00h	15.3.8/262
4007_C008	LLWU Pin Filter 1 register (LLWU_FILT1)	8	R/W	00h	15.3.9/264
4007_C009	LLWU Pin Filter 2 register (LLWU_FILT2)	8	R/W	00h	15.3.10/265

LLWU memory map

15.3.1 LLWU Pin Enable 1 register (LLWU_PE1)

LLWU_PE1 contains the field to enable and select the edge detect type for the external wakeup input pins LLWU_P3–LLWU_P0.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4007_C000h base + 0h offset = 4007_C000h

Bit	7	6	5	4	3	2	1	0
Read Write	WUPE3		WUPE2		WUPE1		WUPE0	
Reset	0	0	0	0	0	0	0	0

LLWU_PE1 field descriptions

Field	Description								
7–6	Wakeup Pin Enable For LLWU_P3								
WUPE3	Enables and configures the edge detection for the wakeup pin.								
	00 External input pin disabled as wakeup input								
	01 External input pin enabled with rising edge detection								
	10 External input pin enabled with falling edge detection								
	11 External input pin enabled with any change detection								
5–4	Wakeup Pin Enable For LLWU_P2								
WUPE2	Enables and configures the edge detection for the wakeup pin.								
	Linables and configures the edge detection for the wakeup pin.								
	00 External input pin disabled as wakeup input								
	01 External input pin enabled with rising edge detection								
	10 External input pin enabled with falling edge detection								
	11 External input pin enabled with any change detection								
3–2	Wakeup Pin Enable For LLWU_P1								
WUPE1	Enables and configures the edge detection for the wakeup pin.								
	00 External input pin disabled as wakeup input								
	01 External input pin enabled with rising edge detection								
	10 External input pin enabled with falling edge detection								
	11 External input pin enabled with any change detection								
1–0	Wakeup Pin Enable For LLWU_P0								
WUPE0	Enables and configures the edge detection for the wakeup pin.								
	00 External input pin disabled as wakeup input								
	01 External input pin enabled with rising edge detection								
	Table continues on the next page								

Table continues on the next page ...

memory map/register definition

LLWU_PE1 field descriptions (continued)

Field		Description						
	10	External input pin enabled with falling edge detection						
	11	External input pin enabled with any change detection						

15.3.2 LLWU Pin Enable 2 register (LLWU_PE2)

LLWU_PE2 contains the field to enable and select the edge detect type for the external wakeup input pins LLWU_P7–LLWU_P4.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4007_C000h base + 1h offset = 4007_C001h

Bit	7	6	5	4	3	2	1	0
Read Write	WUPE7		WUPE6		WUPE5		WUPE4	
Reset	0	0	0	0	0	0	0	0

LLWU_PE2 field descriptions

Field	Description						
7–6 WUPE7	Wakeup Pin Enable For LLWU_P7						
	Enables and configures the edge detection for the wakeup pin.						
	00 External input pin disabled as wakeup input						
	01 External input pin enabled with rising edge detection						
	10 External input pin enabled with falling edge detection						
	11 External input pin enabled with any change detection						
5–4 WUPE6	Wakeup Pin Enable For LLWU_P6						
	Enables and configures the edge detection for the wakeup pin.						
	00 External input pin disabled as wakeup input						
	01 External input pin enabled with rising edge detection						
	10 External input pin enabled with falling edge detection						
	11 External input pin enabled with any change detection						
3–2 WUPE5	Wakeup Pin Enable For LLWU_P5						
	Enables and configures the edge detection for the wakeup pin.						
	00 External input pin disabled as wakeup input						
	01 External input pin enabled with rising edge detection						
	Table continues on the post page						

Table continues on the next page ...

LLWU_PE2 field descriptions (continued)

Field	Description							
	10 External input pin enabled with falling edge detection							
	11 External input pin enabled with any change detection							
1–0 WUPE4	Wakeup Pin Enable For LLWU_P4							
	Enables and configures the edge detection for the wakeup pin.							
	00 External input pin disabled as wakeup input							
	01 External input pin enabled with rising edge detection							
	10 External input pin enabled with falling edge detection							
	11 External input pin enabled with any change detection							

15.3.3 LLWU Pin Enable 3 register (LLWU_PE3)

LLWU_PE3 contains the field to enable and select the edge detect type for the external wakeup input pins LLWU_P11–LLWU_P8.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4007_C000h base + 2h offset = 4007_C002h

Bit	7	6	5	4	3	2	1	0
Read Write	WUPE11		WUPE10		WUPE9		WUPE8	
Reset	0	0	0	0	0	0	0	0

LLWU_PE3 field descriptions

Wakeup Pin Enable For LLWU_P11						
Enables and configures the edge detection for the wakeup pin.						
00 External input pin disabled as wakeup input						
01 External input pin enabled with rising edge detection						
10 External input pin enabled with falling edge detection						
11 External input pin enabled with any change detection						
Wakeup Pin Enable For LLWU_P10						
Enables and configures the edge detection for the wakeup pin.						
00 External input pin disabled as wakeup input						
01 External input pin enabled with rising edge detection						

Table continues on the next page...

Field	Description
	10 External input pin enabled with falling edge detection
	11 External input pin enabled with any change detection
3–2 WUPE9	Wakeup Pin Enable For LLWU_P9
	Enables and configures the edge detection for the wakeup pin.
	00 External input pin disabled as wakeup input
	01 External input pin enabled with rising edge detection
	10 External input pin enabled with falling edge detection
	11 External input pin enabled with any change detection
1–0	Wakeup Pin Enable For LLWU_P8
WUPE8	Enables and configures the edge detection for the wakeup pin.
	00 External input pin disabled as wakeup input
	01 External input pin enabled with rising edge detection
	10 External input pin enabled with falling edge detection
	11 External input pin enabled with any change detection

LLWU_PE3 field descriptions (continued)

15.3.4 LLWU Pin Enable 4 register (LLWU_PE4)

LLWU_PE4 contains the field to enable and select the edge detect type for the external wakeup input pins LLWU_P15–LLWU_P12.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4007_C000h base + 3h offset = 4007_C003h

Bit	7	6	5	4	3	2	1	0
Read Write	WUPE15		WUPE14		WUPE13		WUPE12	
Reset	0	0	0	0	0	0	0	0

LLWU_PE4 field descriptions

Field	Description
7–6 WUPE15	Wakeup Pin Enable For LLWU_P15
	Enables and configures the edge detection for the wakeup pin.
	00 External input pin disabled as wakeup input
	01 External input pin enabled with rising edge detection

Table continues on the next page...

LLWU_PE4 field descriptions (continued)

Field	Description							
	10 External input pin enabled with falling edge detection							
	11 External input pin enabled with any change detection							
5–4 WUPE14	Wakeup Pin Enable For LLWU_P14							
	Enables and configures the edge detection for the wakeup pin.							
	00 External input pin disabled as wakeup input							
	01 External input pin enabled with rising edge detection							
	10 External input pin enabled with falling edge detection							
	11 External input pin enabled with any change detection							
3–2 WUPE13	Wakeup Pin Enable For LLWU_P13							
	Enables and configures the edge detection for the wakeup pin.							
	00 External input pin disabled as wakeup input							
	01 External input pin enabled with rising edge detection							
	10 External input pin enabled with falling edge detection							
	11 External input pin enabled with any change detection							
1–0 WUPE12	Wakeup Pin Enable For LLWU_P12							
	Enables and configures the edge detection for the wakeup pin.							
	00 External input pin disabled as wakeup input							
	01 External input pin enabled with rising edge detection							
	10 External input pin enabled with falling edge detection							
	11 External input pin enabled with any change detection							

15.3.5 LLWU Module Enable register (LLWU_ME)

LLWU_ME contains the bits to enable the internal module flag as a wakeup input source for inputs MWUF7–MWUF0.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4007_C000h base + 4h offset = 4007_C004h

Bit	7	6	5	4	3	2	1	0
Read Write	WUME7	WUME6	WUME5	WUME4	WUME3	WUME2	WUME1	WUME0
Reset	0	0	0	0	0	0	0	0

memory map/register definition

Field Description Wakeup Module Enable For Module 7 7 WUME7 Enables an internal module as a wakeup source input. 0 Internal module flag not used as wakeup source 1 Internal module flag used as wakeup source 6 Wakeup Module Enable For Module 6 WUME6 Enables an internal module as a wakeup source input. 0 Internal module flag not used as wakeup source 1 Internal module flag used as wakeup source 5 Wakeup Module Enable For Module 5 WUME5 Enables an internal module as a wakeup source input. 0 Internal module flag not used as wakeup source 1 Internal module flag used as wakeup source Wakeup Module Enable For Module 4 4 WUME4 Enables an internal module as a wakeup source input. Internal module flag not used as wakeup source 0 1 Internal module flag used as wakeup source 3 Wakeup Module Enable For Module 3 WUME3 Enables an internal module as a wakeup source input. 0 Internal module flag not used as wakeup source 1 Internal module flag used as wakeup source 2 Wakeup Module Enable For Module 2 WUME2 Enables an internal module as a wakeup source input. 0 Internal module flag not used as wakeup source 1 Internal module flag used as wakeup source Wakeup Module Enable for Module 1 1 WUME1 Enables an internal module as a wakeup source input. 0 Internal module flag not used as wakeup source 1 Internal module flag used as wakeup source 0 Wakeup Module Enable For Module 0 WUME0 Enables an internal module as a wakeup source input. 0 Internal module flag not used as wakeup source 1 Internal module flag used as wakeup source

LLWU_ME field descriptions

15.3.6 LLWU Flag 1 register (LLWU_F1)

LLWU_F1 contains the wakeup flags indicating which wakeup source caused the MCU to exit VLLS mode. For VLLS, this is the source causing the MCU reset flow.

The external wakeup flags are read-only and clearing a flag is accomplished by a write of a 1 to the corresponding WUFx bit. The wakeup flag (WUFx), if set, will remain set if the associated WUPEx bit is cleared.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4007_C000h base + 5h offset = 4007_C005h

Bit	7	6	5	4	3	2	1	0
Read	WUF7	WUF6	WUF5	WUF4	WUF3	WUF2	WUF1	WUF0
Write	w1c							
Reset	0	0	0	0	0	0	0	0

LLWU_F1 field descriptions

Field	Description
7 WUF7	Wakeup Flag For LLWU_P7
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF7.
	0 LLWU_P7 input was not a wakeup source
	1 LLWU_P7 input was a wakeup source
6 WUF6	Wakeup Flag For LLWU_P6
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF6.
	0 LLWU_P6 input was not a wakeup source
	1 LLWU_P6 input was a wakeup source
5	Wakeup Flag For LLWU_P5
WUF5	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF5.
	0 LLWU_P5 input was not a wakeup source
	1 LLWU_P5 input was a wakeup source
4	Wakeup Flag For LLWU_P4
WUF4	

Table continues on the next page ...

LLWU_F1 field descriptions (continued)

Field	Description
	Indicates that an enabled external wake-up pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF4.
	0 LLWU_P4 input was not a wakeup source
	1 LLWU_P4 input was a wakeup source
3 WUF3	Wakeup Flag For LLWU_P3
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF3.
	0 LLWU_P3 input was not a wake-up source
	1 LLWU_P3 input was a wake-up source
2 WUF2	Wakeup Flag For LLWU_P2
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF2.
	0 LLWU_P2 input was not a wakeup source
	1 LLWU_P2 input was a wakeup source
1	Wakeup Flag For LLWU_P1
WUF1	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF1.
	0 LLWU_P1 input was not a wakeup source
	1 LLWU_P1 input was a wakeup source
0 WUF0	Wakeup Flag For LLWU_P0
	Indicates that an enabled external wake-up pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF0.
	0 LLWU_P0 input was not a wakeup source
	1 LLWU_P0 input was a wakeup source

15.3.7 LLWU Flag 2 register (LLWU_F2)

LLWU_F2 contains the wakeup flags indicating which wakeup source caused the MCU to exit or VLLS mode. For VLLS, this is the source causing the MCU reset flow.

The external wakeup flags are read-only and clearing a flag is accomplished by a write of a 1 to the corresponding WUFx bit. The wakeup flag (WUFx), if set, will remain set if the associated WUPEx bit is cleared.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4007_C000h base + 6h offset = 4007_C006h

Bit	7	6	5	4	3	2	1	0
Read	WUF15	WUF14	WUF13	WUF12	WUF11	WUF10	WUF9	WUF8
Write	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c
Reset	0	0	0	0	0	0	0	0

LLWU_F2 field descriptions

Field	Description
7	Wakeup Flag For LLWU_P15
WUF15	
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To
	clear the flag, write a 1 to WUF15.
	0 LLWU_P15 input was not a wakeup source
	1 LLWU_P15 input was a wakeup source
0	
6 WUF14	Wakeup Flag For LLWU_P14
WUF14	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To
	clear the flag, write a 1 to WUF14.
	0 LLWU_P14 input was not a wakeup source
	1 LLWU_P14 input was a wakeup source
5	Wakeup Flag For LLWU_P13
WUF13	
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To
	clear the flag, write a 1 to WUF13.
	0 LLWU_P13 input was not a wakeup source
	1 LLWU_P13 input was a wakeup source
4	Wakeup Flag For LLWU_P12
WUF12	
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To
	clear the flag, write a 1 to WUF12.
	0 LLWU_P12 input was not a wakeup source
	1 LLWU_P12 input was a wakeup source
3	Wakeup Flag For LLWU_P11
WUF11	Wakeup Flag Foi ELWO_FTT
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To
	clear the flag, write a 1 to WUF11.
	0 LLWU_P11 input was not a wakeup source
	1 LLWU_P11 input was a wakeup source
2	Wakeup Flag For LLWU_P10
WUF10	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To
	clear the flag, write a 1 to WUF10.
	0 LLWU_P10 input was not a wakeup source
	1 LLWU_P10 input was a wakeup source
1	Wakeup Flag For LLWU_P9
WUF9	

Table continues on the next page ...

Field	Description
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF9.
	0 LLWU_P9 input was not a wakeup source
	1 LLWU_P9 input was a wakeup source
0 WUF8	Wakeup Flag For LLWU_P8
	Indicates that an enabled external wakeup pin was a source of exiting a low-leakage power mode. To clear the flag, write a 1 to WUF8.
	0 LLWU_P8 input was not a wakeup source
	1 LLWU_P8 input was a wakeup source

LLWU_F2 field descriptions (continued)

15.3.8 LLWU Flag 3 register (LLWU_F3)

LLWU_F3 contains the wakeup flags indicating which internal wakeup source caused the MCU to exit VLLS mode. For VLLS, this is the source causing the MCU reset flow.

For internal peripherals that are capable of running in a low-leakage power mode, such as a real time clock module or CMP module, the flag from the associated peripheral is accessible as the MWUFx bit. The flag will need to be cleared in the peripheral instead of writing a 1 to the MWUFx bit.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4007_C000h base + 7h offset = 4007_C007h

Bit	7	6	5	4	3	2	1	0
Read	MWUF7	MWUF6	MWUF5	MWUF4	MWUF3	MWUF2	MWUF1	MWUF0
Write								
Reset	0	0	0	0	0	0	0	0

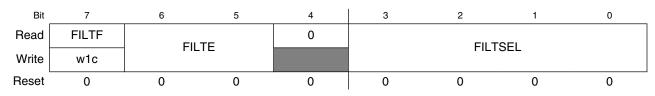
LLWU_F3 field descriptions

Field	Description
7	Wakeup flag For module 7
	Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism.

Table continues on the next page...

LLWU_F3 field descriptions (continued)

Field	Description
	0 Module 7 input was not a wakeup source
	1 Module 7 input was a wakeup source
6 MWUF6	Wakeup flag For module 6
	Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism.
	0 Module 6 input was not a wakeup source
	1 Module 6 input was a wakeup source
5	Wakeup flag For module 5
MWUF5	Wakeup hag For module 5
	Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism.
	0 Module 5 input was not a wakeup source
	1 Module 5 input was a wakeup source
4	Wakeup flag For module 4
MWUF4	
	Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism.
	0 Module 4 input was not a wakeup source
	1 Module 4 input was a wakeup source
3 MWUF3	Wakeup flag For module 3
	Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism.
	0 Module 3 input was not a wakeup source
	1 Module 3 input was a wakeup source
2	Wakeup flag For module 2
MWUF2	
	Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism.
	0 Module 2 input was not a wakeup source
	1 Module 2 input was a wakeup source
1 MWUF1	Wakeup flag For module 1
	Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism.
	0 Module 1 input was not a wakeup source
	1 Module 1 input was a wakeup source
0 MWUF0	Wakeup flag For module 0
	Indicates that an enabled internal peripheral was a source of exiting a low-leakage power mode. To clear the flag, follow the internal peripheral flag clearing mechanism.
	0 Module 0 input was not a wakeup source


15.3.9 LLWU Pin Filter 1 register (LLWU_FILT1)

LLWU_FILT1 is a control and status register that is used to enable/disable the digital filter 1 features for an external pin.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4007_C000h base + 8h offset = 4007_C008h

LLWU_FILT1 field descriptions

Field	Description						
7 FILTF	Filter Detect Flag						
	Indicates that the filtered external wakeup pin, selected by FILTSEL, was a source of exiting a low-leakage power mode. To clear the flag write a one to FILTF.						
	0 Pin Filter 1 was not a wakeup source						
	1 Pin Filter 1 was a wakeup source						
6–5 FILTE	Digital Filter On External Pin						
	Controls the digital filter options for the external pin detect.						
	00 Filter disabled						
	01 Filter posedge detect enabled						
	10 Filter negedge detect enabled						
	11 Filter any edge detect enabled						
4	This field is reserved.						
Reserved	This read-only field is reserved and always has the value 0.						
3–0 FILTSEL	Filter Pin Select						
	Selects 1 out of the 16 wakeup pins to be muxed into the filter.						
	0000 Select LLWU_P0 for filter						
	1111 Select LLWU_P15 for filter						

15.3.10 LLWU Pin Filter 2 register (LLWU_FILT2)

LLWU_FILT2 is a control and status register that is used to enable/disable the digital filter 2 features for an external pin.

NOTE

This register is reset on Chip Reset not VLLS and by reset types that trigger Chip Reset not VLLS. It is unaffected by reset types that do not trigger Chip Reset not VLLS. See the Introduction details for more information.

Address: 4007_C000h base + 9h offset = 4007_C009h

LLWU_FILT2 field descriptions

Field	Description						
7 FILTF	Filter Detect Flag						
	Indicates that the filtered external wakeup pin, selected by FILTSEL, was a source of exiting a low-leakage power mode. To clear the flag write a one to FILTF.						
	0 Pin Filter 2 was not a wakeup source						
	1 Pin Filter 2 was a wakeup source						
6–5 FILTE	Digital Filter On External Pin						
	Controls the digital filter options for the external pin detect.						
	00 Filter disabled						
	01 Filter posedge detect enabled						
	10 Filter negedge detect enabled						
	11 Filter any edge detect enabled						
4	This field is reserved.						
Reserved	This read-only field is reserved and always has the value 0.						
3–0 FILTSEL	Filter Pin Select						
	Selects 1 out of the 16 wakeup pins to be muxed into the filter.						
	0000 Select LLWU_P0 for filter						
	IIII Select LLWU_P15 for filter						

15.4 Functional description

Thie low-leakage wakeup unit (LLWU) module allows internal peripherals and external input pins as a source of wakeup from low-leakage modes.

It is operational only in VLLSx modes.

The LLWU module contains pin enables for each external pin and internal module. For each external pin, the user can disable or select the edge type for the wakeup with the following options:

- Falling-edge
- Rising-edge
- Either-edge

When an external pin is enabled as a wakeup source, the pin must be configured as an input pin.

The LLWU implements optional 3-cycle glitch filters, based on the LPO clock. A detected external pin is required to remain asserted until the enabled glitch filter times out. Additional latency of up to 2 cycles is due to synchronization, which results in a total of up to 5 cycles of delay before the detect circuit alerts the system to the wakeup or reset event when the filter function is enabled. Two wakeup detect filters are available for selected external pins. Glitch filtering is not provided on the internal modules.

For internal module interrupts, the WUMEx bit enables the associated module interrupt as a wakeup source.

15.4.1 VLLS modes

For any wakeup from VLLS, recovery is always via a reset flow and RCM_SRS[WAKEUP] is set indicating the low-leakage mode was active. State retention data is lost and I/O will be restored after PMC_REGSC[ACKISO] has been written.

A VLLS exit event due to RESET pin assertion causes an exit via a system reset. State retention data is lost and the I/O states immediately return to their reset state. The RCM_SRS[WAKEUP] and RCM_SRS[PIN] bits are set and the system executes a reset flow before CPU operation begins with a reset vector fetch.

15.4.2 Initialization

For an enabled peripheral wakeup input, the peripheral flag must be cleared by software before entering VLLSx mode to avoid an immediate exit from the mode.

Flags associated with external input pins, filtered and unfiltered, must also be cleared by software prior to entry to VLLSx mode.

After enabling an external pin filter or changing the source pin, wait at least five LPO clock cycles before entering VLLSx mode to allow the filter to initialize.

NOTE

After recovering from a VLLS mode, user must restore chip configuration before clearing PMC_REGSC[ACKISO]. In particular, pin configuration for enabled LLWU wake-up pins must be restored to avoid any LLWU flag from being falsely set when PMC_REGSC[ACKISO] is cleared.

The signal selected as a wake-up source pin must be a digital pin, as selected in the pin mux control.

Chapter 16 Reset Control Module (RCM)

16.1 Introduction

Information found here describes the registers of the Reset Control Module (RCM). The RCM implements many of the reset functions for the chip. See the chip's reset chapter for more information.

See AN4503: Power Management for Kinetis and ColdFire+ MCUs for further details on using the RCM.

16.2 Reset memory map and register descriptions

The RCM Memory Map/Register Definition can be found here.

The Reset Control Module (RCM) registers provide reset status information and reset filter control.

NOTE

The RCM registers can be written only in supervisor mode. Write accesses in user mode are blocked and will result in a bus error.

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4007_F000	System Reset Status Register 0 (RCM_SRS0)	8	R	82h	16.2.1/270
4007_F001	System Reset Status Register 1 (RCM_SRS1)	8	R	00h	16.2.2/271
4007_F004	Reset Pin Filter Control register (RCM_RPFC)	8	R/W	00h	16.2.3/272
4007_F005	Reset Pin Filter Width register (RCM_RPFW)	8	R/W	00h	16.2.4/273

RCM memory map

neset memory map and register descriptions

16.2.1 System Reset Status Register 0 (RCM_SRS0)

This register includes read-only status flags to indicate the source of the most recent reset. The reset state of these bits depends on what caused the MCU to reset.

NOTE

The reset value of this register depends on the reset source:

- POR (including LVD) 0x82
- LVD (without POR) 0x02
- VLLS mode wakeup due to $\overline{\text{RESET}}$ pin assertion 0x41
- VLLS mode wakeup due to other wakeup sources 0x01
- Other reset a bit is set if its corresponding reset source caused the reset

Address: 4007_F000h base + 0h offset = 4007_F000h

Bit	7	6	5	4	3	2	1	0	
Read	POR	PIN	WDOG	(0	LOC	LVD	WAKEUP	
Write									
Reset	1	0	0	0	0	0	1	0	

RCM_SRS0 field descriptions

Field	Description
7 POR	Power-On Reset
	Indicates a reset has been caused by the power-on detection logic. Because the internal supply voltage was ramping up at the time, the low-voltage reset (LVD) status bit is also set to indicate that the reset occurred while the internal supply was below the LVD threshold.
	0 Reset not caused by POR
	1 Reset caused by POR
6 PIN	External Reset Pin
	Indicates a reset has been caused by an active-low level on the external RESET pin.
	0 Reset not caused by external reset pin
	1 Reset caused by external reset pin
5 WDOG	Watchdog
WDOG	Indicates a reset has been caused by the watchdog timer timing out. This reset source can be blocked by disabling the watchdog.
	0 Reset not caused by watchdog timeout
	1 Reset caused by watchdog timeout
4–3	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

Table continues on the next page...

RCM_SRS0 field descriptions (continued)

Field	Description								
LOC	Loss-of-Clock Reset Indicates a reset has been caused by a loss of external clock. The MCG clock monitor must be enabled for a loss of clock to be detected. Refer to the detailed MCG description for information on enabling the								
	 clock monitor. 0 Reset not caused by a loss of external clock. 1 Reset caused by a loss of external clock. 								
1 LVD	Low-Voltage Detect Reset								
	If PMC_LVDSC1[LVDRE] is set and the supply drops below the LVD trip voltage, an LVD reset occurs. This field is also set by POR.								
	0 Reset not caused by LVD trip or POR								
	1 Reset caused by LVD trip or POR								
0 WAKEUP	Low Leakage Wakeup Reset								
	Indicates a reset has been caused by an enabled LLWU module wakeup source while the chip was in a low leakage mode. Any enabled wakeup source in a VLLSx mode causes a reset. This bit is cleared by any reset except WAKEUP.								
	0 Reset not caused by LLWU module wakeup source								
	1 Reset caused by LLWU module wakeup source								

16.2.2 System Reset Status Register 1 (RCM_SRS1)

This register includes read-only status flags to indicate the source of the most recent reset. The reset state of these bits depends on what caused the MCU to reset.

NOTE

The reset value of this register depends on the reset source:

- POR (including LVD) 0x00
- LVD (without POR) 0x00
- VLLS mode wakeup 0x00
- Other reset a bit is set if its corresponding reset source caused the reset

Address: 4007_F000h base + 1h offset = 4007_F001h

Bit	7	6	5	4	3	2	1	0
Read	0	0	SACKERR	0	MDM_AP	SW	LOCKUP	0
Write								
Reset	0	0	0	0	0	0	0	0

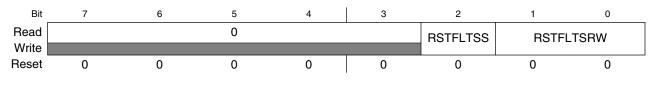
neset memory map and register descriptions

RCM_SRS1 field descriptions

Field	Description
7 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5 SACKERR	 Stop Mode Acknowledge Error Reset Indicates that after an attempt to enter Stop mode, a reset has been caused by a failure of one or more peripherals to acknowledge within approximately one second to enter stop mode. Reset not caused by peripheral failure to acknowledge attempt to enter stop mode Reset caused by peripheral failure to acknowledge attempt to enter stop mode
4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
3 MDM_AP	 MDM-AP System Reset Request Indicates a reset has been caused by the host debugger system setting of the System Reset Request bit in the MDM-AP Control Register. Reset not caused by host debugger system setting of the System Reset Request bit Reset caused by host debugger system setting of the System Reset Request bit
2 SW	Software Indicates a reset has been caused by software setting of SYSRESETREQ bit in Application Interrupt and Reset Control Register in the ARM core. 0 Reset not caused by software setting of SYSRESETREQ bit 1 Reset caused by software setting of SYSRESETREQ bit
1 LOCKUP	Core Lockup Indicates a reset has been caused by the ARM core indication of a LOCKUP event. 0 Reset not caused by core LOCKUP event 1 Reset caused by core LOCKUP event
0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

16.2.3 Reset Pin Filter Control register (RCM_RPFC)

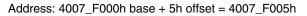
NOTE

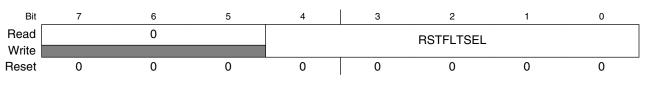

The reset values of bits 2-0 are for Chip POR only. They are unaffected by other reset types.

NOTE

The bus clock filter is reset when disabled or when entering stop mode. The LPO filter is reset when disabled .

Address: 4007_F000h base + 4h offset = 4007_F004h




RCM_RPFC field descriptions

Field	Description
7–3	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
2 RSTFLTSS	Reset Pin Filter Select in Stop Mode
	Selects how the reset pin filter is enabled in Stop and VLPS modes , and also during VLLS mode. On exit from VLLS mode, this bit should be reconfigured before clearing PMC_REGSC[ACKISO].
	0 All filtering disabled
	1 LPO clock filter enabled
1–0 RSTFLTSRW	Reset Pin Filter Select in Run and Wait Modes
	Selects how the reset pin filter is enabled in run and wait modes.
	00 All filtering disabled
	01 Bus clock filter enabled for normal operation
	10 LPO clock filter enabled for normal operation
	11 Reserved

16.2.4 Reset Pin Filter Width register (RCM_RPFW)

NOTE The reset values of the bits in the RSTFLTSEL field are for Chip POR only. They are unaffected by other reset types.

RCM_RPFW field descriptions

Field	Description
7–5	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
4–0	Reset Pin Filter Bus Clock Select
RSTFLTSEL	Selects the reset pin bus clock filter width.

Table continues on the next page ...

neset memory map and register descriptions

RCM_RPFW field descriptions (continued)

00000Bus clock filter count is 100001Bus clock filter count is 200010Bus clock filter count is 300011Bus clock filter count is 400100Bus clock filter count is 500101Bus clock filter count is 600101Bus clock filter count is 700111Bus clock filter count is 801000Bus clock filter count is 901001Bus clock filter count is 1001011Bus clock filter count is 1101011Bus clock filter count is 12	
00010Bus clock filter count is 300011Bus clock filter count is 400100Bus clock filter count is 500101Bus clock filter count is 600110Bus clock filter count is 700111Bus clock filter count is 801000Bus clock filter count is 901001Bus clock filter count is 1001010Bus clock filter count is 11	
00011Bus clock filter count is 400100Bus clock filter count is 500101Bus clock filter count is 600110Bus clock filter count is 700111Bus clock filter count is 801000Bus clock filter count is 901001Bus clock filter count is 1001010Bus clock filter count is 1101011Bus clock filter count is 12	
00100Bus clock filter count is 500101Bus clock filter count is 600110Bus clock filter count is 700111Bus clock filter count is 801000Bus clock filter count is 901001Bus clock filter count is 1001010Bus clock filter count is 1101011Bus clock filter count is 12	
00101Bus clock filter count is 600110Bus clock filter count is 700111Bus clock filter count is 801000Bus clock filter count is 901001Bus clock filter count is 1001010Bus clock filter count is 1101011Bus clock filter count is 12	
00110Bus clock filter count is 700111Bus clock filter count is 801000Bus clock filter count is 901001Bus clock filter count is 1001010Bus clock filter count is 1101011Bus clock filter count is 12	
00111Bus clock filter count is 801000Bus clock filter count is 901001Bus clock filter count is 1001010Bus clock filter count is 1101011Bus clock filter count is 12	
01000Bus clock filter count is 901001Bus clock filter count is 1001010Bus clock filter count is 1101011Bus clock filter count is 12	
 01001 Bus clock filter count is 10 01010 Bus clock filter count is 11 01011 Bus clock filter count is 12 	
01010Bus clock filter count is 1101011Bus clock filter count is 12	
01011 Bus clock filter count is 12	
01100 Bus clock filter count is 13	
01101 Bus clock filter count is 14	
01110 Bus clock filter count is 15	
01111 Bus clock filter count is 16	
10000 Bus clock filter count is 17	
10001 Bus clock filter count is 18	
10010 Bus clock filter count is 19	
10011 Bus clock filter count is 20	
10100 Bus clock filter count is 21	
10101 Bus clock filter count is 22	
10110 Bus clock filter count is 23	
10111 Bus clock filter count is 24	
11000 Bus clock filter count is 25	
11001 Bus clock filter count is 26	
11010 Bus clock filter count is 27	
11011 Bus clock filter count is 28	
11100 Bus clock filter count is 29	
11101 Bus clock filter count is 30	
11110 Bus clock filter count is 31	
11111 Bus clock filter count is 32	

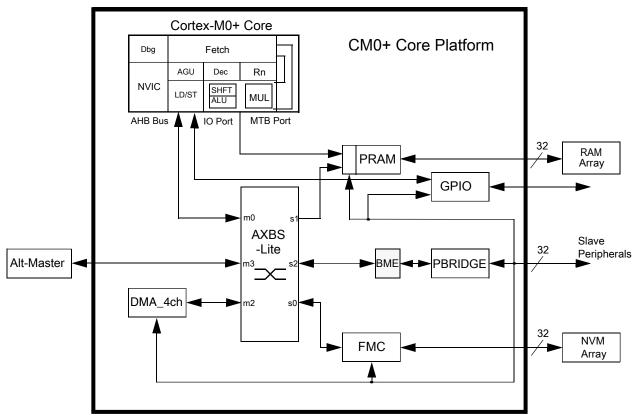
Chapter 17 Bit Manipulation Engine (BME)

17.1 Introduction

The Bit Manipulation Engine (BME) provides hardware support for atomic read-modifywrite memory operations to the peripheral address space in Cortex-M0+ based microcontrollers.

This architectural capability is also known as "decorated storage" as it defines a mechanism for providing additional semantics for load and store operations to memorymapped peripherals beyond just the reading and writing of data values to the addressed memory locations. In the BME definition, the "decoration", that is, the additional semantic information, is encoded into the peripheral address used to reference the memory.

By combining the basic load and store instructions of the ARM Cortex-M instruction set architecture (v6M, v7M) with the concept of decorated storage provided by the BME, the resulting implementation provides a robust and efficient read-modify-write capability to this class of ultra low-end microcontrollers. The resulting architectural capability defined by this core platform function is targeted at the manipulation of n-bit fields in peripheral registers and is consistent with I/O hardware addressing in the Embedded C standard. For most BME commands, a single core read or write bus cycle is converted into an atomic read-modify-write, that is, an indivisible "read followed by a write" bus sequence.


BME decorated references are only available on system bus transactions generated by the processor core and targeted at the standard 512 KB peripheral address space based at $0x4000_0000^{1}$. The decoration semantic is embedded into address bits[28:19], creating a 448 MB space at addresses $0x4400_0000_0x5FFF_FFFF$ for AIPS; these bits are stripped out of the actual address sent to the peripheral bus controller and used by the BME to define and control its operation.

To be perfectly accurate, the peripheral address space occupies a 516 KB region: 512 KB based at 0x4000_0000 plus a 4 KB space based at 0x400F_F000 for GPIO accesses. This organization provides compatibility with the Kinetis K Family. Attempted accesses to the memory space located between 0x4008_0000 - 0x400F_EFFF are error terminated due to an illegal address.

17.1.1 Overview

The following figure is a generic block diagram of the processor core and platform for this class of ultra low-end microcontrollers.

Note: BME can be accessed only by the core.

Figure 17-1. Cortex-M0+ core platform block diagram

As shown in the block diagram, the BME module interfaces to a crossbar switch AHB slave port as its primary input and sources an AHB bus output to the Peripheral Bridge (PBRIDGE) controller. The BME hardware microarchitecture is a 2-stage pipeline design matching the protocol of the AMBA-AHB system bus interfaces. The PBRIDGE module converts the AHB system bus protocol into the IPS/APB protocol used by the attached slave peripherals.

17.1.2 Features

The key features of the BME include:

• Lightweight implementation of decorated storage for selected address spaces

- Additional access semantics encoded into the reference address
- Resides between a crossbar switch slave port and a peripheral bridge bus controller
- Two-stage pipeline design matching the AHB system bus protocol
- Combinationally passes non-decorated accesses to peripheral bridge bus controller
- Conversion of decorated loads and stores from processor core into atomic readmodify-writes
- Decorated loads support unsigned bit field extracts, load-and-{set,clear} 1-bit operations
- Decorated stores support bit field inserts, logical AND, OR, and XOR operations
- Support for byte, halfword and word-sized decorated operations
- Supports minimum signal toggling on AHB output bus to reduce power dissipation

17.1.3 Modes of operation

The BME module does not support any special modes of operation. As a memorymapped device located on a crossbar slave AHB system bus port, BME responds strictly on the basis of memory addresses for accesses to the peripheral bridge bus controller.

All functionality associated with the BME module resides in the core platform's clock domain; this includes its connections with the crossbar slave port and the PBRIDGE bus controller.

17.2 Memory map and register definition

The BME module provides a memory-mapped capability and does not include any programming model registers.

The exact set of functions supported by the BME are detailed in the Functional description.

The peripheral address space occupies a 516 KB region: 512 KB based at 0x4000_0000 plus a 4 KB space based at 0x400F_F000 for GPIO accesses; the decorated address space is mapped to the 448 MB region located at 0x4400_0000–0x5FFF_FFF.

17.3 Functional description

Information found here details the specific functions supported by the BME.

runctional description

Recall the combination of the basic load and store instructions of the Cortex-M instruction set architecture (v6M, v7M) plus the concept of decorated storage provided by the BME, the resulting implementation provides a robust and efficient read-modify-write capability to this class of ultra low-end microcontrollers. The resulting architectural capability defined by this core platform function is targeted at the manipulation of n-bit fields in peripheral registers and is consistent with I/O hardware addressing in the Embedded C standard. For most BME commands, a single core read or write bus cycle is converted into an atomic read-modify-write, that is, an indivisible "read followed by a write" bus sequence.

Consider decorated store operations first, then decorated loads.

17.3.1 BME decorated stores

The functions supported by the BME's decorated stores include three logical operators (AND, OR, XOR) plus a bit field insert.

For all these operations, BME converts a single decorated AHB store transaction into a 2cycle atomic read-modify-write sequence, where the combined read-modify operation is performed in the first AHB data phase, and then the write is performed in the second AHB data phase.

A generic timing diagram of a decorated store showing a peripheral bit field insert operation is shown as follows:

Chapter 17 Bit Manipulation Engine (BME)

CYCLE RULER hclk /	×		x+1		x+2		x+3
BME AHB Input Bus							
mx_haddr	-< 5v_wxyz	_X	I	next			
mx_hattr	-<	_X		next			
mx_hwrite	_/			next			
mx_hwdata		\neg	W				
mx_hrdata							
mx_hready					/		
BME AHB Output Bus							
sx_haddr	-< 400v_wxyz	_X	400v_wxyz		next	X	
sx_hattr	~	_X			next		
sx_hwrite					next		
sx_hwdata				—	wdata bfi rdata		
sx_hrdata			rdata		>		
sx_hready							
BME States + Datapath							
control_state_dp1							
control_state_dp2							
reg_addr_data_dp			5v_wxyz		wdata bfi rdata	_X	

Figure 17-2. Decorated store: bit field insert timing diagram

All the decorated store operations follow the same execution template shown in Figure 17-2, a two-cycle read-modify-write operation:

- 1. Cycle x, 1st AHB address phase: Write from input bus is translated into a read operation on the output bus using the actual memory address (with the decoration removed) and then captured in a register.
- 2. Cycle x+1, 2nd AHB address phase: Write access with the registered (but actual) memory address is output
- 3. Cycle x+1, 1st AHB data phase: Memory read data is modified using the input bus write data and the function defined by the decoration and captured in a data register; the input bus cycle is stalled.
- 4. Cycle x+2, 2nd AHB data phase: Registered write data is sourced onto the output write data bus.

NOTE

Any wait states inserted by the slave device are simply passed through the BME back to the master input bus, stalling the AHB transaction cycle for cycle.

17.3.1.1 Decorated store logical AND (AND)

This command performs an atomic read-modify-write of the referenced memory location.

- 1. First, the location is read;
- 2. It is then modified by performing a logical AND operation using the write data operand sourced for the system bus cycle
- 3. Finally, the result of the AND operation is written back into the referenced memory location.

The data size is specified by the write operation and can be byte (8-bit), halfword (16-bit) or word (32-bit). The core performs the required write data lane replication on byte and halfword transfers.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ioandb	0	*	*	0	0	1	-	-	-	-	-	-	mem_addr						mem_addr													
ioandh	0	*	*	0	0	1	-	-	-	-	-	-	mem_addr								0											
ioandw	0	*	*	0	0	1	-	-	-	-	-	-	mem_addr							0	0											

Figure 17-3. Decorated store address: logical AND

See Figure 17-3 where addr[30:29] = 10 for peripheral, addr[28:26] = 001 specifies the AND operation, and mem_addr[19:0] specifies the address offset into the space based at $0x4000_0000$ for peripherals. The "-" indicates an address bit "don't care".

The decorated AND write operation is defined in the following pseudo-code as:

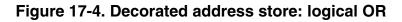
```
ioand<sz>(accessAddress, wdata) // decorated store AND
tmp = mem[accessAddress & 0xE00FFFFF, size] // memory read
tmp = tmp & wdata // modify
mem[accessAddress & 0xE00FFFFF, size] = tmp // memory write
```

where the operand size <sz> is defined as b(yte, 8-bit), h(alfword, 16-bit) and w(ord, 32-bit). This notation is used throughout the document.

In the cycle definition tables, the notations AHB_ap and AHB_dp refer to the address and data phases of the BME AHB transaction. The cycle-by-cycle BME operations are detailed in the following table.

Pipeline stage		Cycle										
	X	x+1	x+2									
BME AHB_ap	Forward addr to memory; Decode decoration; Convert master_wt to slave_rd; Capture address, attributes	Recirculate captured addr + attr to memory as slave_wt	<next></next>									
BME AHB_dp	<previous></previous>	Perform memory read; Form (rdata & wdata) and capture destination data in register	Perform write sending registered data to memory									

Table 17-1. Cycle definitions of decorated store: logical AND


17.3.1.2 Decorated store logical OR (OR)

This command performs an atomic read-modify-write of the referenced memory location.

- 1. First, the location is read.
- 2. It is then modified by performing a logical OR operation using the write data operand sourced for the system bus cycle.
- 3. Finally, the result of the OR operation is written back into the referenced memory location.

The data size is specified by the write operation and can be byte (8-bit), halfword (16-bit) or word (32-bit). The core performs the required write data lane replication on byte and halfword transfers.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ioorb	0	*	*	0	1	0	-	-	-	-	-	-								I	mer	n_a	ddr									
ioorh	0	*	*	0	1	0	-	-	-	-	-	-	mem_addr														0					
ioorw	0	*	*	0	1	0	-	-	-	-	-	-	mem_addr											0	0							

See Figure 17-4, where addr[30:29] = 10 for peripheral, addr[28:26] = 010 specifies the OR operation, and mem_addr[19:0] specifies the address offset into the space based at $0x4000_0000$ for peripherals. The "-" indicates an address bit "don't care".

The decorated OR write operation is defined in the following pseudo-code as:

ioor <sz>(accessAddress, wdata)</sz>	// decorated store OR
<pre>tmp = mem[accessAddress & 0xE00FFFFF, size] tmp = tmp wdata</pre>	// memory read // modify
<pre>mem[accessAddress & 0xE00FFFFF, size] = tmp</pre>	// memory write

The cycle-by-cycle BME operations are detailed in the following table.

Pipeline stage		Cycle	
	x	x+1	x+2
BME AHB_ap	Forward addr to memory; Decode decoration; Convert master_wt to slave_rd; Capture address, attributes	Recirculate captured addr + attr to memory as slave_wt	<next></next>
BME AHB_dp	<previous></previous>	Perform memory read; Form (rdata wdata) and capture destination data in register	Perform write sending registered data to memory

 Table 17-2.
 Cycle definitions of decorated store: logical OR

17.3.1.3 Decorated store logical XOR (XOR)

This command performs an atomic read-modify-write of the referenced memory location.

- 1. First, the location is read.
- 2. It is then modified by performing a logical XOR (exclusive-OR) operation using the write data operand sourced for the system bus cycle.
- 3. Finally, the result of the XOR operation is written back into the referenced memory location.

The data size is specified by the write operation and can be byte (8-bit), halfword (16-bit) or word (32-bit). The core performs the required write data lane replication on byte and halfword transfers.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ioxorb	0	*	*	0	1	1	-	-	-	-	-	-								r	nen	n_a	ddr									
ioxorh	0	*	*	0	1	1	-	-	-	-	-	-	- mem_addr																0			
ioxorw	0	*	*	0	1	1	-	-	-	-	-	-	mem_addr													0	0					

See Figure 17-5, where addr[30:29] =10 for peripheral, addr[28:26] = 011 specifies the XOR operation, and mem_addr[19:0] specifies the address offset into the peripheral space based at 0x4000_0000 for peripherals. The "-" indicates an address bit "don't care".

The decorated XOR write operation is defined in the following pseudo-code as:

```
ioxor<sz>(accessAddress, wdata) // decorated store XOR
tmp = mem[accessAddress & 0xE00FFFFF, size] // memory read
tmp = tmp ^ wdata // modify
mem[accessAddress & 0xE00FFFFF, size] = tmp // memory write
```

The cycle-by-cycle BME operations are detailed in the following table.

Pipeline Stage		Cycle	
	x	x+1	x+2
BME AHB_ap	Forward addr to memory; Decode decoration; Convert master_wt to slave_rd; Capture address, attributes	Recirculate captured addr + attr to memory as slave_wt	<next></next>
BME AHB_dp	<previous></previous>	Perform memory read; Form (rdata ^ wdata) and capture destination data in register	Perform write sending registered data to memory

Table 17-3. Cycle definitions of decorated store: logical XOR

17.3.1.4 Decorated store bit field insert (BFI)

This command inserts a bit field contained in the write data operand, defined by LSB position (b) and the bit field width (w+1), into the memory "container" defined by the access size associated with the store instruction using an atomic read-modify-write sequence.

The data size is specified by the write operation and can be byte (8-bit), halfword (16-bit) or word (32-bit).

NOTE

For the word sized operation, the maximum bit field width is 16 bits. The core performs the required write data lane replication on byte and halfword transfers.

The BFI operation can be used to insert a single bit into a peripheral. For this case, the w field is simply set to 0, indicating a bit field width of 1.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
iobfib	0	*	*	1	-	-	b	b	b	-	w	w	w	/ mem_addr																		
iobfih	0	*	*	1	-	b	b	b	b	w	w	w	w	v mem_addr															0			
iobfiw	0	*	*	1	b	b	b	b	b	w	w	w	w	mem_addr											0	0						

Figure 17-6. Decorated address store: bit field insert

where addr[30:29] =10 for peripheral,addr[28] = 1 signals a BFI operation, addr[27:23] is "b", the LSB identifier, addr[22:19] is "w", the bit field width minus 1 identifier, and addr[18:0] specifies the address offset into the peripheral space based at 0x4000_0000 for peripherals. The "-" indicates an address bit "don't care". Note, unlike the other decorated store operations, BFI uses addr[19] as the least significant bit in the "w" specifier and not as an address bit.


```
runctional description
```

The decorated BFI write operation is defined in the following pseudo-code as:

```
iobfi<sz>(accessAddress, wdata) // decorated bit field insert
tmp = mem[accessAddress & 0xE007FFFF, size] // memory read
mask = ((1 << (w+1)) - 1) << b // generate bit mask
tmp = tmp & ~mask // modify
| wdata & mask
mem[accessAddress & 0xE007FFFF, size] = tmp // memory write</pre>
```

The write data operand (wdata) associated with the store instruction contains the bit field to be inserted. It must be properly aligned within a right-aligned container, that is, within the lower 8 bits for a byte operation, the lower 16 bits for a halfword, or the entire 32 bits for a word operation.

To illustrate, consider the following example of the insertion of the 3-bit field "xyz" into an 8-bit memory container, initially set to "abcd_efgh". For all cases, w is 2, signaling a bit field width of 3.

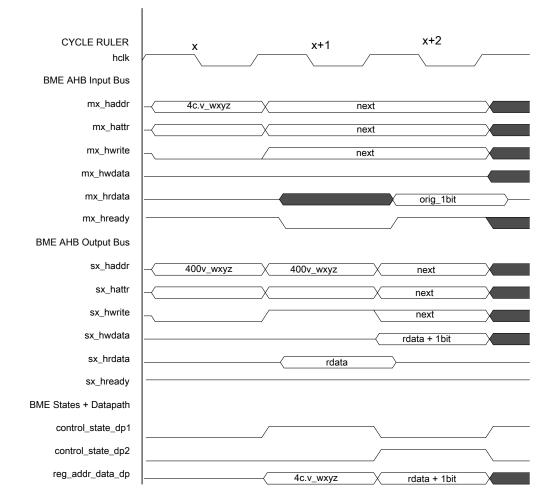
if	<pre>b = 0 and the decorated store (strb) Rt register[7:0] =xyz, then destination is "abcd_exyz"</pre>
if	b = 1 and the decorated store (strb) Rt register[7:0] =xyz-,
	then destination is "abcd_xyzh"
iİ	b = 2 and the decorated store (strb) Rt register[7:0] =x_yz,
if	then destination is "abcx_yzgh" b = 3 and the decorated store (strb) Rt register[7:0] =xy z,
	then destination is "abxy zfqh"
if	b = 4 and the decorated store (strb) Rt register[7:0] = -xyz,
	then destination is "axyz_efgh"
if	b = 5 and the decorated store (strb) Rt register[7:0] = xyz,
	then destination is "xyzd_efgh"
if	b = 6 and the decorated store (strb) Rt register[7:0] = yz,
	then destination is "yzcd_efgh"
if	b = 7 and the decorated store (strb) Rt register[7:0] = z,
	then destination is "zbcd_efgh"

Note from the example, when the starting bit position plus the field width exceeds the container size, only part of the source bit field is inserted into the destination memory location. Stated differently, if (b + w+1) >container_width, only the low-order "container_width - b" bits are actually inserted.

The cycle-by-cycle BME operations are detailed in the following table.

Table 17-4. Cycle definitions of decorated store: bit field insert

Pipeline stage		Cycle	
	x	x+1	x+2
BME AHB_ap	Forward addr to memory; Decode decoration; Convert master_wt to slave_rd; Capture address, attributes	Recirculate captured addr + attr to memory as slave_wt	<next></next>
BME AHB_dp	<previous></previous>	Perform memory read; Form bit mask; Form bitwise ((mask) ? wdata : rdata)) and capture destination data in register	Perform write sending registered data to memory


17.3.2 BME decorated loads

The functions supported by the BME's decorated loads include two single-bit load-and-{set, clear} operators plus unsigned bit field extracts.

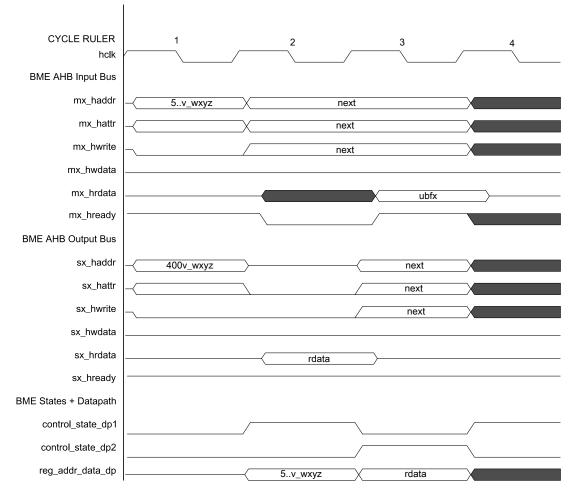
For the two load-and-{set, clear} operations, BME converts a single decorated AHB load transaction into a two-cycle atomic read-modify-write sequence, where the combined read-modify operations are performed in the first AHB data phase, and then the write is performed in the second AHB data phase as the original read data is returned to the processor core. For an unsigned bit field extract, the decorated load transaction is stalled for one cycle in the BME as the data field is extracted, then aligned and returned to the processor in the second AHB data phase. This is the only decorated transaction that is not an atomic read-modify-write, as it is a simple data read.

A generic timing diagram of a decorated load showing a peripheral load-and-set 1-bit operation is shown as follows.

Functional description

Figure 17-7. Decorated load: load-and-set 1-bit field insert timing diagram

Decorated load-and-{set, clear} 1-bit operations follow the execution template shown in the above figure: a 2-cycle read-modify-write operation:


- 1. Cycle x, first AHB address phase: Read from input bus is translated into a read operation on the output bus with the actual memory address (with the decoration removed) and then captured in a register
- 2. Cycle x+1, second AHB address phase: Write access with the registered (but actual) memory address is output
- 3. Cycle x+1, first AHB data phase: The "original" 1-bit memory read data is captured in a register, while the 1-bit field is set or clear based on the function defined by the decoration with the modified data captured in a register; the input bus cycle is stalled
- 4. Cycle x+2, second AHB data phase: The selected original 1-bit is right-justified, zero-filled and then driven onto the input read data bus, while the registered write data is sourced onto the output write data bus

NOTE

Any wait states inserted by the slave device are simply passed through the BME back to the master input bus, stalling the AHB transaction cycle for cycle.

A generic timing diagram of a decorated load showing an unsigned peripheral bit field operation is shown in the following figure.

Figure 17-8. Decorated load: unsigned bit field insert timing diagram

The decorated unsigned bit field extract follows the same execution template shown in the above figure, a 2-cycle read operation:

- Cycle x, 1st AHB address phase: Read from input bus is translated into a read operation on the output bus with the actual memory address (with the decoration removed) and then captured in a register
- Cycle x+1, 2nd AHB address phase: Idle cycle

runctional description

- Cycle x+1, 1st AHB data phase: A bit mask is generated based on the starting bit position and the field width; the mask is AND'ed with the memory read data to isolate the bit field; the resulting data is captured in a data register; the input bus cycle is stalled
- Cycle x+2, 2nd AHB data phase: Registered data is logically right-aligned for proper alignment and driven onto the input read data bus

NOTE

Any wait states inserted by the slave device are simply passed through the BME back to the master input bus, stalling the AHB transaction cycle for cycle.

17.3.2.1 Decorated load: load-and-clear 1 bit (LAC1)

This command loads a 1-bit field defined by the LSB position (b) into the core's general purpose destination register (Rt) and zeroes the bit in the memory space after performing an atomic read-modify-write sequence.

The extracted 1-bit data field from the memory address is right-justified and zero-filled in the operand returned to the core.

The data size is specified by the read operation and can be byte (8-bit), halfword (16-bit) or word (32-bit).

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
iolaclb	0	*	*	0	1	0	-	-	b	b	b	-	inem_addi																			
iolaclh	0	*	*	0	1	0	-	b	b	b	b	-	mem_addr															0				
iolaclw	0	*	*	0	1	0	b	b	b	b	b	-	mem_addr (0	0						

Figure 17-9. Decorated load address: load-and-clear 1 bit

See Figure 17-9 where addr[30:29] = 10 for peripheral, addr[28:26] = 010 specifies the load-and-clear 1 bit operation, addr[25:21] is "b", the bit identifier, and mem_addr[19:0] specifies the address offset into the space based at $0x4000_0000$ for peripheral. The "-" indicates an address bit "don't care".

The decorated load-and-clear 1-bit read operation is defined in the following pseudo-code as:

```
rdata = iolac1<sz>(accessAddress) // decorated load-and-clear 1
tmp = mem[accessAddress & 0xE00FFFFF, size] // memory read
mask = 1 << b // generate bit mask
rdata = (tmp & mask) >> b // read data returned to core
tmp = tmp & ~mask // read data returned to core
tmm [accessAddress & 0xE00FFFFF, size] = tmp // memory write
```


The cycle-by-cycle BME operations are detailed in the following table.

Pipeline Stage		Cycle	
	x	x+1	x+2
BME AHB_ap	Forward addr to memory; Decode decoration; Capture address, attributes	Recirculate captured addr + attr to memory as slave_wt	<next></next>
BME AHB_dp	<previous></previous>	Perform memory read; Form bit mask; Extract bit from rdata; Form (rdata & ~mask) and capture destination data in register	Return extracted bit to master; Perform write sending registered data to memory

 Table 17-5.
 Cycle definitions of decorated load: load-and-clear 1 bit

17.3.2.2 Decorated Load: Load-and-Set 1 Bit (LAS1)

This command loads a 1-bit field defined by the LSB position (b) into the core's general purpose destination register (Rt) and sets the bit in the memory space after performing an atomic read-modify-write sequence.

The extracted one bit data field from the memory address is right justified and zero filled in the operand returned to the core.

The data size is specified by the read operation and can be byte (8-bit), halfword (16-bit) or word (32-bit).

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
iolaslb	0	*	*	0	1	1	-	-	b	b	b	-								r	nen	n_a	ddr									
iolaslh	0	*	*	0	1	1	-	b	b	b	b	-								r	nen	n_a	ddr									0
iolaslw	0	*	*	0	1	1	b	b	b	b	b	-	- mem_addr									0	0									

Figure 17-10. Decorated load address: load-and-set 1 bit

where addr[30:29] = 10 for peripheral, addr[28:26] = 011 specifies the load-and-set 1 bit operation, addr[25:21] is "b", the bit identifier, and mem_addr[19:0] specifies the address offset into the space based at $0x4000_0000$ for peripheral. The "-" indicates an address bit "don't care".

The decorated Load-and-Set 1 Bit read operation is defined in the following pseudo-code as:

```
rdata = iolas1<sz>(accessAddress) // decorated load-and-set 1
tmp = mem[accessAddress & 0xE00FFFF, size] // memory read
mask = 1 << b // generate bit mask
rdata = (tmp & mask) >> b // read data returned to core
```


runctional description

tmp = tmp | mask
mem[accessAddress & 0xE00FFFFF, size] = tmp

// modify
// memory write

The cycle-by-cycle BME operations are detailed in the following table.

Pipeline Stage		Cycle	
	X	x+1	x+2
BME AHB_ap	Forward addr to memory; Decode decoration; Capture address, attributes	Recirculate captured addr + attr to memory as slave_wt	<next></next>
BME AHB_dp	<previous></previous>	Perform memory read; Form bit mask; Extract bit from rdata; Form (rdata mask) and capture destination data in register	Return extracted bit to master; Perform write sending registered data to memory

Table 17-6. Cycle definitions of decorated load: load-and-set 1-bit

17.3.2.3 Decorated load unsigned bit field extract (UBFX)

This command extracts a bit field defined by LSB position (b) and the bit field width (w +1) from the memory "container" defined by the access size associated with the load instruction using a two-cycle read sequence.

The extracted bit field from the memory address is right-justified and zero-filled in the operand returned to the core. Recall this is the only decorated operation that does not perform a memory write, that is, UBFX only performs a read.

The data size is specified by the write operation and can be byte (8-bit), halfword (16-bit) or word (32-bit). Note for the word sized operation, the maximum bit field width is 16 bits.

The use of a UBFX operation is recommended to extract a single bit. For this case, the w field is simply set to 0, indicating a bit field width of 1.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	1() (9	8	7	6	5	4	3	2	1	0
ioubfxb	0	*	*	1	-	-	b	b	b	-	w	w	w							r	ner	n_a	add	r									
ioubfxh	0	*	*	1	-	b	b	b	b	w	w	w	w							r	ner	n_a	add	lr									0
ioubfxw	0	*	*	1	b	b	b	b	b	w	w	w	w										0										

Figure 17-11. Decorated load address: unsigned bit field extract

See Figure 17-11, where addr[30:29] = 10 for peripheral, addr[28] = 1 specifies the unsigned bit field extract operation, addr[27:23] is "b", the LSB identifier, addr[22:19] is "w", the bit field width minus 1 identifier, and mem_addr[18:0] specifies the address

offset into the space based at 0x4000_0000 for peripheral. The "-" indicates an address bit "don't care". Note, unlike the other decorated load operations, UBFX uses addr[19] as the least significant bit in the "w" specifier and not as an address bit.

The decorated unsigned bit field extract read operation is defined in the following pseudo-code as:

```
rdata = ioubfx<sz>(accessAddress) // unsigned bit field extract
tmp = mem[accessAddress & 0xE007FFFF, size] // memory read
mask = ((1 << (w+1)) - 1) << b // generate bit mask
rdata = (tmp & mask) >> b // read data returned to core
```

Like the BFI operation, when the starting bit position plus the field width exceeds the container size, only part of the source bit field is extracted from the destination memory location. Stated differently, if (b + w+1) > container_width, only the low-order "container_width - b" bits are actually extracted. The cycle-by-cycle BME operations are detailed in the following table.

Table 17-7. Cycle definitions of decorated load: unsigned bit field extract

Pipeline Stage		Cycle	
	x	x+1	x+2
BME AHB_ap	Forward addr to memory; Decode decoration; Capture address, attributes	Idle AHB address phase	<next></next>
BME AHB_dp	<previous></previous>	Perform memory read; Form bit mask; Form (rdata & mask) and capture destination data in register	Logically right shift registered data; Return justified rdata to master

17.3.3 Additional details on decorated addresses and GPIO accesses

As previously noted, the peripheral address space occupies a 516 KB region: 512 KB based at 0x4000_0000 plus a 4 KB space based at 0x400F_F000 for GPIO accesses. This memory layout provides compatibility with the Kinetis K Family and provides 129 address "slots", each 4 KB in size.

The GPIO address space is multiply-mapped by the hardware: it appears at the "standard" system address 0x400F_F000 and is physically located in the address slot corresponding to address 0x4000_F000. Decorated loads and stores create a slight complication involving accesses to the GPIO. Recall the use of address[19] varies by decorated operation; for AND, OR, XOR, LAC1 and LAS1, this bit functions as a true address bit, while for BFI and UBFX, this bit defines the least significant bit of the "w" bit field specifier.

Application information

As a result, undecorated GPIO references and decorated AND, OR, XOR, LAC1 and LAS1 operations can use the standard 0x400F_F000 base address, while decorated BFI and UBFX operations must use the alternate 0x4000_F000 base address. Another implementation can simply use 0x400F_F000 as the base address for all undecorated GPIO accesses and 0x4000_F000 as the base address for all decorated accesses. Both implementations are supported by the hardware.

Peripheral address space	Description
0x4000_0000-0x4007_FFFF	Undecorated (normal) peripheral accesses
0x4008_0000-0x400F_EFFF	Illegal addresses; attempted references are aborted and error terminated
0x400F_F000-0x400F_FFFF	Undecorated (normal) GPIO accesses using standard address
0x4010_0000-0x43FF_FFF	Illegal addresses; attempted references are aborted and error terminated
0x4400_0000-0x4FFF_FFFF	Decorated AND, OR, XOR, LAC1, LAS1 references to peripherals and GPIO based at either 0x4000_F000 or 0x400F_F000
0x5000_0000-0x5FFF_FFF	Decorated BFI, UBFX references to peripherals and GPIO only based at 0x4000_F000

 Table 17-8.
 Decorated peripheral and GPIO address details

17.4 Application information

In this section, GNU assembler macros with C expression operands are presented as examples of the required instructions to perform decorated operations.

This section specifically presents a partial bme.h file defining the assembly language expressions for decorated logical stores: AND, OR, and XOR. Comparable functions for BFI and the decorated loads are more complex and available in the complete BME header file.

These macros use the same function names presented in Functional description.

```
#define IOANDW(ADDR,WDATA)
    __asm("ldr r3, =(1<<26);"
"orr r3, %[addr];"
                  r3, %[addr];"
                                       \
          "mov r2, %[wdata];"
"str r2, [r3];"
                                       \
          :: [addr] "r" (ADDR), [wdata] "r" (WDATA) : "r2", "r3");
#define IOANDH(ADDR,WDATA)
    __asm("ldr r3, =(1<<26);"
                                       \
          "orr r3, %[addr];"
                                       \
          "mov r2, %[wdata];"
                                       "strh r2, [r3];"
          :: [addr] "r" (ADDR), [wdata] "r" (WDATA) : "r2", "r3");
#define IOANDB(ADDR,WDATA)
    __asm("ldr r3, =(1<<26);"
                                       \
          "orr
                 r3, %[addr];"
                                       \
          "mov r2, %[wdata];"
"strb r2, [r3];"
                                       \backslash
           :: [addr] "r" (ADDR), [wdata] "r" (WDATA) : "r2", "r3");
```

```
NP
```

```
#define IOORW(ADDR,WDATA)
                                     /
    __asm("ldr
                r3, =(1<<27);"
                                     \
                  r3, %[addr];"
          "orr
                  r2, %[wdata];"
          "mov
                                     \
          "str
                 r2, [r3];"
                                     :: [addr] "r" (ADDR), [wdata] "r" (WDATA) : "r2", "r3");
#define IOORH(ADDR,WDATA)
    __asm("ldr
                r3, =(1<<27);"
          "orr
                  r3, %[addr];"
          "mov
                 r2, %[wdata];"
                                     \
          "strh r2, [r3];"
                                     \
          :: [addr] "r" (ADDR), [wdata] "r" (WDATA) : "r2", "r3");
#define IOORB(ADDR,WDATA)
    asm("ldr r3, =(1<<27);"
          "orr
                 r3, %[addr];"
                                     \
          "mov
                 r2, %[wdata];"
                                     \backslash
          "strb
                 r2, [r3];"
                                     \setminus
          :: [addr] "r" (ADDR), [wdata] "r" (WDATA) : "r2", "r3");
#define IOXORW(ADDR,WDATA)
   __asm("ldr r3, =(3<<26);"
                                     \
          "orr
                  r3, %[addr];"
                                     \
          "mov
                 r2, %[wdata];"
                                     \
          "str
                  r2, [r3];"
          :: [addr] "r" (ADDR), [wdata] "r" (WDATA) : "r2", "r3");
#define IOXORH(ADDR,WDATA)
    __asm("ldr
                 r3, =(3<<26);"
                                     r3, %[addr];"
          "orr
                                     /
                  r2, %[wdata];"
r2, [r3];"
          "mov
                                     \
          "strh
                                     \backslash
          :: [addr] "r" (ADDR), [wdata] "r" (WDATA) : "r2", "r3");
#define IOXORB(ADDR,WDATA)
    __asm("ldr
               r3, =(3<<26);"
                                     /
          "orr
                  r3, %[addr];"
                                     /
          "mov
                  r2, %[wdata];"
                                     \
          "strb r2, [r3];"
          :: [addr] "r" (ADDR), [wdata] "r" (WDATA) : "r2", "r3");
```


KV10 Sub-Family Reference Manual, Rev. 7, September 2014

Chapter 18 Memory-Mapped Divide and Square Root (MMDVSQ)

18.1 Introduction

ARM processor cores in the Cortex-M family implementing the ARMv6-M instruction set architecture do not include hardware support for integer divide operations. The affected processors include the Cortex-M0+ core. However, in certain deeply embedded application spaces, hardware support for this class of arithmetic operation (along with an unsigned square root function) is important to maximize system performance and minimize device power dissipation. Accordingly, the MMDVSQ module is included in select microcontrollers, to serve as a memory-mapped co-processor located in a special address space (within the system memory map) that is accessible only to the processor core.

The MMDVSQ module supports execution of the integer divide operations defined in the ARMv7-M instruction set architecture, plus an unsigned integer square root operation. The supported integer divide operations include 32/32 signed (SDIV) and unsigned (UDIV) calculations.

18.1.1 Features

The key features of the MMDVSQ include:

- Lightweight implementation of 32-bit integer divide and square root arithmetic operations
 - Supports 32/32 signed and unsigned divide (or remainder) calculations
 - Supports 32-bit unsigned square root calculations
- Simple programming model includes input data and result registers plus a control/ status register
- Programming model interface optimized for activation from inline code or software library call

nuroduction

- "Fast Start" configuration minimizes the memory-mapped register write overhead
- Supports two methods to determine when result is valid, including software polling
- Configurable divide-by-zero response
- Memory-mapped co-processor based at 0xF000_4000 address space reserved for CPU devices
- Pipelined design processes 2 bits per cycle with early termination exit for minimum execution time

18.1.2 Block diagram

A generic block diagram of the processor core and platform for this class of ultra low-end microcontrollers is shown in Figure 18-1. The MMDVSQ module's location as a memory-mapped co-processor is highlighted.

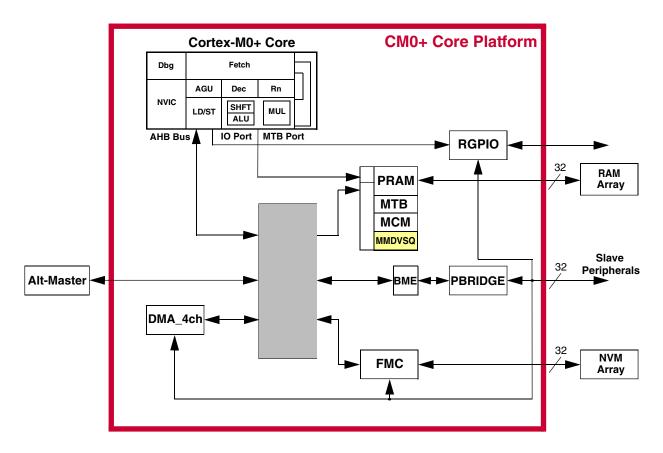


Figure 18-1. Generic Cortex-M0+ Core Platform Block Diagram

Next, a block diagram of the internal structure of the MMDVSQ module is presented. See Figure 18-2.

Chapter 18 Memory-Mapped Divide and Square Root (MMDVSQ)

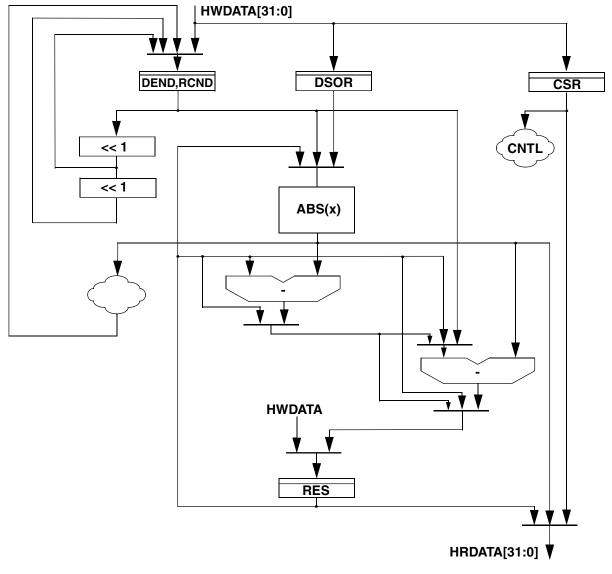


Figure 18-2. MMDVSQ Block Diagram

18.1.3 Modes of operation

The MMDVSQ module does not support any special modes of operation. As a memorymapped device located on a crossbar slave AHB system bus port, MMDVSQ responds based strictly on memory addresses to its programming model.

All functionality associated with the MMDVSQ module resides in the core platform's clock domain; this includes its connections with the crossbar slave port. To minimize power dissipation, the design supports an architectural clock gate for the entire module, that is, the MMDVSQ is only clocked when responding to bus requests to its programming model or is busy performing a calculation.

18.2 External signal description

The MMDVSQ module does not directly support any external interfaces.

The internal interface includes a standard 32-bit AHB bus as shown in Figure 18-1.

18.3 Memory map and register definition

The MMDVSQ module supports a small number of program-visible registers used for passing input operands and retrieving the output result plus a configuration/status register.

The programming model occupies the first 20 bytes of a standard 4 Kb address slot. It can only be accessed via word-sized (32 bit) accesses. Attempted accesses using smaller data sizes, reading the write-only location or to reserved space are terminated with an error.

At any instant in time, the MMDVSQ can perform either a divide or square root calculation. The basic integer operations supported by the MMDVSQ are:

For divide:

MMDVSQ_RES = quotient (MMDVSQ_DEND / MMDVSQ_DSOR)
MMDVSQ_RES = remainder (MMDVSQ_DEND % MMDVSQ_DSOR)

For square root:

MMDVSQ_RES = integer ($\sqrt{MMDVSQ_RCND}$)

The register usage, based on the operation (divide, square root), is detailed in Table 18-1.

Register	Divide	Square Root	Description
Dividend (MMDVSQ_DEND)	Yes	No	Input dividend (numerator) for the divide
Divisor (MMDVSQ_DSOR)	Yes	No	Input divisor (denominator) for the divide
Control/Status (MMDVSQ_CSR)	Yes	Yes	Control for divide, status for divide and square root
Result (MMDVSQ_RES)	Yes	Yes	Output result
Radicand (MMDVSQ_RCND)	No	Yes	Input "square" data

 Table 18-1.
 Register Usage = f(Divide, Square Root)

Chapter 18 Memory-Mapped Divide and Square Root (MMDVSQ)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
F000_4000	Dividend Register (MMDVSQ_DEND)	32	R/W	Undefined	18.3.1/299
F000_4004	Divisor Register (MMDVSQ_DSOR)	32	R/W	Undefined	18.3.2/299
F000_4008	Control/Status Register (MMDVSQ_CSR)	32	R/W	See section	18.3.3/301
F000_400C	Result Register (MMDVSQ_RES)	32	R/W	Undefined	18.3.4/304
F000_4010	Radicand Register (MMDVSQ_RCND)	32	W	Undefined	18.3.5/304

MMDVSQ memory map

18.3.1 Dividend Register (MMDVSQ_DEND)

This register is loaded with the input dividend operand before a divide operation is initiated. The register is updated by the MMDVSQ hardware during the execution of a divide or square root calculation. Any memory access (read or write) of the DEND register while the module is busy during a calculation causes the access to be stalled (using wait states) until the calculation completes.

Address: F000_4000h base + 0h offset = F000_4000h

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R W															D	IVIE	DEN	D														
Reset	x *	Х*	Х*	Х*	Х*	Х*	х*	x *	х*	x *	х*	х*	х*	x *	х*	x *	х*	X*														
* NI2	.+~~																															

* Notes:

• x = Undefined at reset.

MMDVSQ_DEND field descriptions

Field	Description
31–0 DIVIDEND	Dividend
	This is the input dividend operand for divide calculations.

18.3.2 Divisor Register (MMDVSQ_DSOR)

This register is loaded with the input divisor operand before a divide operation is initiated. If CSR[DFS] = 0, a write to this register initiates a divide operation. Any memory access (read or write) of the DSOR register while the module is busy during a calculation causes the access to be stalled (using wait states) until the calculation completes.

memory map and register definition

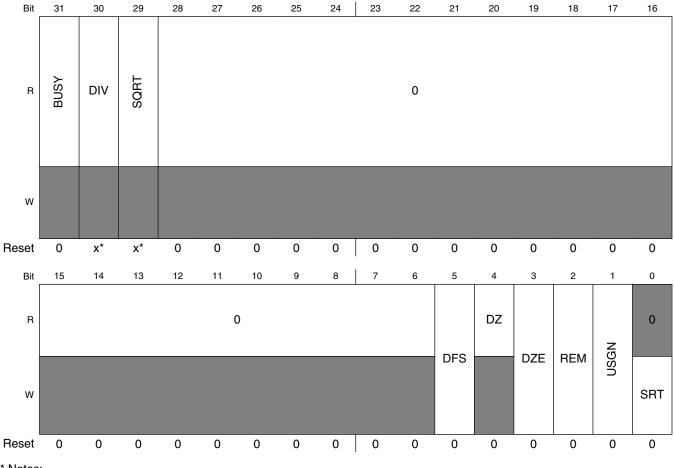
If a divide operation is initiated with DSOR = 0, the hardware signals a divide-by-zero condition and sets RES = 0 and CSR[DZ] = 1. If CSR[DZE] = 1, an attempted read of the RES result is error terminated.

Address: F000_4000h base + 4h offset = F000_4004h

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R															Г	יועור	SOF	5														
W															L		306	ר														
Reset	х*	x *	х*	x *	х*	x *	х*	x *	x *	х*	x*	х*	х*	х*	х*	Х*	x *	х*	x *	х*	х*	х*	х*	х*	х*	x *						

* Notes:

• x = Undefined at reset.


MMDVSQ_DSOR field descriptions

Field	Description
31–0 DIVISOR	Divisor
	This is the input divisor operand for divide calculations.

18.3.3 Control/Status Register (MMDVSQ_CSR)

This register defines the operating configuration of divide operations and provides status information. The upper 3 bits provide busy status indicators, while the low-order byte defines the configuration for divide operations. The read-only status bits in CSR[31:29] are valid for both divide and square root operations; the configuration and status bit in CSR[5:0] are only valid for divides. A memory write access of the CSR register while the module is busy during a calculation causes the access to be stalled (using wait states) until the calculation completes.

Address: F000_4000h base + 8h offset = F000_4008h

* Notes:

• x = Undefined at reset.

MMDVSQ_CSR field descriptions

Field	Description
31 BUSY	BUSY
	This read-only bit is asserted when the MMDVSQ is performing a divide or square root. When an operation is initiated, the hardware sets this flag. It remains asserted until the operation completes and the

Table continues on the next page ...

MMDVSQ_CSR field descriptions (continued)

Field	Description
	 hardware automatically clears the indicator. This bit can be used to poll the DVSQ's execution status. The combined CSR[BUSY, DIV, SQRT] indicators provide an encoded module status: If 0b001, then MMDVSQ is idle and the last calculation was a square root If 0b010, then MMDVSQ is idle and the last calculation was a divide If 0b101, then MMDVSQ is busy processing a square root calculation If 0b110, then MMDVSQ is busy processing a divide calculation
	The remaining encodings of CSR[BUSY, DIV, SQRT] are reserved.
	0 MMDVSQ is idle
	1 MMDVSQ is busy performing a divide or square root calculation
30 DIV	DIVIDE Current or last operation was a divide. This read-only indicator bit signals if the current or last operation
	performed by the MMDVSQ was a divide. The reset state of this indicator is set.
	0 Current or last MMDVSQ operation was not a divide
	1 Current or last MMDVSQ operation was a divide
29 SQRT	SQUARE ROOT
	Current or last operation was a square root. This read-only indicator bit signals if the current or last operation performed by the MMDVSQ was a square root. The reset state of this indicator is cleared.
	0 Current or last MMDVSQ operation was not a square root
	1 Current or last MMDVSQ operation was a square root
28–6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5	Disable Fast Start
DFS	The MMDVSQ supports 2 mechanisms for initiating a divide operation. The default mechanism is a "fast start" where a write to the DSOR register begins the divide. Alternatively, the start mechanism can begin after a write to the CSR register with CSR[SRT] set. The CSR[DFS] indicator selects the divide start mechanism.
	0 A divide operation is initiated by a write to the DSOR register
	1 A divide operation is initiated by a write to the CSR register with CSR[SRT] = 1
4 DZ	Divide-by-Zero
DZ	This read-only status indicator signals the last divide operation had a zero divisor, that is, DSOR = 0x0000_0000. For this case, RES is set to 0x0000_0000 and this indicator bit set. After a divide-by-zero operation, a read of the RES register returns either the zero result, or, if CSR[DZE] = 1, terminates the read with an error. The CSR[DZ] indicator is cleared by the hardware at the beginning of each operation.
	0 The last divide operation had a non-zero divisor, that is, DSOR != 0
	1 The last divide operation had a zero divisor, that is, DSOR = 0
3	Divide-by-Zero-Enable
DZE	This indicator configures the MMDVSQ's response to divide-by-zero calculations. If both CSR[DZ] and CSR[DZE] are set, then a subsequent read of the RES register is error terminated to signal the processor of the attempted divide-by-zero.

Table continues on the next page...

Chapter 18 Memory-Mapped Divide and Square Root (MMDVSQ)

MMDVSQ_CSR field descriptions (continued)

Field	Description
	0 Reads of the RES register return the register contents
	1 If CSR[DZ] = 1, an attempted read of RES register is error terminated to signal a divide-by-zero, else the register contents are returned
2 REM	REMainder calculation
	 This indicator selects whether the quotient or the remainder is returned in the RES register. The combined CSR[REM] and CSR[USGN] bits define four possible divide operations: If CSR[REM, USGN] = 0b00, perform a signed divide, returning the quotient If CSR[REM, USGN] = 0b01, perform an unsigned divide, returning the quotient If CSR[REM, USGN] = 0b10, perform a signed divide, returning the remainder If CSR[REM, USGN] = 0b11, perform an unsigned divide, returning the remainder Return the quotient in the RES for the divide calculation Return the remainder in the RES for the divide calculation
1 USGN	Unsigned calculation
	This indicator selects whether a signed (default) or unsigned divide is performed. See the CSR[REM] description for the encoding of the four possible divide operations.
	0 Perform a signed divide
	1 Perform an unsigned divide
0 SRT	Start
	When written with a logical one and CSR[DFS] = 1, this flag initiates a divide operation. If written as a logical one with CSR[DFS] = 0, it is ignored. This bit always reads as a zero. The state of the register write data defines this bit's function.
	0 No operation initiated
	1 If CSR[DFS] = 1, then initiate a divide calculation, else ignore

18.3.4 Result Register (MMDVSQ_RES)

This register is loaded with the result of the divide or square root calculation. It is updated by the MMDVSQ hardware at the completion of the calculation. When a square root operation is performed (on an unsigned 32-bit number), the result is limited to a 16-bit value with RES[31:16] = 0x0000. Any memory access (read or write) of the RES register while the module is busy during a calculation causes the access to be stalled (using wait states) until the calculation completes and the new result written into the register.

Address: F000_4000h base + Ch offset = F000_400Ch

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R W																RES	UL	Г														
Reset	х*	х*	х*	х*	х*	х*	Х*	х*	Х*	х*	х*	Х*	х*	х*	Х*	Х*	X*															

* Notes:

• x = Undefined at reset.

MMDVSQ_RES field descriptions

Field	Description
31–0 RESULT	Result
	This is the output result for a divide or square root calculation.

18.3.5 Radicand Register (MMDVSQ_RCND)

The write-only radicand register is loaded with the input "square" number. A memory write to this register initiates a square root calculation. A memory write access to the RCND register while the module is busy during a calculation causes the access to be stalled (using wait states) until the calculation completes. An attempted read of this register is error terminated.

Add	ress	s: F	000	_400	00h	bas	e +	10h	offs	et =	F0	20_4	401(Эh																		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R W															R	ADI	CAN	1D														
Reset	х*	Х*	Х*	Х*	Х*	х*	х*	Х*	х*	Х*	х*	х*	Х*	Х*	Х*	Х*	Х*	х*	Х*	х*	х*	х*	х*	х*	х*	х*	х*	Х*	Х*	х*	х*	Х*
* No	tes	:																														

• x = Undefined at reset.

Chapter 18 Memory-Mapped Divide and Square Root (MMDVSQ)

MMDVSQ_RCND field descriptions

Field	Description
31–0 RADICAND	Radicand
	This is the input radicand for a square root calculation, that is, the input "square" number.

18.4 Functional description

This section details the algorithms, execution times of the MMDVSQ, and the software interface to the module.

18.4.1 Algorithms

This section provides more details on the integer divide and square root algorithms.

18.4.1.1 Integer divide including special cases

18.4.1.1.1 Overview

The MMDVSQ module implements a "shift, test, and restore" radix-2 algorithm for unsigned integer divide operations. When performing a signed divide calculation, negative input operands are converted into 2's complement positive numbers first, an unsigned divide performed, and the sign of the results based on the input operand signs, namely:

- The sign of the remainder is the same as the sign of the dividend
- The quotient is negated if the signs of the dividend and divisor are different

The hardware implementation processes two bits per machine cycle and includes "early termination" logic where the execution time is data dependent, based on the magnitude of the positive dividend. See Table 18-10 for more execution time details.

18.4.1.1.2 Special case: Overflow

There is a single "special overflow case" affecting signed integer divides. If the dividend = $0x8000_0000$ and the divisor = $0xFFF_FFF$, the result of this ($-2^{31}/-1$) operation cannot be expressed as a 32-bit 2's complement number. For this case, the MMDVSQ exactly follows the ARM Cortex-Mx definition and returns $0x8000_0000$ (the lower 32 bits of the $+2^{31}$ result) as the quotient with no indication of the overflow condition. If the remainder is selected as the output of this calculation, it returns $0x0000_0000$.

18.4.1.1.3 Special case: Divide-by-Zero

For both signed and unsigned divides, if the divisor is zero, the MMDVSQ hardware detects this condition and the CSR[DZ] indicator set. The quotient result is forced to $0x0000_0000$. If the remainder is selected as the output of this calculation, it also returns $0x0000_0000$. Additionally, if CSR[DZE] = 1, then an attempted read of the Result register (RES) is error terminated to provide a simple mechanism to signal software of the divide-by-zero condition.

18.4.1.2 Integer square root

18.4.1.2.1 Overview

The unsigned square root algorithm begins by creating a 32-bit "one-hot" bit vector signaling the highest power of four of the contents of the Radicand register (RCND). It then iterates through an algorithm involving magnitude comparisons of the RCND register versus the working result plus bit vector summation, conditional decrementing of the radicand, a 1-bit right shift of the result, and a 2-bit right shift of the one-hot bit vector.

Processing two bits of the radicand per cycle, the result register finishes with the integer portion of the square root calculation. The module includes early termination logic so that the execution time is data dependent, based on the magnitude of the input radicand. See Table 18-11 for more execution time details. Since both algorithms share common hardware structures, the incremental cost of the square root logic is an extremely small delta to the basic divide hardware.

The square root algorithm was exhaustively compared (that is, all 2³² possible input values) against the standard GNU C library implementation, which converts the unsigned integer input into a double-precision floating-point number, calculates the double-precision square root and then converts it back into an unsigned integer. Each input value calculated identical square root results.

18.4.1.2.2 Square root using Q notation

Consider the use of Q notation for square root calculations returning fractional values. The following description is taken from http://en.wikipedia.org/wiki/Q_(number_format).

Q is a fixed point number format where the number of fractional bits (and optionally the number of integer bits) is specified. For example, a Q15 number has 15 fractional bits; a Q1.14 number has 1 integer bit and 14 fractional bits. Q format is often used in hardware that does not have a floating-point unit and in applications that require constant resolution.

Q format numbers are (notionally) fixed point numbers (but not actually a number itself); that is, they are stored and operated upon as regular binary numbers (i.e. signed integers), thus allowing standard integer hardware/ALU to perform rational number calculations. The number of integer bits, fractional bits and the underlying word size are to be chosen by the programmer on an application-specific basis - the programmer's choices of the foregoing will depend on the range and resolution needed for the numbers. The machine itself remains oblivious to the notional fixed point representation being employed - it merely performs integer arithmetic the way it knows how. Ensuring that the computational results are valid in the *Q* format representation is the responsibility of the programmer.

The Q notation is written as Qm.n, where:

- Q designates that the number is in the Q format notation the Texas Instruments representation for signed fixed-point numbers (the "Q" being reminiscent of the standard symbol for the set of rational numbers).
- *m* is the number of bits set aside to designate the two's complement integer portion of the number, exclusive of the sign bit (therefore if m is not specified it is taken as zero).
- *n* is the number of bits used to designate the fractional portion of the number, i.e. the number of bits to the right of the binary point. (If n = 0, the Q numbers are integers the degenerate case).

Note that the most significant bit is always designated as the sign bit (the number is stored as a two's complement number) in order to allow standard arithmetic-logic hardware to manipulate Q numbers. Representing a signed fixed-point data type in Q format therefore always requires m+n+1 bits to account for the sign bit. Hence the smallest machine word size required to accommodate a Qm.n number is m+n+1, with the Q number left justified in the machine word.

For a given Qm.n format, using an m+n+1 bit signed integer container with n fractional bits:

- *its range is* [-2^{*m*}, 2^{*m*} 2^{-*n*}]
- its resolution is 2^{-n}

meyer square root

For the unsigned integer format used in the MMDVSQ's square root calculation, an u(nsigned)Qm.n notation requires m+n bits (m+n = 32) for the input radicand. An uQm.n format produces an uQ(m/2).(n/2) square root. As examples, consider the following tables involving the square root of 2 and square root of "pi" calculations. As expected, as the number of fractional bits (n) increases, the error between the calculated square root and the "actual" result decreases.

RCND [Hex]	RCND Q format	Results [Hex]	RES Q Format	Decimal	% Error
0x0000_0002	uQ32.00	0x0000_0001	uQ16.00	1.0	-29.289%
0x0002_0000	uQ16.16	0x0000_016A	uQ08.08	1.4140625	-0.011%
0x0200_0000	uQ08.24	0x0000_16A0	uQ04.12	1.4140625	-0.011%
0x2000_0000	uQ04.28	0x0000_5A82	uQ02.14	1.4141845703	-0.002%
0x8000_0000	uQ02.30	0x0000_B504	uQ01.15	1.4141845703	-0.002%

Table 18-8. Square Root of 2 Calculations ($\sqrt{2} = 1.4142135623$)

Table 18-9. Square Root of Pi Calculations ($\sqrt{Pi} = 1.7724538509$)

RCND [Hex]	RCND Q format	Results [Hex]	RES Q Format	Decimal	% Error
0x0000_0003	uQ32.0	0x0000_0001	uQ16.00	1.0	-43.581%
0x0003_243F	uQ16.16	0x0000_01C5	uQ08.08	1.76953125	-0.165%
0x0324_3F6A	uQ08.24	0x0000_1C5B	uQ04.12	1.772216769	-0.013%
0x3243_F6A8	uQ04.28	0x0000_716F	uQ02.14	1.7723999023	-0.003%
0xC90F_DAA0	uQ02.30	0x0000_E2DF	uQ01.15	1.7724304199	-0.001%

The application of the Q notation for square root calculations provides a powerful extension for these types of fractional numeric computations using fixed-point integer processing hardware.

18.4.2 Execution times

The MMDVSQ module includes early termination logic to finish both divide and square root calculations as quickly as possible, based on the magnitude of the input operand. Accordingly, the execution time for the calculations is data dependent as defined in Table 18-10 and Table 18-11. In this context, the execution time is defined from the register write to initiate the calculation until the result register has been updated and available to read. Stated differently, it represents the time CSR[BUSY] is asserted for a given calculation. In the following two tables, "x" signals a bit with a don't care value.

Chapter 18 Memory-Mapped Divide and Square Root (MMDVSQ)

CSR[USGN] ? DEND[31:0] // unsigned divide : abs(DEND[31:0]) // signed divide	Execution Time with CSR[BUSY] = 1 [cycles]
(01,1x)xx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xx	17
00(01,1x)_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx	16
0000_(01,1x)xx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx	15
0000_00(01,1x)_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx	14
0000_0000_(01,1x)xx_xxxxxxxx_xxxx_xxxx	13
0000_0000_00(01,1x)_xxxxxxxx_xxxx_xxxx_xxxx	12
0000_0000_0000_(01,1x)xxxxxx_xxxx_xxxx_xxxx	11
0000_0000_0000_00(01,1x)xxxx_xxxx_xxxx_xxxx	10
0000_0000_0000_(01,1x)xx_xxxx_xxxx_xxxx	9
0000_0000_0000_0000_00(01,1x)_xxxx_xxxx_xxxx	8
0000_0000_0000_0000_0000_(01,1x)xx_xxxx_xxxx	7
0000_0000_0000_0000_0000(01,1x)_xxxx_xxxx	6
0000_0000_0000_0000_0000_(01,1x)xx_xxxx	5
0000_0000_0000_0000_0000_0000_00(01,1x)_xxxx	4
0000_0000_0000_0000_0000_0000_001,1x)xx	3
0000_0000_0000_0000_0000_0000_0000(01,1x)	2
0000_0000_0000_0000_0000_0000_0000	1

Table 18-10. Divide Execution Times

Table 18-11. Square Root Execution Times

RCND[31:0]	Execution Time with CSR[BUSY] = 1 [cycles]
(01,1x)xx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xx	17
00(01,1x)_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx	16
0000_(01,1x)xx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx	15
0000_00(01,1x)_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx	14
0000_0000_(01,1x)xx_xxxx_xxxx_xxxx_xxxx_xxxx	13
0000_0000_00(01,1x)_xxxxxxxx_xxxx_xxxx_xxxx	12
0000_0000_0000_(01,1x)xxxxxx_xxxx_xxxx_xxxx	11
0000_0000_0000_00(01,1x)xxxx_xxxx_xxxx_xxxx	10
0000_0000_0000_(01,1x)xx_xxxx_xxxx_xxxx	9
0000_0000_0000_0000_00(01,1x)_xxxx_xxxx_xxxx	8
0000_0000_0000_0000_0000_(01,1x)xx_xxxx_xxxx	7
0000_0000_0000_0000_0000(01,1x)_xxxx_xxxx	6
0000_0000_0000_0000_0000_(01,1x)xx_xxx	5
0000_0000_0000_0000_0000_00(01,1x)_xxxx	4
0000_0000_0000_0000_0000_0000_0000_(01,1x)xx	3
0000_0000_0000_0000_0000_0000_0000(01,1x)	2
0000_0000_0000_0000_0000_0000_0000	2

18.4.3 Software interface

The programming model of the MMDVSQ is organized to be similar to the input arguments passed to software libraries for integer divide and square root functions.

18.4.3.1 Operation activation and result retrieval

The MMDVSQ supports 2 mechanisms for initiating a divide operation:

- The default mechanism is a "fast start" where a write to the DSOR register begins the divide.
- Alternatively, the start mechanism can begin after a write to the CSR register with the CSR[SRT] set.

The CSR[DFS] indicator selects the divide start mechanism.

```
if CSR[DFS] = 0
    then a divide is initiated by a write to the DSOR register
    else a divide is initiated by a write to the CSR register with CSR[SRT] = 1
```

A square root calculation is initiated by a write to the RCND register.

For both divide and square root calculations, the result of the operation is retrieved by reading the RES register. A memory read of this register while the calculation is still being performed causes the access to be stalled via the insertion of bus wait states until the new result is loaded into the register. Note a stalled bus cycle cannot be interrupted, so if system interrupt latency is a concern, the processor should execute a simple wait loop, for example, polling CSR[BUSY], before reading the RES register. This code construct is fully interruptible, so interrupt latency is minimized.

18.4.3.2 Context save and restore

Given that multiple memory-mapped register accesses are needed for each divide and square root calculation, interrupts may occur during the required sequence of operations. As a result, the MMDVSQ's programming model can be saved at entry to an interrupt service routine (ISR) and then restored when redispatching to the interrupted task.

The module's context can be saved by reading the DEND, DSOR, CSR, and RES registers and storing them as part of the task state. There is one special consideration for the task state save. If the last calculation was a zero divide and the divide-by-zero enable is set (CSR[DZE] = 1), then a read of the RES register is error terminated. To avoid a zero-divide error termination during a context save, the following sequence can be used:

1. Read DEND, DSOR, and CSR registers and save the values as part of the task state.

- 2. Clear CSR[DZE].
- 3. Read the RES register and save its value as part of the task state.

When restoring the context, special care must be taken to not initiate another divide calculation. Specifically, CSR[DFS] must be set first before reloading the DEND and DSOR registers. For example, the following sequence can be used for the context reload:

- 1. Write 0x0000_0020 to the CSR to disable the fast start mechanism.
- 2. Reload DEND, DSOR, CSR, and RES registers from the saved state.

Since the original context save of the control/status register is guaranteed to have CSR[SRT] = 0, there is no divide operation initiated when this register is reloaded in step 2.

Chapter 19 Miscellaneous Control Module (MCM)

19.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The Miscellaneous Control Module (MCM) provides a myriad of miscellaneous control functions.

19.1.1 Features

The MCM includes the following features:

- Program-visible information on the platform configuration
- Flash controller speculation buffer and cache configurations

19.2 Memory map/register descriptions

The memory map and register descriptions found here describe the registers using byte addresses. The registers can be written only when in supervisor mode.

MCM memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
F000_3008	Crossbar Switch (AXBS) Slave Configuration (MCM_PLASC)	16	R	0007h	19.2.1/314
F000_300A	Crossbar Switch (AXBS) Master Configuration (MCM_PLAMC)	16	R	0005h	19.2.2/314

Table continues on the next page...

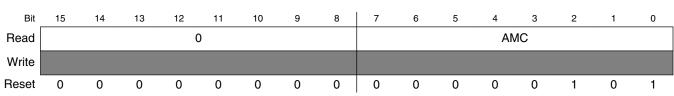

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
F000_300C	Platform Control Register (MCM_PLACR)	32	R/W	0000_0000h	19.2.3/315
F000_3040	Compute Operation Control Register (MCM_CPO) 32 R/W 0000_0000h 19.2		19.2.4/318		

MCM memory map (continued)

19.2.1 Crossbar Switch (AXBS) Slave Configuration (MCM_PLASC)

PLASC is a 16-bit read-only register identifying the presence/absence of bus slave connections to the device's crossbar switch.

Address: F000_3000h base + 8h offset = F000_3008h



MCM_PLASC field descriptions

Field	Description
15–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7–0 ASC	Each bit in the ASC field indicates whether there is a corresponding connection to the crossbar switch's slave input port.
	 A bus slave connection to AXBS input port <i>n</i> is absent. A bus slave connection to AXBS input port <i>n</i> is present.

19.2.2 Crossbar Switch (AXBS) Master Configuration (MCM_PLAMC)

PLAMC is a 16-bit read-only register identifying the presence/absence of bus master connections to the device's crossbar switch.

Address: F000_3000h base + Ah offset = F000_300Ah

MCM_PLAMC field descriptions

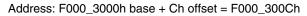
Field	Description	
15–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.	
7–0 AMC	Each bit in the AMC field indicates whether there is a corresponding connection to the AXBS master input port.	
	 A bus master connection to AXBS input port <i>n</i> is absent A bus master connection to AXBS input port <i>n</i> is present 	

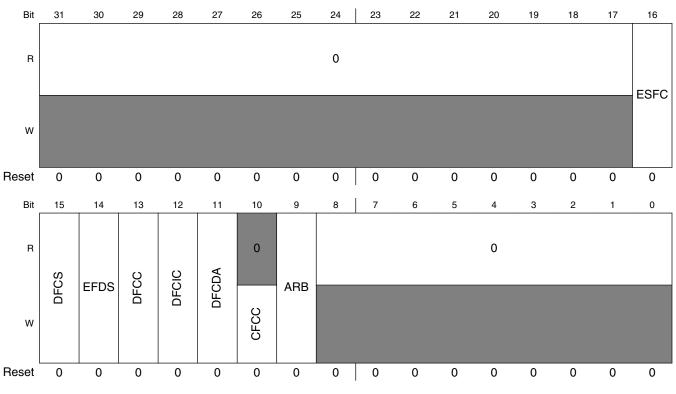
19.2.3 Platform Control Register (MCM_PLACR)

The PLACR register selects the arbitration policy for the crossbar masters and configures the flash memory controller.

The speculation buffer and cache in the flash memory controller is configurable via PLACR[15:10].

The speculation buffer is enabled only for instructions after reset. It is possible to have these states for the speculation buffer:


DFCS	EFDS	Description
0	0	Speculation buffer is on for instruction and off for data.
0	1	Speculation buffer is on for instruction and on for data.
1	X	Speculation buffer is off.


The cache in flash controller is enabled and caching both instruction and data type fetches after reset. It is possible to have these states for the cache:

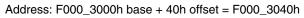
DFCC	DFCIC	DFCDA	Description
0	0	0	Cache is on for both instruction and data.
0	0	1	Cache is on for instruction and off for data.
0	1	0	Cache is off for instruction and on for data.
0	1	1	Cache is off for both instruction and data.
1	X	X	Cache is off.

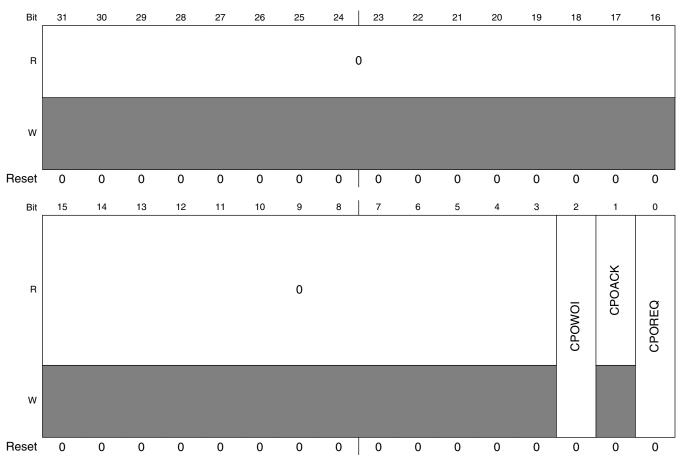
wemory map/register descriptions

MCM_PLACR field descriptions

Field	Description	
31–17 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.	
16 ESFC	Enable Stalling Flash Controller	
2010	Enables stalling flash controller when flash is busy.	
	When software needs to access the flash memory while a flash memory resource is being manipulated by a flash command, software can enable a stall mechanism to avoid a read collision. The stall mechanism allows software to execute code from the same block on which flash operations are being performed. However, software must ensure the sector the flash operations are being performed on is not the same sector from which the code is executing.	
	ESFC enables the stall mechanism. This bit must be set only just before the flash operation is executed and must be cleared when the operation completes.	
	0 Disable stalling flash controller when flash is busy.	
	1 Enable stalling flash controller when flash is busy.	
15 DFCS	Disable Flash Controller Speculation	
5100	Disables flash controller speculation.	
	0 Enable flash controller speculation.	
	1 Disable flash controller speculation.	
14 EFDS	Enable Flash Data Speculation	
	Enables flash data speculation.	

Table continues on the next page ...




MCM_PLACR field descriptions (continued)

Field	Description	
	0 Disable flash data speculation.	
	1 Enable flash data speculation.	
13 DFCC	Disable Flash Controller Cache	
	Disables flash controller cache.	
	0 Enable flash controller cache.	
	1 Disable flash controller cache.	
12 DFCIC	Disable Flash Controller Instruction Caching	
	Disables flash controller instruction caching.	
	0 Enable flash controller instruction caching.	
	1 Disable flash controller instruction caching.	
11 DFCDA	Disable Flash Controller Data Caching	
	Disables flash controller data caching.	
	0 Enable flash controller data caching	
	1 Disable flash controller data caching.	
10	Clear Flash Controller Cache	
CFCC	Writing a 1 to this field clears the cache. Writing a 0 to this field is ignored. This field always reads as 0.	
9 ARB	Arbitration select	
	0 Fixed-priority arbitration for the crossbar masters	
	1 Round-robin arbitration for the crossbar masters	
8–0	This field is reserved.	
Reserved	This read-only field is reserved and always has the value 0.	

19.2.4 Compute Operation Control Register (MCM_CPO)

This register controls the Compute Operation.

MCM_CPO field descriptions

Field	Description		
31–3	This field is reserved.		
Reserved	This read-only field is reserved and always has the value 0.		
2 CPOWOI	Compute Operation Wake-up on Interrupt		
	0 No effect.		
	1 When set, the CPOREQ is cleared on any interrupt or exception vector fetch.		
1 CPOACK	Compute Operation Acknowledge		
	0 Compute operation entry has not completed or compute operation exit has completed.		
	1 Compute operation entry has completed or compute operation exit has not completed.		
0 CPOREQ	Compute Operation Request		
0. 0. iLu	This bit is auto-cleared by vector fetching if CPOWOI = 1.		

Table continues on the next page ...

Chapter 19 Miscellaneous Control Module (MCM)

MCM_CPO field descriptions (continued)

Field	Description	
	0 Request is cleared.	
	1 Request Compute Operation.	

wemory map/register descriptions

Chapter 20 Micro Trace Buffer (MTB)

20.1 Introduction

Microcontrollers using the Cortex-M0+ processor core include support for a CoreSight Micro Trace Buffer to provide program trace capabilities.

The proper name for this function is the CoreSight Micro Trace Buffer for the Cortex-M0+ Processor; in this document, it is simply abbreviated as the MTB.

The simple program trace function creates instruction address change-of-flow data packets in a user-defined region of the system RAM. Accordingly, the system RAM controller manages requests from two sources:

- AMBA-AHB reads and writes from the system bus
- program trace packet writes from the processor

As part of the MTB functionality, there is a DWT (Data Watchpoint and Trace) module that allows the user to define watchpoint addresses, or optionally, an address and data value, that when triggered, can be used to start or stop the program trace recording.

This document details the functionality of both the MTB_RAM and MTB_DWT capabilities.

20.1.1 Overview

A generic block diagram of the processor core and platform for this class of ultra low-end microcontrollers is shown as follows:

As shown in the block diagram, the platform RAM (PRAM) controller connects to two input buses:

- the crossbar slave port for system bus accesses
- a "private execution MTB port" from the core

muroduction

The logical paths from the crossbar master input ports to the PRAM controller are highlighted along with the private execution trace port from the processor core. The private MTB port signals the instruction address information needed for the 64-bit program trace packets written into the system RAM. The PRAM controller output interfaces to the attached RAM array. In this document, the PRAM controller is the MTB_RAM controller.

The following information is taken from the ARM CoreSight Micro Trace Buffer documentation.

"The execution trace packet consists of a pair of 32-bit words that the MTB generates when it detects the processor PC value changes non-sequentially. A non-sequential PC change can occur during branch instructions or during exception entry.

The processor can cause a trace packet to be generated for any instruction.

The following figure shows how the execution trace information is stored in memory as a sequence of packets.

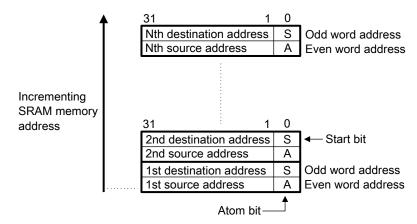


Figure 20-1. MTB execution trace storage format

The first, lower addressed, word contains the source of the branch, the address it branched from. The value stored only records bits[31:1] of the source address, because Thumb instructions are at least halfword aligned. The least significant bit of the value is the A-bit. The A-bit indicates the atomic state of the processor at the time of the branch, and can differentiate whether the branch originated from an instruction in a program, an exception, or a PC update in Debug state. When it is zero the branch originated from an instruction, when it is one the branch originated from an exception or PC update in Debug state. This word is always stored at an even word location.

The second, higher addressed word contains the destination of the branch, the address it branched to. The value stored only records bits[31:1] of the branch address. The least significant bit of the value is the S-bit. The S-bit indicates where the trace started. An S-bit value of 1 indicates where the first packet after the trace started and a value of 0 is

used for other packets. Because it is possible to start and stop tracing multiple times in a trace session, the memory might contain several packets with the S-bit set to 1. This word is always stored in the next higher word in memory, an odd word address.

When the A-bit is set to 1, the source address field contains the architecturally-preferred return address for the exception. For example, if an exception was caused by an SVC instruction, then the source address field contains the address of the following instruction. This is different from the case where the A-bit is set to 0. In this case, the source address contains the address of the branch instruction.

For an exception return operation, two packets are generated:

- The first packet has the:
 - Source address field set to the address of the instruction that causes the exception return, BX or POP.
 - Destination address field set to bits[31:1] of the EXC_RETURN value. See the ARM v6-M Architecture Reference Manual.
 - The A-bit set to 0.
- The second packet has the:
 - Source address field set to bits[31:1] of the EXC_RETURN value.
 - Destination address field set to the address of the instruction where execution commences.
 - A-bit set to 1."

Given the recorded change-of-flow trace packets in system RAM and the memory image of the application, a debugger can read out the data and create an instruction-by-instruction program trace. In keeping with the low area and power implementation cost design targets, the MTB trace format is less efficient than other CoreSight trace modules, for example, the ETM (Embedded Trace Macrocell). Since each branch packet is 8 bytes in size, a 1 KB block of system RAM can contain 128 branches. Using the Dhrystone 2.1 benchmark's dynamic runtime as an example, this corresponds to about 875 instructions per KB of trace RAM, or with a zero wait state memory, this corresponds to approximately 1600 processor cycles per KB. This metric is obviously very sensitive to the runtime characteristics of the user code.

The MTB_DWT function (not shown in the core platform block diagram) monitors the processor address and data buses so that configurable watchpoints can be detected to trigger the appropriate response in the MTB recording.

20.1.2 Features

The key features of the MTB_RAM and MTB_DWT include:

External signal description

- Memory controller for system RAM and Micro Trace Buffer for program trace packets
- Read/write capabilities for system RAM accesses, write-only for program trace packets
- Supports zero wait state response to system bus accesses when no trace data is being written
- Can buffer two AHB address phases and one data write for system RAM accesses
- Supports 64-bit program trace packets including source and destination instruction addresses
- Program trace information in RAM available to MCU's application code or external debugger
- Program trace watchpoint configuration accessible by MCU's application code or debugger
- Location and size of RAM trace buffer is configured by software
- Two DWT comparators (addresses or address + data) provide programmable start/ stop recording
- CoreSight compliant debug functionality

20.1.3 Modes of operation

The MTB_RAM and MTB_DWT functions do not support any special modes of operation. The MTB_RAM controller, as a memory-mapped device located on the platform's slave AHB system bus, responds strictly on the basis of memory addresses for accesses to its attached RAM array. The MTB private execution bus provides program trace packet write information to the RAM controller. Both the MTB_RAM and MTB_DWT modules are memory-mapped, so their programming models can be accessed.

All functionality associated with the MTB_RAM and MTB_DWT modules resides in the core platform's clock domain; this includes its connections with the RAM array.

20.2 External signal description

The MTB_RAM and MTB_DWT modules do not directly support any external interfaces.

The internal interface includes a standard AHB bus with a 32-bit datapath width from the appropriate crossbar slave port plus the private execution trace bus from the processor core. The signals in the private execution trace bus are detailed in the following table taken from the ARM CoreSight Micro Trace Buffer documentation. The signal direction is defined as viewed by the MTB_RAM controller.

Signal	Direction	Description
LOCKUP	Input	Indicates the processor is in the Lockup state. This signal is driven LOW for cycles when the processor is executing normally and driven HIGH for every cycle the processor is waiting in the Lockup state. This signal is valid on every cycle.
IAESEQ	Input	Indicates the next instruction address in execute, IAEX, is sequential, that is non- branching.
IAEXEN	Input	IAEX register enable.
IAEX[30:0]	Input	Registered address of the instruction in the execution stage, shifted right by one bit, that is, PC >> 1.
ATOMIC	Input	Indicates the processor is performing non-instruction related activities.
EDBGRQ	Output	Request for the processor to enter the Debug state, if enabled, and halt.

Table 20-1. Private execution trace port from the core to MTB_RAM

In addition, there are two signals formed by the MTB_DWT module and driven to the MTB_RAM controller: TSTART (trace start) and TSTOP (trace stop). These signals can be configured using the trace watchpoints to define programmable addresses and data values to affect the program trace recording state.

20.3 Memory map and register definition

The MTB_RAM and MTB_DWT modules each support a sparsely-populated 4 KB address space for their programming models. For each address space, there are a variety of control and configurable registers near the base address, followed by a large unused address space and finally a set of CoreSight registers to support dynamic determination of the debug configuration for the device.

Accesses to the programming model follow standard ARM conventions. Taken from the ARM CoreSight Micro Trace Buffer documentation, these are:

- Do not attempt to access reserved or unused address locations. Attempting to access these locations can result in UNPREDICTABLE behavior.
- The behavior of the MTB is UNPREDICTABLE if the registers with UNKNOWN reset values are not programmed prior to enabling trace.
- Unless otherwise stated in the accompanying text:
 - Do not modify reserved register bits
 - Ignore reserved register bits on reads

memory map and register definition

- All register bits are reset to a logic 0 by a system or power-on reset
- Use only word size, 32-bit, transactions to access all registers

20.3.1 MTB_RAM Memory Map

MTB memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
F000_0000	MTB Position Register (MTB_POSITION)	32	R/W	Undefined	20.31.1/327
F000_0004	MTB Master Register (MTB_MASTER)	32	R/W	See section	20.31.2/329
F000_0008	MTB Flow Register (MTB_FLOW)	32	R/W	Undefined	20.31.3/330
F000_000C	MTB Base Register (MTB_BASE)	32	R	Undefined	20.31.4/332
F000_0F00	Integration Mode Control Register (MTB_MODECTRL)	32	R	0000_0000h	20.31.5/333
F000_0FA0	Claim TAG Set Register (MTB_TAGSET)	32	R	0000_0000h	20.31.6/333
F000_0FA4	Claim TAG Clear Register (MTB_TAGCLEAR)	32	R	0000_0000h	20.31.7/334
F000_0FB0	Lock Access Register (MTB_LOCKACCESS)	32	R	0000_0000h	20.31.8/334
F000_0FB4	Lock Status Register (MTB_LOCKSTAT)	32	R	0000_0000h	20.31.9/335
F000_0FB8	Authentication Status Register (MTB_AUTHSTAT)	32	R	0000_0000h	20.31.10/ 335
F000_0FBC	Device Architecture Register (MTB_DEVICEARCH)	32	R	4770_0A31h	20.31.11/ 336
F000_0FC8	Device Configuration Register (MTB_DEVICECFG)	32	R	0000_0000h	20.31.12/ 337
F000_0FCC	Device Type Identifier Register (MTB_DEVICETYPID)	32	R	0000_0031h	20.31.13/ 337
F000_0FD0	Peripheral ID Register (MTB_PERIPHID4)	32	R	See section	20.31.14/ 338
F000_0FD4	Peripheral ID Register (MTB_PERIPHID5)	32	R	See section	20.31.14/ 338
F000_0FD8	Peripheral ID Register (MTB_PERIPHID6)	32	R	See section	20.31.14/ 338
F000_0FDC	Peripheral ID Register (MTB_PERIPHID7)	32	R	See section	20.31.14/ 338
F000_0FE0	Peripheral ID Register (MTB_PERIPHID0)	32	R	See section	20.31.14/ 338
F000_0FE4	Peripheral ID Register (MTB_PERIPHID1)	32	R	See section	20.31.14/ 338
F000_0FE8	Peripheral ID Register (MTB_PERIPHID2)	32	R	See section	20.31.14/ 338
F000_0FEC	Peripheral ID Register (MTB_PERIPHID3)	32	R	See section	20.31.14/ 338
F000_0FF0	Component ID Register (MTB_COMPID0)	32	R	See section	20.31.15/ 338

Table continues on the next page ...

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
F000_0FF4	Component ID Register (MTB_COMPID1)	32	R	See section	20.31.15/ 338
F000_0FF8	Component ID Register (MTB_COMPID2)	32	R	See section	20.31.15/ 338
F000_0FFC	Component ID Register (MTB_COMPID3)	32	R	See section	20.31.15/ 338

MTB memory map (continued)

20.31.1 MTB Position Register (MTB_POSITION)

The MTB_POSITION register contains the Trace Write Address Pointer and Wrap fields. This register can be modified by the explicit programming model writes. It is also automatically updated by the MTB hardware when trace packets are being recorded.

The base address of the system RAM in the memory map dictates special consideration for the placement of the MTB. Consider the following guidelines:

For the standard configuration where the size of the MTB is $\leq 25\%$ of the total RAM capacity, it is recommended the MTB be based at the address defined by the MTB_BASE register. The read-only MTB_BASE register is defined by the expression (0x2000_0000 - (RAM_Size/4)). For this configuration, the MTB_POSITION register is initialized to MTB_BASE & 0x0000_7FF8.

If the size of the MTB is more than 25% but less than or equal to 50% of the total RAM capacity, it is recommended the MTB be based at address $0x2000_0000$. In this configuration, the MTB_POSITION register is initialized to $(0x2000_0000 \& 0x0000_7FF8) = 0x0000_00000$.

Following these two suggested placements provides a full-featured circular memory buffer containing program trace packets.

In the unlikely event an even larger trace buffer is required, a write-once capacity of 75% of the total RAM capacity can be based at address $0x2000_0000$. The MTB_POSITION register is initialized to $(0x2000_0000 \& 0x0000_7FF8) = 0x0000_0000$. However, this configuration cannot support operation as a circular queue and instead requires the use of the MTB_FLOW[WATERMARK] capability to automatically disable tracing or halting the processor as the number of packet writes approach the buffer capacity. See the MTB_FLOW register description for more details.

memory map and register definition

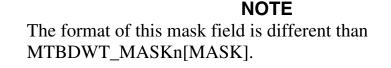
Address: F000_0000h base + 0h offset = F000_0000h Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R POINTER W х* **x*** х* х* Reset х* Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 R WRAP POINTER W **x*** Reset **x*** х* х* х* х* х* х* \mathbf{X}^{\star} х* х* х* \mathbf{X}^{\star} х* 0 0

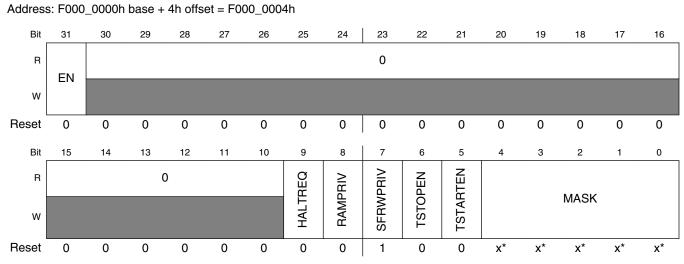
* Notes:

• x = Undefined at reset.

Field	Description									
31–3 POINTER	Trace Packet Address Pointer[28:0]									
FOINTER	Because a packet consists of two words, the POINTER field is the address of the first word of a packet. This field contains bits[31:3] of the RAM address where the next trace packet is written. Therefore, it points to an unused location and is automatically incremented.									
	A debug agent can calculate the system memory map address for the current location in the MTB using the following "generic" equation:									
	Given mtb_size = 1 << (MTB_MASTER[MASK] + 4),									
	systemAddress = MTB_BASE + (((MTB_POSITION & 0xFFFF_FF8) + (mtb_size - (MTB_BASE & (mtb_size-1)))) & 0x0000_7FF8);									
	or this device, a simpler expression also applies. See the following pseudo-code:									
	if ((MTB_POSITION >> 13) == 0x3) systemAddress = (0x1FFF << 16) + (0x1 << 15) + (MTB_POSITION & 0x7FF8); else systemAddress = (0x2000 << 16) + (0x0 << 15) + (MTB_POSITION & 0x7FF8);									
	NOTE: The size of the RAM is parameterized and the most significant bits of the POINTER field are RAZ/WI.									
	For these devices, POSITION[31:15] == POSITION[POINTER[28:12]] are RAZ/WI. Therefore, the active bits in this field are POSITION[14:3] == POSITION[POINTER[11:0]].									
2	WRAP									
WRAP	This field is set to 1 automatically when the POINTER value wraps as determined by the MTB_MASTER[MASK] field in the MASTER Trace Control Register. A debug agent might use the WRAP field to determine whether the trace information above and below the pointer address is valid.									
1–0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.									

MTB_POSITION field descriptions




20.31.2 MTB Master Register (MTB_MASTER)

The MTB_MASTER register contains the main program trace enable plus other trace controls. This register can be modified by the explicit programming model writes. MTB_MASTER[EN] and MTB_MASTER[HALTREQ] fields are also automatically updated by the MTB hardware.

Before MTB_MASTER[EN] or MTB_MASTER[TSTARTEN] are set to 1, the software must initialize the MTB_POSITION and MTB_FLOW registers.

If MTB_FLOW[WATERMARK] is used to stop tracing or to halt the processor, MTB_MASTER[MASK] must still be set to a value that prevents MTB_POSITION[POINTER] from wrapping before it reaches the MTB_FLOW[WATERMARK] value.

* Notes:

• x = Undefined at reset.

MTB_MASTER field descriptions

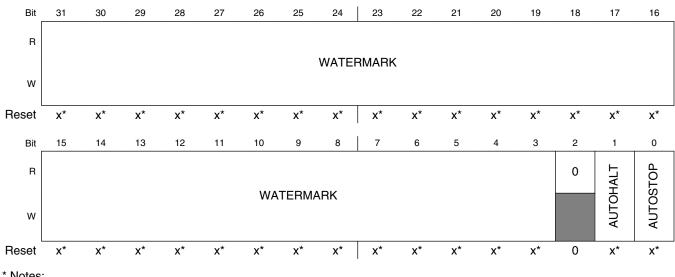
Field	Description
31 EN	Main Trace Enable When this field is 1, trace data is written into the RAM memory location addressed by MTB_POSITION[POINTER]. The MTB_POSITION[POINTER] value auto increments after the trace data packet is written.
	EN can be automatically set to 0 using the MTB_FLOW[WATERMARK] field and the MTB_FLOW[AUTOSTOP] bit.
	Table continues on the next page

MTB_MASTER field descriptions (continued)

Field	Description
	EN is automatically set to 1 if TSTARTEN is 1 and the TSTART signal is HIGH.
	EN is automatically set to 0 if TSTOPEN is 1 and the TSTOP signal is HIGH.
	NOTE: If EN is set to 0 because MTB_FLOW[WATERMARK] is set, then it is not automatically set to 1 if TSTARTEN is 1 and the TSTART input is HIGH. In this case, tracing can only be restarted if MTB_FLOW[WATERMARK] or MTB_POSITION[POINTER] value is changed by software.
30–10 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
9 HALTREQ	Halt Request
HALINEQ	This field is connected to the halt request signal of the trace logic, EDBGRQ. When HALTREQ is set to 1, the EDBFGRQ is asserted if DBGEN (invasive debug enable, one of the debug authentication interface signals) is also HIGH. HALTREQ can be automatically set to 1 using MTB_FLOW[WATERMARK].
8 RAMPRIV	RAM Privilege
	If this field is 0, then user or privileged AHB read and write accesses to the RAM are permitted. If this field is 1, then only privileged AHB read and write accesses to the RAM are permitted and user accesses are RAZ/WI. The HPROT[1] signal determines if an access is a user or privileged mode reference.
7 SFRWPRIV	Special Function Register Write Privilege
SERVERIV	If this field is 0, then user or privileged AHB read and write accesses to the MTB_RAM Special Function Registers (programming model) are permitted. If this field is 1, then only privileged write accesses are permitted; user write accesses are ignored. The HPROT[1] signal determines if an access is user or privileged. Note MTB_RAM SFR read access are not controlled by this bit and are always permitted.
6	Trace Stop Input Enable
TSTOPEN	If this field is 1 and the TSTOP signal is HIGH, then EN is set to 0. If a trace packet is being written to memory, the write is completed before tracing is stopped.
5	Trace Start Input Enable
TSTARTEN	If this field is 1 and the TSTART signal is HIGH, then EN is set to 1. Tracing continues until a stop condition occurs.
4-0	Mask
MASK	This value determines the maximum size of the trace buffer in RAM. It specifies the most-significant bit of the MTB_POSITION[POINTER] field that can be updated by automatic increment. If the trace tries to advance past this power of 2, the MTB_POSITION[WRAP] bit is set to 1, the MTB_POSITION[MASK+3:3] == MTB_POSITION[POINTER[MASK:0]] bits are set to 0, and the MTB_POSITION[14:MASK+3] == MTB_POSITION[POINTER[11:MASK+1]] bits remain unchanged.
	This field causes the trace packet information to be stored in a circular buffer of size 2^[MASK+4] bytes, that can be positioned in memory at multiples of this size. As detailed in the MTB_POSITION description, typical "upper limits" for the MTB size are RAM_Size/4 or RAM_Size/2. Values greater than the maximum have the same effect as the maximum.

20.31.3 MTB Flow Register (MTB_FLOW)

The MTB_FLOW register contains the watermark address and the autostop/autohalt control bits.



If tracing is stopped using the watermark autostop feature, it cannot be restarted until software clears the watermark autostop. This can be achieved in one of the following ways:

- Changing the MTB_POSITION[POINTER] field value to point to the beginning of the trace buffer, or
- Setting MTB_FLOW[AUTOSTOP] = 0.

A debug agent can use MTB_FLOW[AUTOSTOP] to fill the trace buffer once only without halting the processor.

A debug agent can use MTB_FLOW[AUTOHALT] to fill the trace buffer once before causing the Cortex-M0+ processor to enter the Debug state. To enter Debug state, the Cortex-M0+ processor might have to perform additional branch type operations. Therefore, the MTB_FLOW[WATERMARK] field must be set below the final entry in the trace buffer region.

Address: F000_0000h base + 8h offset = F000_0008h

* Notes:

x = Undefined at reset.

Field	Description
31–3 WATERMARK	WATERMARK[28:0]
	This field contains an address in the same format as the MTB_POSITION[POINTER] field. When MTB_POSITION[POINTER] matches the WATERMARK field value, actions defined by the AUTOHALT and AUTOSTOP bits are performed.
2 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

Table continues on the next page

Field	Description
1 AUTOHALT	AUTOHALT
	If this field is 1 and WATERMARK is equal to MTB_POSITION[POINTER], then MTB_MASTER[HALTREQ] is automatically set to 1. If the DBGEN signal is HIGH, the MTB asserts this halt request to the Cortex-M0+ processor by asserting the EDBGRQ signal.
0 AUTOSTOP	AUTOSTOP
	If this field is 1 and WATERMARK is equal to MTB_POSITION[POINTER], then MTB_MASTER[EN] is automatically set to 0. This stops tracing.

MTB_FLOW field descriptions (continued)

20.31.4 MTB Base Register (MTB_BASE)

The read-only MTB_BASE Register indicates where the RAM is located in the system memory map. This register is provided to enable auto discovery of the MTB RAM location, by a debug agent and is defined by a hardware design parameter. For this device, the base address is defined by the expression: MTB_BASE[BASEADDR] = $0x2000_{-}0000 - (RAM_{-}Size/4)$

Add	ddress: F000_0000h base + Ch offset = F000_000Ch																															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	BASEADDR																															
w																																
Reset	Х*	х*	х*	Х*	Х*	Х*	Х*	Х*	х*	Х*	х*	х*	х*	х*	Х*	Х*	х*	Х*	Х*	Х*	Х*	Х*	х*	Х*	Х*	Х*	Х*	Х*	Х*	Х*	Х*	x *
* NI.	+																															

- * Notes:
- x = Undefined at reset.

MTB_BASE field descriptions

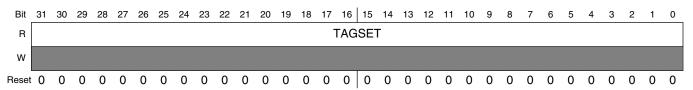
Field	Description
31–0 BASEADDR	BASEADDR This value is defined with a hardwired signal and the expression: 0x2000_0000 - (RAM_Size/4). For example, if the total RAM capacity is 16 KB, this field is 0x1FFF_F000.

20.31.5 Integration Mode Control Register (MTB_MODECTRL)

This register enables the device to switch from a functional mode, or default behavior, into integration mode. It is hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000_0000h base + F00h offset = F000_0F00h

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R					-				-						M	ODE	СТІ	RL														
w																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


MTB_MODECTRL field descriptions

Field	Description
31–0 MODECTRL	MODECTRL
	Hardwired to 0x0000_0000

20.31.6 Claim TAG Set Register (MTB_TAGSET)

The Claim Tag Set Register returns the number of bits that can be set on a read, and enables individual bits to be set on a write. It is hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000_0000h base + FA0h offset = F000_0FA0h

MTB_TAGSET field descriptions

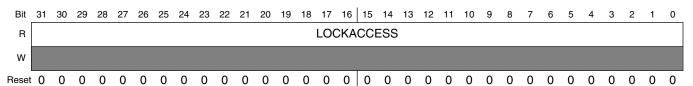
Field	Description
31–0 TAGSET	TAGSET
	Hardwired to 0x0000_0000

20.31.7 Claim TAG Clear Register (MTB_TAGCLEAR)

The read/write Claim Tag Clear Register is used to read the claim status on debug resources. A read indicates the claim tag status. Writing 1 to a specific bit clears the corresponding claim tag to 0. It is hardwired to specific values used during the autodiscovery process by an external debug agent.

Address: F000_0000h base + FA4h offset = F000_0FA4h

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R															TÆ	٩GC	LEA	١R														
w																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


Field	Description
31–0 TAGCLEAR	TAGCLEAR
	Hardwired to 0x0000_0000

MTB_TAGCLEAR field descriptions

20.31.8 Lock Access Register (MTB_LOCKACCESS)

The Lock Access Register enables a write access to component registers. It is hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000_0000h base + FB0h offset = F000_0FB0h

MTB_LOCKACCESS field descriptions

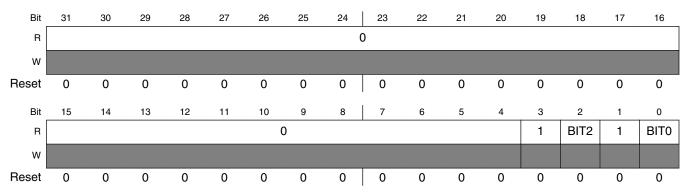
Field	Description
31–0 LOCKACCESS	Hardwired to 0x0000_0000

20.31.9 Lock Status Register (MTB_LOCKSTAT)

The Lock Status Register indicates the status of the lock control mechanism. This register is used in conjunction with the Lock Access Register. It is hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000_0000h base + FB4h offset = F000_0FB4h

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R															LC	СК	STA	١T														
w																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


MTB_LOCKSTAT field descriptions

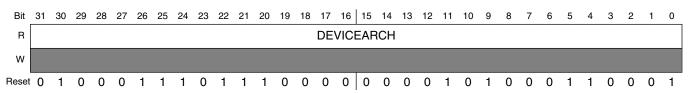
Field	Description
31–0 LOCKSTAT	LOCKSTAT
	Hardwired to 0x0000_0000

20.31.10 Authentication Status Register (MTB_AUTHSTAT)

The Authentication Status Register reports the required security level and current status of the security enable bit pairs. Where functionality changes on a given security level, this change must be reported in this register. It is connected to specific signals used during the auto-discovery process by an external debug agent.

MTB_AUTHSTAT[3:2] indicates if nonsecure, noninvasive debug is enabled or disabled, while MTB_AUTHSTAT[1:0] indicates the enabled/disabled state of nonsecure, invasive debug. For both 2-bit fields, 0b10 indicates the functionality is disabled and 0b11 indicates it is enabled.

Address: F000_0000h base + FB8h offset = F000_0FB8h


Field	Description
31–4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3	BIT3
Reserved	This read-only field is reserved and always has the value 1.
2	BIT2
BIT2	Connected to NIDEN or DBGEN signal.
1	BIT1
Reserved	
	This read-only field is reserved and always has the value 1.
0	Connected to DBGEN.
BIT0	

MTB_AUTHSTAT field descriptions

20.31.11 Device Architecture Register (MTB_DEVICEARCH)

This register indicates the device architecture. It is hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000_0000h base + FBCh offset = F000_0FBCh

MTB_DEVICEARCH field descriptions

Field	Description
31–0 DEVICEARCH	DEVICEARCH
	Hardwired to 0x4770_0A31.

20.31.12 Device Configuration Register (MTB_DEVICECFG)

This register indicates the device configuration. It is hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000_0000h base + FC8h offset = F000_0FC8h

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R															DE	VIC	EC	FG														
w																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MTB_DEVICECFG field descriptions

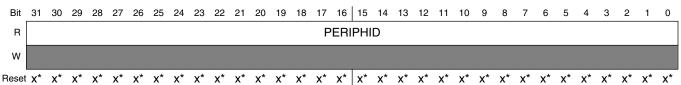
Field	Description
31–0 DEVICECFG	DEVICECFG
	Hardwired to 0x0000_0000.

20.31.13 Device Type Identifier Register (MTB_DEVICETYPID)

This register indicates the device type ID. It is hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000_0000h base + FCCh offset = F000_0FCCh

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R															DE	VIC	ΞTΥ	PID														
w																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1


MTB_DEVICETYPID field descriptions

Field	Description
31–0 DEVICETYPID	DEVICETYPID
	Hardwired to 0x0000_0031.

20.31.14 Peripheral ID Register (MTB_PERIPHIDn)

These registers indicate the peripheral IDs. They are hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000_0000h base + FD0h offset + $(4d \times i)$, where i=0d to 7d

* Notes:

• See field descriptions for the reset values.x = Undefined at reset.

MTB_PERIPHIDn field descriptions

Field	Description
31–0 PERIPHID	PERIPHID
	Peripheral ID4 is hardwired to 0x0000_0004; ID0 to 0x0000_0032; ID1 to 0x0000_00B9; ID2 to 0x0000_000B; and all the others to 0x0000_0000.

20.31.15 Component ID Register (MTB_COMPIDn)

These registers indicate the component IDs. They are hardwired to specific values used during the auto-discovery process by an external debug agent.

Add	res	s: F(000	_000)0h	bas	e +	FF0	h of	fset	+ (4	ld ×	i), v	vher	re i⊨	0d t	o 30	ł														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R															(CON	/IPIC)														
w																																
Reset	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	x *	х*	x *	х*	х*	x *	x *									

* Notes:

• See field descriptions for the reset values.x = Undefined at reset.

MTB_COMPIDn field descriptions

Field	Description
COMPID	Component ID Component ID0 is hardwired to 0x0000_000D; ID1 to 0x0000_0090; ID2 to 0x0000_0005; ID3 to 0x0000_00B1.

20.3.2 MTB_DWT Memory Map

The MTB_DWT programming model supports a very simplified subset of the v7M debug architecture and follows the standard ARM DWT definition.

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
F000_1000	MTB DWT Control Register (MTBDWT_CTRL)	32	R	2F00_0000h	20.32.1/340
F000_1020	MTB_DWT Comparator Register (MTBDWT_COMP0)	32	R/W	0000_0000h	20.32.2/341
F000_1024	MTB_DWT Comparator Mask Register (MTBDWT_MASK0)	32	R/W	0000_0000h	20.32.3/341
F000_1028	MTB_DWT Comparator Function Register 0 (MTBDWT_FCT0)	32	R/W	0000_0000h	20.32.4/342
F000_1030	MTB_DWT Comparator Register (MTBDWT_COMP1)	32	R/W	0000_0000h	20.32.2/341
F000_1034	MTB_DWT Comparator Mask Register (MTBDWT_MASK1)	32	R/W	0000_0000h	20.32.3/341
F000_1038	MTB_DWT Comparator Function Register 1 (MTBDWT_FCT1)	32	R/W	0000_0000h	20.32.5/344
F000_1200	MTB_DWT Trace Buffer Control Register (MTBDWT_TBCTRL)	32	R/W	2000_0000h	20.32.6/345
F000_1FC8	Device Configuration Register (MTBDWT_DEVICECFG)	32	R	0000_0000h	20.32.7/347
F000_1FCC	Device Type Identifier Register (MTBDWT_DEVICETYPID)	32	R	0000_0004h	20.32.8/347
F000_1FD0	Peripheral ID Register (MTBDWT_PERIPHID4)	32	R	See section	20.32.9/348
F000_1FD4	Peripheral ID Register (MTBDWT_PERIPHID5)	32	R	See section	20.32.9/348
F000_1FD8	Peripheral ID Register (MTBDWT_PERIPHID6)	32	R	See section	20.32.9/348
F000_1FDC	Peripheral ID Register (MTBDWT_PERIPHID7)	32	R	See section	20.32.9/348
F000_1FE0	Peripheral ID Register (MTBDWT_PERIPHID0)	32	R	See section	20.32.9/348
F000_1FE4	Peripheral ID Register (MTBDWT_PERIPHID1)	32	R	See section	20.32.9/348
F000_1FE8	Peripheral ID Register (MTBDWT_PERIPHID2)	32	R	See section	20.32.9/348
F000_1FEC	Peripheral ID Register (MTBDWT_PERIPHID3)	32	R	See section	20.32.9/348
F000_1FF0	Component ID Register (MTBDWT_COMPID0)	32	R	See section	20.32.10/ 348
F000_1FF4	Component ID Register (MTBDWT_COMPID1)	32	R	See section	20.32.10/ 348
F000_1FF8	Component ID Register (MTBDWT_COMPID2)	32	R	See section	20.32.10/ 348
F000_1FFC	Component ID Register (MTBDWT_COMPID3)	32	R	See section	20.32.10/ 348

MTBDWT memory map

20.32.1 MTB DWT Control Register (MTBDWT_CTRL)

The MTBDWT_CTRL register provides read-only information on the watchpoint configuration for the MTB_DWT.

Address: F000_1000h base + 0h offset = F000_1000h

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	Ν	IUM	СМ	Ρ						-							DW.	TCF	GC	TRL	-											
w																																
Reset	0	0	1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MTBDWT	_CTRL field	descriptions
--------	-------------	--------------

Field	Description
31–28 NUMCMP	Number of comparators
	The MTB_DWT implements two comparators.
27-0	DWT configuration controls
DWTCFGCTRL	This field is hardwired to 0xF00_0000, disabling all the remaining DWT functionality. The specific fields and their state are:
	MTBDWT_CTRL[27] = NOTRCPKT = 1, trace sample and exception trace is not supported
	MTBDWT_CTRL[26] = NOEXTTRIG = 1, external match signals are not supported
	MTBDWT_CTRL[25] = NOCYCCNT = 1, cycle counter is not supported
	MTBDWT_CTRL[24] = NOPRFCNT = 1, profiling counters are not supported
	MTBDWT_CTRL[22] = CYCEBTENA = 0, no POSTCNT underflow packets generated
	MTBDWT_CTRL[21] = FOLDEVTENA = 0, no folded instruction counter overflow events
	MTBDWT_CTRL[20] = LSUEVTENA = 0, no LSU counter overflow events
	MTBDWT_CTRL[19] = SLEEPEVTENA = 0, no sleep counter overflow events
	MTBDWT_CTRL[18] = EXCEVTENA = 0, no exception overhead counter events
	MTBDWT_CTRL[17] = CPIEVTENA = 0, no CPI counter overflow events
	MTBDWT_CTRL[16] = EXCTRCENA = 0, generation of exception trace disabled
	MTBDWT_CTRL[12] = PCSAMPLENA = 0, no periodic PC sample packets generated
	MTBDWT_CTRL[11:10] = SYNCTAP = 0, no synchronization packets
	MTBDWT_CTRL[9] = CYCTAP = 0, cycle counter is not supported
	MTBDWT_CTRL[8:5] = POSTINIT = 0, cycle counter is not supported
	MTBDWT_CTRL[4:1] = POSTPRESET = 0, cycle counter is not supported
	MTBDWT_CTRL[0] = CYCCNTENA = 0, cycle counter is not supported

0

MTB DWT Comparator Register (MTBDWT COMPn) 20.32.2

The MTBDWT_COMPn registers provide the reference value for comparator n.

Address: F000_1000h base + 20h offset + (16d × i), where i=0d to 1d Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 R COMP w Reset 0 0 0 0 0 0 0 0 0 0 0

MTBDWT_COMPn field descriptions

Field	Description
COMP	Reference value for comparison If MTBDWT_COMP0 is used for a data value comparator and the access size is byte or halfword, the data value must be replicated across all appropriate byte lanes of this register. For example, if the data is a byte-sized "x" value, then COMP[31:24] = COMP[23:16] = COMP[15:8] = COMP[7:0] = "x". Likewise, if the data is a halfword-size "y" value, then COMP[31:16] = COMP[15:0] = "y".

20.32.3 MTB_DWT Comparator Mask Register (MTBDWT_MASKn)

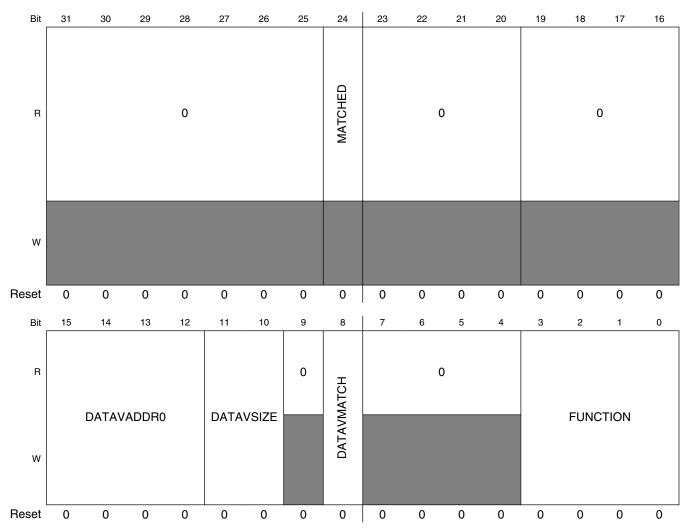
The MTBDWT_MASKn registers define the size of the ignore mask applied to the reference address for address range matching by comparator n. Note the format of this mask field is different than the MTB_MASTER[MASK].

Add	lress	s: F(000_	_100)0h	bas	e + 1	24h	offs	et +	(16	d ×	i), w	her	e i=	Od to	o 1d															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R														0															N	IAS	ĸ	
W				_																											-	
Reset																																

Field	Description
31–5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
4–0 MASK	MASK The value of the ignore mask, 0-31 bits, is applied to address range matching. MASK = 0 is used to include all bits of the address in the comparison, except if MASK = 0 and the comparator is configured to watch instruction fetch addresses, address bit [0] is ignored by the hardware since all fetches must be at least halfword aligned. For MASK != 0 and regardless of watch type, address bits [x-1:0] are ignored in the address comparison.

MTBDWT MASKn field descriptions

Table continues on the next page ...


Field	Description
	Using a mask means the comparator matches on a range of addresses, defined by the unmasked most significant bits of the address, bits [31:x]. The maximum MASK value is 24, producing a 16 Mbyte mask. An attempted write of a MASK value > 24 is limited by the MTBDWT hardware to 24.
	If MTBDWT_COMP0 is used as a data value comparator, then MTBDWT_MASK0 should be programmed to zero.

MTBDWT_MASKn field descriptions (continued)

20.32.4 MTB_DWT Comparator Function Register 0 (MTBDWT_FCT0)

The MTBDWT_FCTn registers control the operation of comparator n.

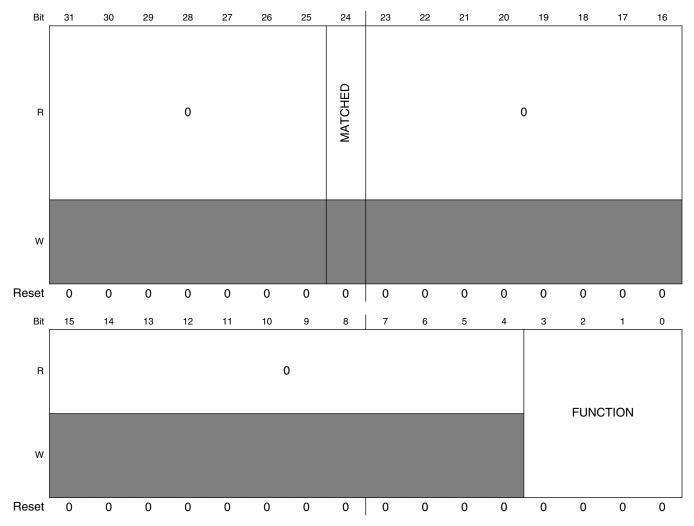
Address: F000_1000h base + 28h offset = F000_1028h

MTBDWT_FCT0 field descriptions

Reserved 24 MATCHED	 This field is reserved. This read-only field is reserved and always has the value 0. Comparator match If this read-only flag is asserted, it indicates the operation defined by the FUNCTION field occurred since the last read of the register. Reading the register clears this bit. 0 No match. 1 Match occurred.
MATCHED	If this read-only flag is asserted, it indicates the operation defined by the FUNCTION field occurred since the last read of the register. Reading the register clears this bit. 0 No match.
23–20	i Mach occurred.
Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
19–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
DATAVADDR0	Data Value Address 0 Since the MTB_DWT implements two comparators, the DATAVADDR0 field is restricted to values {0,1}. When the DATAVMATCH bit is asserted, this field defines the comparator number to use for linked address comparison. If MTBDWT_COMP0 is used as a data watchpoint and MTBDWT_COMP1 as an address watchpoint,
11–10 DATAVSIZE	DATAVADDR0 must be set. Data Value Size For data value matching, this field defines the size of the required data comparison. 00 Byte. 01 Halfword. 10 Word.
	 11 Reserved. Any attempts to use this value results in UNPREDICTABLE behavior. This field is reserved.
-	This read-only field is reserved and always has the value 0.
DATAVMATCH	 Data Value Match When this field is 1, it enables data value comparison. For this implementation, MTBDWT_COMP0 supports address or data value comparisons; MTBDWT_COMP1 only supports address comparisons. 0 Perform address comparison. 1 Perform data value comparison.
	This field is reserved. This read-only field is reserved and always has the value 0.
FUNCTION	Function Selects the action taken on a comparator match. If MTBDWT_COMP0 is used for a data value and MTBDWT_COMP1 for an address value, then MTBDWT_FCT1[FUNCTION] must be set to zero. For this configuration, MTBDWT_MASK1 can be set to a non-zero value, so the combined comparators match on a range of addresses.
	 Disabled. Instruction fetch. Data operand read. Data operand write. Data operand (read + write). Reserved. Any attempts to use this value results in UNPREDICTABLE behavior.

memory map and register definition

MTBDWT_FCT0 field descriptions (continued)

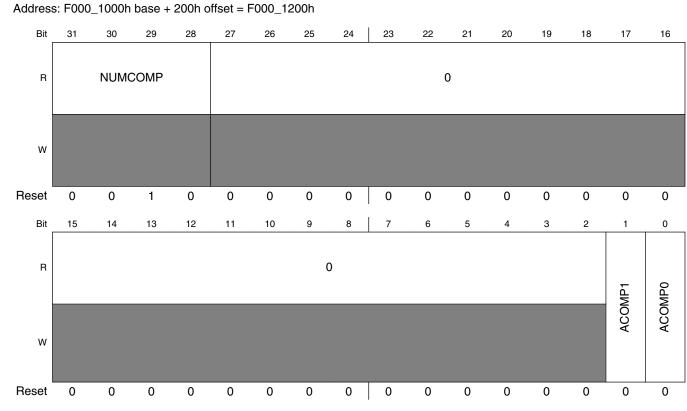

Field

Description

20.32.5 MTB_DWT Comparator Function Register 1 (MTBDWT_FCT1)

The MTBDWT_FCTn registers control the operation of comparator n. Since the MTB_DWT only supports data value comparisons on comparator 0, there are several fields in the MTBDWT_FCT1 register that are RAZ/WI (bits 12, 11:10, 8).

Address: F000_1000h base + 38h offset = F000_1038h


MTBDWT_FCT1 field descriptions

Field	Description
31–25	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
24 MATCHED	Comparator match
	If this read-only flag is asserted, it indicates the operation defined by the FUNCTION field occurred since
	the last read of the register. Reading the register clears this bit.
	0 No match.
	1 Match occurred.
23–4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3–0	Function
FUNCTION	Selects the action taken on a comparator match. If MTBDWT_COMP0 is used for a data value and MTBDWT_COMP1 for an address value, then MTBDWT_FCT1[FUNCTION] must be set to zero. For this configuration, MTBDWT_MASK1 can be set to a non-zero value, so the combined comparators match on a range of addresses.
	0000 Disabled.
	0100 Instruction fetch.
	0101 Data operand read.
	0110 Data operand write.
	0111 Data operand (read + write).
	others Reserved. Any attempts to use this value results in UNPREDICTABLE behavior.

20.32.6 MTB_DWT Trace Buffer Control Register (MTBDWT_TBCTRL)

The MTBDWT_TBCTRL register defines how the watchpoint comparisons control the actual trace buffer operation.

Recall the MTB supports starting and stopping the program trace based on the watchpoint comparisons signaled via TSTART and TSTOP. The watchpoint comparison signals are enabled in the MTB's control logic by setting the appropriate enable bits, MTB_MASTER[TSTARTEN, TSTOPEN]. In the event of simultaneous assertion of both TSTART and TSTOP, TSTART takes priority.

memory map and register definition

MTBDWT_TBCTRL field descriptions

Field	Description
31–28 NUMCOMP	Number of Comparators This read-only field specifies the number of comparators in the MTB_DWT. This implementation includes two registers.
27–2 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
1 ACOMP1	 Action based on Comparator 1 match When the MTBDWT_FCT1[MATCHED] is set, it indicates MTBDWT_COMP1 address compare has triggered and the trace buffer's recording state is changed. 0 Trigger TSTOP based on the assertion of MTBDWT_FCT1[MATCHED]. 1 Trigger TSTART based on the assertion of MTBDWT_FCT1[MATCHED].
0 ACOMP0	 Action based on Comparator 0 match When the MTBDWT_FCT0[MATCHED] is set, it indicates MTBDWT_COMP0 address compare has triggered and the trace buffer's recording state is changed. The assertion of MTBDWT_FCT0[MATCHED] is caused by the following conditions: Address match in MTBDWT_COMP0 when MTBDWT_FCT0[DATAVMATCH] = 0 Data match in MTBDWT_COMP0 when MTBDWT_FCT0[DATAVMATCH, DATAVADDR0] = {1,0} Data match in MTBDWT_COMP0 and address match in MTBDWT_COMP1 when MTBDWT_FCT0[DATAVMATCH, DATAVADDR0] = {1,1} 0 Trigger TSTOP based on the assertion of MTBDWT_FCT0[MATCHED].
	 Trigger TSTOP based on the assertion of MTBDWT_FCT0[MATCHED]. Trigger TSTART based on the assertion of MTBDWT_FCT0[MATCHED].

20.32.7 Device Configuration Register (MTBDWT_DEVICECFG)

This register indicates the device configuration. It is hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000_1000h base + FC8h offset = F000_1FC8h

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R															DE	VIC	ECI	FG														
w																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MTBDWT_DEVICECFG field descriptions

Field	Description
31–0 DEVICECFG	DEVICECFG
	Hardwired to 0x0000_0000.

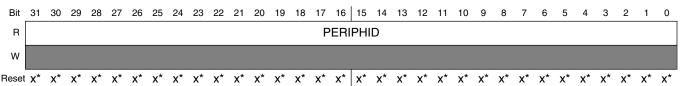
20.32.8 Device Type Identifier Register (MTBDWT_DEVICETYPID)

This register indicates the device type ID. It is hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000_1000h base + FCCh offset = F000_1FCCh

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R															DE	VIC	ΞTΥ	PID														
w																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

MTBDWT_DEVICETYPID field descriptions


Field	Description
31–0 DEVICETYPID	DEVICETYPID
	Hardwired to 0x0000_0004.

20.32.9 Peripheral ID Register (MTBDWT_PERIPHIDn)

These registers indicate the peripheral IDs. They are hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000_1000h base + FD0h offset + $(4d \times i)$, where i=0d to 7d

* Notes:

• See field descriptions for the reset values. x = Undefined at reset.

MTBDWT_PERIPHIDn field descriptions

Field	Description
31–0 PERIPHID	PERIPHID
	Peripheral ID1 is hardwired to 0x0000_00E0; ID2 to 0x0000_0008; and all the others to 0x0000_0000.

20.32.10 Component ID Register (MTBDWT_COMPIDn)

These registers indicate the component IDs. They are hardwired to specific values used during the auto-discovery process by an external debug agent.

Add	lress	s: F(000	_100)0h	bas	e +	FF0	h of	fset	+ (4	ld ×	i), v	vher	e i=	0d t	o 30															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R															(CON	/PIC)														
W																																
Reset	х*	х*	х*	х*	х*	Х*	х*	Х*	Х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	x *	x *	х*	х*	х*	Х*	x *	x *	х*	х*	x *
* NI.																																

* Notes:

• See field descriptions for the reset values.x = Undefined at reset.

MTBDWT_COMPIDn field descriptions

Field	Description
31–0	Component ID
COMPID	Component ID0 is hardwired to 0x0000_000D; ID1 to 0x0000_0090; ID2 to 0x0000_0005; ID3 to 0x0000_00B1.

20.3.3 System ROM Memory Map

The System ROM Table registers are also mapped into a sparsely-populated 4 KB address space.

For core configurations like that supported by Cortex-M0+, ARM recommends that a debugger identifies and connects to the debug components using the CoreSight debug infrastructure.

ARM recommends that a debugger follows the flow as shown in the following figure to discover the components in the CoreSight debug infrastructure. In this case, a debugger reads the peripheral and component ID registers for each CoreSight component in the CoreSight system.

‡ Optional component

Figure 20-55. CoreSight discovery process

ROM memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
F000_2000	Entry (ROM_ENTRY0)	32	R	See section	20.33.1/350
F000_2004	Entry (ROM_ENTRY1)	32	R	See section	20.33.1/350
F000_2008	Entry (ROM_ENTRY2)	32	R	See section	20.33.1/350
F000_200C	End of Table Marker Register (ROM_TABLEMARK)	32	R	0000_0000h	20.33.2/351
F000_2FCC	System Access Register (ROM_SYSACCESS)	32	R	0000_0001h	20.33.3/351
F000_2FD0	Peripheral ID Register (ROM_PERIPHID4)	32	R	See section	20.33.4/352

Table continues on the next page...

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
F000_2FD4	Peripheral ID Register (ROM_PERIPHID5)	32	R	See section	20.33.4/352
F000_2FD8	Peripheral ID Register (ROM_PERIPHID6)	32	R	See section	20.33.4/352
F000_2FDC	Peripheral ID Register (ROM_PERIPHID7)	32	R	See section	20.33.4/352
F000_2FE0	Peripheral ID Register (ROM_PERIPHID0)	32	R	See section	20.33.4/352
F000_2FE4	Peripheral ID Register (ROM_PERIPHID1)	32	R	See section	20.33.4/352
F000_2FE8	Peripheral ID Register (ROM_PERIPHID2)	32	R	See section	20.33.4/352
F000_2FEC	Peripheral ID Register (ROM_PERIPHID3)	32	R	See section	20.33.4/352
F000_2FF0	Component ID Register (ROM_COMPID0)	32	R	See section	20.33.5/352
F000_2FF4	Component ID Register (ROM_COMPID1)	32	R	See section	20.33.5/352
F000_2FF8	Component ID Register (ROM_COMPID2)	32	R	See section	20.33.5/352
F000_2FFC	Component ID Register (ROM_COMPID3)	32	R	See section	20.33.5/352

ROM memory map (continued)

20.33.1 Entry (ROM_ENTRYn)

The System ROM Table begins with "n" relative 32-bit addresses, one for each debug component present in the device and terminating with an all-zero value signaling the end of the table at the "n+1"-th value.

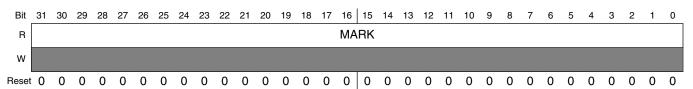
It is hardwired to specific values used during the auto-discovery process by an external debug agent.

Add	ress	s: F(000_	_200)0h	bas	e + (0h c	offse	t + (4d >	× i),	whe	ere i	=0d	to 2	2d															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R									-	-		-	-			EN	ΓRΥ							-								
W																																
Reset	x *	x*	x *	x*	x*	x *	x*	x *	x *	x*	x *	x*	x *	x*	х*	x*	x*	x*	x*	x *	x*	x*										

* Notes:

• See field descriptions for reset values.x = Undefined at reset.

ROM_ENTRY*n* field descriptions


Field	Description
31–0	ENTRY
ENTRY	Entry 0 (MTB) is hardwired to 0xFFFF_E003; Entry 1 (MTBDWT) to 0xFFFF_F003; Entry 2 (CM0+ ROM Table) to 0xF00F_D003.

20.33.2 End of Table Marker Register (ROM_TABLEMARK)

This register indicates end of table marker. It is hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000_2000h base + Ch offset = F000_200Ch

ROM_TABLEMARK field descriptions

Field	Description
31–0 MARK	MARK
	Hardwired to 0x0000_0000

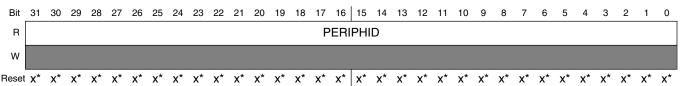
20.33.3 System Access Register (ROM_SYSACCESS)

This register indicates system access. It is hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000_2000h base + FCCh offset = F000_2FCCh

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R															SY	SAC	CCE	SS														
W																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

ROM_SYSACCESS field descriptions


Field	Description
31–0 SYSACCESS	SYSACCESS
	Hardwired to 0x0000_0001

20.33.4 Peripheral ID Register (ROM_PERIPHID*n*)

These registers indicate the peripheral IDs. They are hardwired to specific values used during the auto-discovery process by an external debug agent.

Address: F000_2000h base + FD0h offset + (4d \times i), where i=0d to 7d

* Notes:

• See field descriptions for reset values.x = Undefined at reset.

ROM_PERIPHIDn field descriptions

Field	Description
31–0 PERIPHID	PERIPHID
	Peripheral ID1 is hardwired to 0x0000_00E0; ID2 to 0x0000_0008; and all the others to 0x0000_0000.

20.33.5 Component ID Register (ROM_COMPIDn)

These registers indicate the component IDs. They are hardwired to specific values used during the auto-discovery process by an external debug agent.

Add	dress: F000_2000h base + FF0h offset + $(4d \times i)$, where i=0d to 3d																															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R															(CON	/IPIC)														
W																																
Reset	x *	X *	Х*	х*	х*	X *	Х*	х*	X *	Х*	х*	Х*	X *	X *	Х*	Х*	x *	Х*	Х*	x *	Х*	Х*	X *	х*	х*	х*	x *	х*	х*	х*	х*	x *
* NI.																																

* Notes:

• See field descriptions for reset values.x = Undefined at reset.

ROM_COMPIDn field descriptions

Field	Description
COMPID	Component ID Component ID0 is hardwired to 0x0000_000D; ID1 to 0x0000_0010; ID2 to 0x0000_0005; ID3 to 0x0000_00B1.

Chapter 21 Crossbar Switch Lite (AXBS-Lite)

21.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The information found here provides information on the layout, configuration, and programming of the crossbar switch.

The crossbar switch connects bus masters and bus slaves using a crossbar switch structure. This structure allows up to four bus masters to access different bus slaves simultaneously, while providing arbitration among the bus masters when they access the same slave.

21.1.1 Features

The crossbar switch includes these features:

- Symmetric crossbar bus switch implementation
 - Allows concurrent accesses from different masters to different slaves
- 32-bit data bus
- Operation at a 1-to-1 clock frequency with the bus masters
- Programmable configuration for fixed-priority or round-robin slave port arbitration

21.2 Memory Map / Register Definition

This crossbar switch is designed for minimal gate count. It, therefore, has no memorymapped configuration registers.

21.3 Functional Description

21.3.1 General operation

When a master accesses the crossbar switch, the access is immediately taken. If the targeted slave port of the access is available, then the access is immediately presented on the slave port. Single-clock or zero-wait-state accesses are possible through the crossbar. If the targeted slave port of the access is busy or parked on a different master port, the requesting master simply sees wait states inserted until the targeted slave port can service the master's request. The latency in servicing the request depends on each master's priority level and the responding slave's access time.

Because the crossbar switch appears to be just another slave to the master device, the master device has no knowledge of whether it actually owns the slave port it is targeting. While the master does not have control of the slave port it is targeting, it simply waits.

A master is given control of the targeted slave port only after a previous access to a different slave port completes, regardless of its priority on the newly targeted slave port. This prevents deadlock from occurring when:

- A higher priority master has:
 - An outstanding request to one slave port that has a long response time and
 - A pending access to a different slave port, and
- A lower priority master is also making a request to the same slave port as the pending access of the higher priority master.

After the master has control of the slave port it is targeting, the master remains in control of the slave port until it relinquishes the slave port by running an IDLE cycle or by targeting a different slave port for its next access.

The master can also lose control of the slave port if another higher-priority master makes a request to the slave port.

The crossbar terminates all master IDLE transfers, as opposed to allowing the termination to come from one of the slave buses. Additionally, when no master is requesting access to a slave port, the crossbar drives IDLE transfers onto the slave bus, even though a default master may be granted access to the slave port.

When a slave bus is being idled by the crossbar, it remains parked with the last master to use the slave port. This is done to save the initial clock of arbitration delay that otherwise would be seen if the master had to arbitrate to gain control of the slave port.

21.3.2 Arbitration

The crossbar switch supports two arbitration algorithms:

- Fixed priority
- Round-robin

The selection of the global slave port arbitration is controlled by MCM_PLACR[ARB]. For fixed priority, set MCM_PLACR[ARB] to 0. For round robin, set MCM_PLACR[ARB] to 1. This arbitration setting applies to all slave ports.

21.3.2.1 Arbitration during undefined length bursts

All lengths of burst accesses lock out arbitration until the last beat of the burst.

21.3.2.2 Fixed-priority operation

When operating in fixed-priority mode, each master is assigned a unique priority level with the highest numbered master having the highest priority (for example, in a system with 5 masters, master 1 has lower priority than master 3). If two masters request access to the same slave port, the master with the highest priority gains control over the slave port.

NOTE

In this arbitration mode, a higher-priority master can monopolize a slave port, preventing accesses from any lowerpriority master to the port.

runctional Description

When a master makes a request to a slave port, the slave port checks whether the new requesting master's priority level is higher than that of the master that currently has control over the slave port, unless the slave port is in a parked state. The slave port performs an arbitration check at every clock edge to ensure that the proper master, if any, has control of the slave port.

The following table describes possible scenarios based on the requesting master port:

Table 21-1. How the Crossbar Switch grants control of a slave port to a master

When	Then the Crossbar Switch grants control to the requesting master
 Both of the following are true: The current master is not running a transfer. The new requesting master's priority level is higher than that of the current master. 	At the next clock edge
The requesting master's priority level is lower than the current master.	 At the conclusion of one of the following cycles: An IDLE cycle A non-IDLE cycle to a location other than the current slave port

21.3.2.3 Round-robin priority operation

When operating in round-robin mode, each master is assigned a relative priority based on the master port number. This relative priority is compared to the master port number (ID) of the last master to perform a transfer on the slave bus. The highest priority requesting master becomes owner of the slave bus at the next transfer boundary. Priority is based on how far ahead the ID of the requesting master is to the ID of the last master.

After granted access to a slave port, a master may perform as many transfers as desired to that port until another master makes a request to the same slave port. The next master in line is granted access to the slave port at the next transfer boundary, or possibly on the next clock cycle if the current master has no pending access request.

As an example of arbitration in round-robin mode, assume the crossbar is implemented with master ports 0, 1, 4, and 5. If the last master of the slave port was master 1, and master 0, 4, and 5 make simultaneous requests, they are serviced in the order: 4 then 5 then 0.

The round-robin arbitration mode generally provides a more fair allocation of the available slave-port bandwidth (compared to fixed priority) as the fixed master priority does not affect the master selection.

21.4 Initialization/application information

No initialization is required for the crossbar switch.

See the AXBS section of the configuration chapter for the reset state of the arbitration scheme.

mualization/application information

Chapter 22 Peripheral Bridge (AIPS-Lite)

22.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The peripheral bridge converts the crossbar switch interface to an interface that can access most of the slave peripherals on this chip.

The peripheral bridge occupies 64 MB of the address space, which is divided into peripheral slots of 4 KB. (It might be possible that all the peripheral slots are not used. See the memory map chapter for details on slot assignments.) The bridge includes separate clock enable inputs for each of the slots to accommodate slower peripherals.

22.1.1 Features

Key features of the peripheral bridge are:

• Supports peripheral slots with 8-, 16-, and 32-bit datapath width

22.1.2 General operation

The slave devices connected to the peripheral bridge are modules which contain a programming model of control and status registers. The system masters read and write these registers through the peripheral bridge. The peripheral bridge performs a bus protocol conversion of the master transactions and generates the following as inputs to the peripherals:

- Module enables
- Module addresses

runctional description

- Transfer attributes
- Byte enables
- Write data

The peripheral bridge selects and captures read data from the peripheral interface and returns it to the crossbar switch.

The register maps of the peripherals are located on 4-KB boundaries. Each peripheral is allocated one or more 4-KB block(s) of the memory map.

The AIPS-Lite module uses the data width of accessed peripheral to perform proper data byte lane routing; bus decomposition (bus sizing) is performed when the access size is larger than the peripheral's data width.

22.2 Functional description

The peripheral bridge functions as a bus protocol translator between the crossbar switch and the slave peripheral bus.

The peripheral bridge manages all transactions destined for the attached slave devices and generates select signals for modules on the peripheral bus by decoding accesses within the attached address space.

22.2.1 Access support

All combinations of access size and peripheral data port width are supported. An access that is larger than the target peripheral's data width will be decomposed to multiple, smaller accesses. Bus decomposition is terminated by a transfer error caused by an access to an empty register area.

Chapter 23 Direct Memory Access Multiplexer (DMAMUX)

23.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

23.1.1 Overview

The Direct Memory Access Multiplexer (DMAMUX) routes DMA sources, called slots, to any of the four DMA channels. This process is illustrated in the following figure.

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

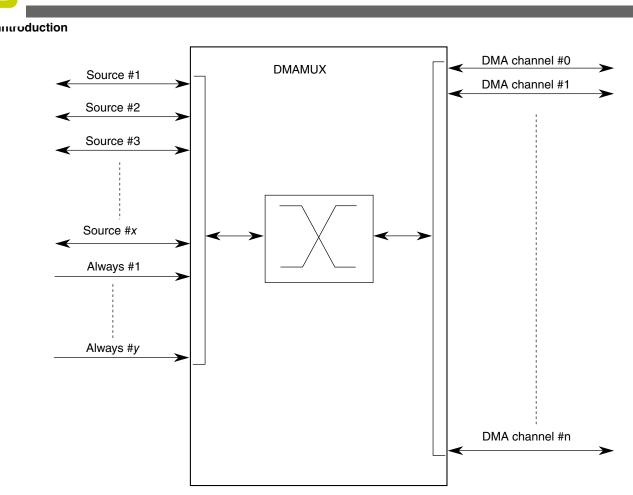


Figure 23-1. DMAMUX block diagram

23.1.2 Features

The DMAMUX module provides these features:

- Up to 63 peripheral slots and up to six always-on slots can be routed to four channels.
- four independently selectable DMA channel routers.
- Each channel router can be assigned to one of the possible peripheral DMA slots or to one of the always-on slots.

23.1.3 Modes of operation

The following operating modes are available:

• Disabled mode

Chapter 23 Direct Memory Access Multiplexer (DMAMUX)

In this mode, the DMA channel is disabled. Because disabling and enabling of DMA channels is done primarily via the DMA configuration registers, this mode is used mainly as the reset state for a DMA channel in the DMA channel MUX. It may also be used to temporarily suspend a DMA channel while reconfiguration of the system takes place.

• Normal mode

In this mode, a DMA source is routed directly to the specified DMA channel. The operation of the DMAMUX in this mode is completely transparent to the system.

23.2 External signal description

The DMAMUX has no external pins.

23.3 Memory map/register definition

This section provides a detailed description of all memory-mapped registers in the DMAMUX.

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4002_1000	Channel Configuration register (DMAMUX_CHCFG0)	8	R/W	00h	23.3.1/363
4002_1001	Channel Configuration register (DMAMUX_CHCFG1)	8	R/W	00h	23.3.1/363
4002_1002	Channel Configuration register (DMAMUX_CHCFG2)	8	R/W	00h	23.3.1/363
4002_1003	Channel Configuration register (DMAMUX_CHCFG3)	8	R/W	00h	23.3.1/363

DMAMUX memory map

23.3.1 Channel Configuration register (DMAMUX_CHCFG*n*)

Each of the DMA channels can be independently enabled/disabled and associated with one of the DMA slots (peripheral slots or always-on slots) in the system.

NOTE

Setting multiple CHCFG registers with the same source value will result in unpredictable behavior. This is true, even if a channel is disabled (ENBL==0).

runctional description

Before changing the source settings, a DMA channel must be disabled via CHCFGn[ENBL].

Address: 4002_1000h base + 0h offset + (1d × i), where i=0d to 3d								
Bit	7	6	5	4	3	2	1	0
Read Write	ENBL	Reserved	SOURCE					
Reset	0	0	0	0	0	0	0	0

DMAMUX_CHCFGn field descriptions

Field	Description
7	DMA Channel Enable
ENBL	Enables the DMA channel.
	0 DMA channel is disabled. This mode is primarily used during configuration of the DMAMux. The DMA has separate channel enables/disables, which should be used to disable or reconfigure a DMA channel.
	1 DMA channel is enabled
6	This field is reserved.
Reserved	This read/write field does not affect the functionality of the device and should not be used.
5–0 SOURCE	DMA Channel Source (Slot)
	Specifies which DMA source, if any, is routed to a particular DMA channel. See the chip-specific DMAMUX information for details about the peripherals and their slot numbers.

23.4 Functional description

The primary purpose of the DMAMUX is to provide flexibility in the system's use of the available DMA channels.

As such, configuration of the DMAMUX is intended to be a static procedure done during execution of the system boot code. However, if the procedure outlined in Enabling and configuring sources is followed, the configuration of the DMAMUX may be changed during the normal operation of the system.

The DMAMUX channels implement only the normal routing functionality.

23.4.1 Always-enabled DMA sources

In addition to the peripherals that can be used as DMA sources, there are six additional DMA sources that are always enabled. Unlike the peripheral DMA sources, where the peripheral controls the flow of data during DMA transfers, the sources that are always enabled provide no such "throttling" of the data transfers. These sources are most useful in the following cases:

- Performing DMA transfers to/from GPIO—Moving data from/to one or more GPIO pins.
- Performing DMA transfers from memory to memory—Moving data from memory to memory, typically as fast as possible, sometimes with software activation.
- Performing DMA transfers from memory to the external bus, or vice-versa—Similar to memory to memory transfers, this is typically done as quickly as possible.
- Any DMA transfer that requires software activation—Any DMA transfer that should be explicitly started by software.

In cases where software should initiate the start of a DMA transfer, an always-enabled DMA source can be used to provide maximum flexibility. When activating a DMA channel via software, subsequent executions of the minor loop require that a new start event be sent. This can either be a new software activation, or a transfer request from the DMA channel MUX. The options for doing this are:

• Transfer all data in a single minor loop.

By configuring the DMA to transfer all of the data in a single minor loop (that is, major loop counter = 1), no reactivation of the channel is necessary. The disadvantage to this option is the reduced granularity in determining the load that the DMA transfer will impose on the system. For this option, the DMA channel must be disabled in the DMA channel MUX.

• Use explicit software reactivation.

In this option, the DMA is configured to transfer the data using both minor and major loops, but the processor is required to reactivate the channel by writing to the DMA registers *after every minor loop*. For this option, the DMA channel must be disabled in the DMA channel MUX.

• Use an always-enabled DMA source.

In this option, the DMA is configured to transfer the data using both minor and major loops, and the DMA channel MUX does the channel reactivation. For this option, the DMA channel should be enabled and pointing to an "always enabled" source.

23.5 Initialization/application information

This section provides instructions for initializing the DMA channel MUX.

23.5.1 Reset

The reset state of each individual bit is shown in Memory map/register definition. In summary, after reset, all channels are disabled and must be explicitly enabled before use.

23.5.2 Enabling and configuring sources

To enable a source, the following steps can be used:

- 1. Determine with which DMA channel the source will be associated.
- 2. Clear the CHCFG[ENBL] field of the DMA channel.
- 3. Ensure that the DMA channel is properly configured in the DMA. The DMA channel may be enabled at this point.
- 4. Select the source to be routed to the DMA channel. Write to the corresponding CHCFG register, ensuring that CHCFG[ENBL] is set.

To configure source #5 transmit for use with DMA channel 1, as an example, the following steps can be used:

- 1. Write 0x00 to CHCFG1 (base address + 0x01).
- 2. Configure channel 1 in the DMA, including enabling the channel.
- 3. Write 0x85 to CHCFG1 (base address + 0x01).

The following code example illustrates steps 1 and 3 above:

```
In File registers.h:
#define DMAMUX BASE ADDR
                             0x40021000/* Example only ! */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCFG0 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0000);
volatile unsigned char *CHCFG1 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0001);
volatile unsigned char *CHCFG2 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0002);
volatile unsigned char *CHCFG3 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0003);
volatile unsigned char *CHCFG4 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0004);
volatile unsigned char *CHCFG5 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0005);
volatile unsigned char *CHCFG6 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0006);
volatile unsigned char *CHCFG7 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0007);
volatile unsigned char *CHCFG8 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0008);
volatile unsigned char *CHCFG9 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0009);
volatile unsigned char *CHCFG10= (volatile unsigned char *) (DMAMUX BASE ADDR+0x000A);
volatile unsigned char *CHCFG11= (volatile unsigned char *) (DMAMUX BASE ADDR+0x000B);
volatile unsigned char *CHCFG12= (volatile unsigned char *) (DMAMUX BASE ADDR+0x000C);
volatile unsigned char *CHCFG13= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000D);
volatile unsigned char *CHCFG14= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000E);
volatile unsigned char *CHCFG15= (volatile unsigned char *) (DMAMUX BASE ADDR+0x000F);
In File main.c:
#include "registers.h"
:
*CHCFG1 = 0x00;
```

```
*CHCFG1 = 0x00;
*CHCFG1 = 0x85;
```

To disable a source:

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

A particular DMA source may be disabled by not writing the corresponding source value into any of the CHCFG registers. Additionally, some module-specific configuration may be necessary. See the appropriate section for more details.

To switch the source of a DMA channel:

- 1. Disable the DMA channel in the DMA and reconfigure the channel for the new source.
- 2. Clear the CHCFG[ENBL] bit of the DMA channel.
- 3. Select the source to be routed to the DMA channel. Write to the corresponding CHCFG register, ensuring that the CHCFG[ENBL] field is set.

To switch DMA channel 8 from source #5 transmit to source #7 transmit:

- 1. In the DMA configuration registers, disable DMA channel 8 and reconfigure it to handle the transfers to peripheral slot 7. This example assumes channel 8 doesn't have triggering capability.
- 2. Write 0x00 to CHCFG8 (base address + 0x08).
- 3. Write 0x87 to CHCFG8 (base address + 0x08).

The following code example illustrates steps 2 and 3 above:

```
In File registers.h:
#define DMAMUX BASE ADDR
                             0x40021000/* Example only ! */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCFG0 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0000);
volatile unsigned char *CHCFG1 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0001);
volatile unsigned char *CHCFG2 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0002);
volatile unsigned char *CHCFG3 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0003);
volatile unsigned char *CHCFG4 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0004);
volatile unsigned char *CHCFG5 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0005);
volatile unsigned char *CHCFG6 = (volatile unsigned char *) (DMAMUX BASE ADDR+0x0006);
volatile unsigned char *CHCFG7 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0007);
volatile unsigned char *CHCFG8 = (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x0008);
volatile unsigned char *CHCFG9 = (volatile unsigned char *)
                                                             (DMAMUX BASE ADDR+0x0009);
volatile unsigned char *CHCFG10= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000A);
volatile unsigned char *CHCFG11= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000B);
volatile unsigned char *CHCFG12= (volatile unsigned char *) (DMAMUX BASE ADDR+0x000C);
volatile unsigned char *CHCFG13= (volatile unsigned char *) (DMAMUX BASE ADDR+0x000D);
volatile unsigned char *CHCFG14= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000E);
volatile unsigned char *CHCFG15= (volatile unsigned char *) (DMAMUX_BASE_ADDR+0x000F);
In File main.c:
#include "registers.h"
```

: *CHCFG8 = 0x00; *CHCFG8 = 0x87;

mualization/application information

Chapter 24 Enhanced Direct Memory Access (eDMA)

24.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data transfers with minimal intervention from a host processor. The hardware microarchitecture includes:

- A DMA engine that performs:
 - Source- and destination-address calculations
 - Data-movement operations
- Local memory containing transfer control descriptors for each of the 4 channels

24.1.1 eDMA system block diagram

Figure 24-1 illustrates the components of the eDMA system, including the eDMA module ("engine").

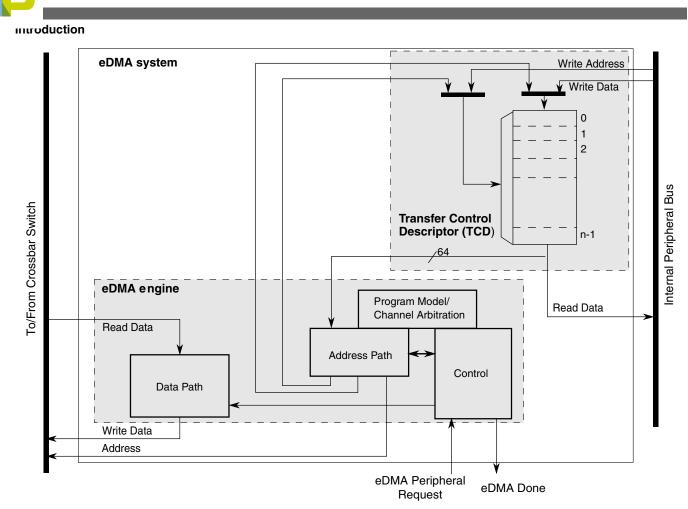


Figure 24-1. eDMA system block diagram

24.1.2 Block parts

The eDMA module is partitioned into two major modules: the eDMA engine and the transfer-control descriptor local memory.

The eDMA engine is further partitioned into four submodules:

Table 24-1.	eDMA	engine	submodules
-------------	------	--------	------------

Submodule	Function
Address path	This block implements registered versions of two channel transfer control descriptors, channel x and channel y, and manages all master bus-address calculations. All the channels provide the same functionality. This structure allows data transfers associated with one channel to be preempted after the completion of a read/write sequence if a higher priority channel activation is asserted while the first channel is active. After a channel is activated, it runs until the minor loop is completed, unless preempted by a higher priority channel. This provides a mechanism (enabled by DCHPRI <i>n</i> [ECP]) where a large data move operation can be preempted to minimize the time another channel is blocked from execution.
	When any channel is selected to execute, the contents of its TCD are read from local memory and loaded into the address path channel x registers for a normal start and into channel y registers for a preemption start. After the minor loop completes execution, the address path hardware writes the new values for the TCDn_{SADDR, DADDR, CITER} back to local memory. If the major iteration count is exhausted, additional processing is performed, including the final address pointer updates, reloading the TCDn_CITER field, and a possible fetch of the next TCDn from memory as part of a scatter/gather operation.
Data path	This block implements the bus master read/write datapath. It includes a data buffer and the necessary multiplex logic to support any required data alignment. The internal read data bus is the primary input, and the internal write data bus is the primary output.
	The address and data path modules directly support the 2-stage pipelined internal bus. The address path module represents the 1st stage of the bus pipeline (address phase), while the data path module implements the 2nd stage of the pipeline (data phase).
Program model/channel arbitration	This block implements the first section of the eDMA programming model as well as the channel arbitration logic. The programming model registers are connected to the internal peripheral bus. The eDMA peripheral request inputs and interrupt request outputs are also connected to this block (via control logic).
Control	This block provides all the control functions for the eDMA engine. For data transfers where the source and destination sizes are equal, the eDMA engine performs a series of source read/ destination write operations until the number of bytes specified in the minor loop byte count has moved. For descriptors where the sizes are not equal, multiple accesses of the smaller size data are required for each reference of the larger size. As an example, if the source size references 16-bit data and the destination is 32-bit data, two reads are performed, then one 32-bit write.

The transfer-control descriptor local memory is further partitioned into:

Table 24-2. Transfer control descriptor memory

Submodule	Description
Memory controller	This logic implements the required dual-ported controller, managing accesses from the eDMA engine as well as references from the internal peripheral bus. As noted earlier, in the event of simultaneous accesses, the eDMA engine is given priority and the peripheral transaction is stalled.
Memory array	TCD storage for each channel's transfer profile.

24.1.3 Features

The eDMA is a highly programmable data-transfer engine optimized to minimize any required intervention from the host processor. It is intended for use in applications where the data size to be transferred is statically known and not defined within the transferred data itself. The eDMA module features:

- All data movement via dual-address transfers: read from source, write to destination
 - Programmable source and destination addresses and transfer size
 - Support for enhanced addressing modes
- 4-channel implementation that performs complex data transfers with minimal intervention from a host processor
 - Connections to the crossbar switch for bus mastering the data movement
- Transfer control descriptor (TCD) organized to support two-deep, nested transfer operations
 - 32-byte TCD stored in local memory for each channel
 - An inner data transfer loop defined by a minor byte transfer count
 - An outer data transfer loop defined by a major iteration count
- Channel activation via one of three methods:
 - Explicit software initiation
 - Initiation via a channel-to-channel linking mechanism for continuous transfers
 - Peripheral-paced hardware requests, one per channel
- Fixed-priority and round-robin channel arbitration
- Channel completion reported via optional interrupt requests
 - One interrupt per channel, optionally asserted at completion of major iteration count
 - Optional error terminations per channel and logically summed together to form one error interrupt to the interrupt controller
- Optional support for scatter/gather DMA processing
- Support for complex data structures

- Support to cancel transfers via software error detection and error correction
- Error detection and error correction

In the discussion of this module, *n* is used to reference the channel number.

24.2 Modes of operation

The eDMA operates in the following modes:

Description
In Normal mode, the eDMA transfers data between a source and a destina

Table 24-3. Modes of operation

Mode	Description
Normal	In Normal mode, the eDMA transfers data between a source and a destination. The source and destination can be a memory block or an I/O block capable of operation with the eDMA.
	A service request initiates a transfer of a specific number of bytes (NBYTES) as specified in the transfer control descriptor (TCD). The minor loop is the sequence of read-write operations that transfers these NBYTES per service request. Each service request executes one iteration of the major loop, which transfers NBYTES of data.
Debug	 DMA operation is configurable in Debug mode via the control register: If CR[EDBG] is cleared, the DMA continues to operate. If CR[EDBG] is set, the eDMA stops transferring data. If Debug mode is entered while a channel is active, the eDMA continues operation until the channel retires.
Wait	Before entering Wait mode, the DMA attempts to complete its current transfer. After the transfer completes, the device enters Wait mode.

Memory map/register definition 24.3

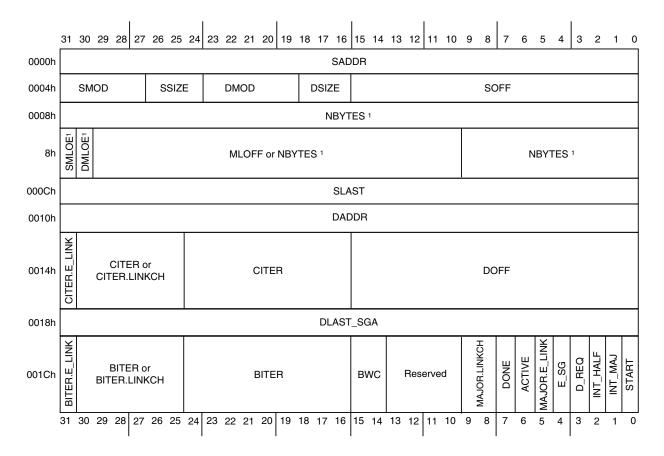
The eDMA's programming model is partitioned into two regions:

- The first region defines a number of registers providing control functions
- The second region corresponds to the local transfer control descriptor (TCD) memory

24.3.1 TCD memory

Each channel requires a 32-byte transfer control descriptor for defining the desired data movement operation. The channel descriptors are stored in the local memory in sequential order: channel 0, channel 1, ... channel 3. Each TCDn definition is presented as 11 registers of 16 or 32 bits.

KV10 Sub-Family Reference Manual, Rev. 7, September 2014



24.3.2 TCD initialization

Prior to activating a channel, you must initialize its TCD with the appropriate transfer profile.

24.3.3 TCD structure

¹ The fields implemented in Word 2 depend on whether DMA_CR[EMLM] is 0 or 1.

24.3.4 Reserved memory and bit fields

- Reading reserved bits in a register returns the value of zero.
- Writes to reserved bits in a register are ignored.
- Reading or writing a reserved memory location generates a bus error.

DMA memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4000_8000	Control Register (DMA_CR)	32	R/W	0000_0000h	24.3.1/379
4000_8004	Error Status Register (DMA_ES)	32	R	0000_0000h	24.3.2/382
4000_800C	Enable Request Register (DMA_ERQ)	32	R/W	0000_0000h	24.3.3/384
4000_8014	Enable Error Interrupt Register (DMA_EEI)	32	R/W	0000_0000h	24.3.4/385
4000_8018	Clear Enable Error Interrupt Register (DMA_CEEI)	8	W (always reads 0)	00h	24.3.5/386
4000_8019	Set Enable Error Interrupt Register (DMA_SEEI)	8	W (always reads 0)	00h	24.3.6/387
4000_801A	Clear Enable Request Register (DMA_CERQ)	8	W (always reads 0)	00h	24.3.7/388
4000_801B	Set Enable Request Register (DMA_SERQ)	8	W (always reads 0)	00h	24.3.8/389
4000_801C	Clear DONE Status Bit Register (DMA_CDNE)	8	W (always reads 0)	00h	24.3.9/390
4000_801D	Set START Bit Register (DMA_SSRT)	8	W (always reads 0)	00h	24.3.10/391
4000_801E	Clear Error Register (DMA_CERR)	8	W (always reads 0)	00h	24.3.11/392
4000_801F	Clear Interrupt Request Register (DMA_CINT)	8	W (always reads 0)	00h	24.3.12/393
4000_8024	Interrupt Request Register (DMA_INT)	32	R/W	0000_0000h	24.3.13/394
4000_802C	Error Register (DMA_ERR)	32	R/W	0000_0000h	24.3.14/395
4000_8034	Hardware Request Status Register (DMA_HRS)	32	R	0000_0000h	24.3.15/396
4000_8044	Enable Asynchronous Request in Stop Register (DMA_EARS)	32	R/W	0000_0000h	24.3.16/398
4000_8100	Channel n Priority Register (DMA_DCHPRI3)	8	R/W	See section	24.3.17/399
4000_8101	Channel n Priority Register (DMA_DCHPRI2)	8	R/W	See section	24.3.17/399
4000_8102	Channel n Priority Register (DMA_DCHPRI1)	8	R/W	See section	24.3.17/399

Table continues on the next page...

DMA memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4000_8103	Channel n Priority Register (DMA_DCHPRI0)	8	R/W	See section	24.3.17/399
4000_9000	TCD Source Address (DMA_TCD0_SADDR)	32	R/W	Undefined	24.3.18/400
4000_9004	TCD Signed Source Address Offset (DMA_TCD0_SOFF)	16	R/W	Undefined	24.3.19/400
4000_9006	TCD Transfer Attributes (DMA_TCD0_ATTR)	16	R/W	Undefined	24.3.20/401
4000_9008	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCD0_NBYTES_MLNO)	32	R/W	Undefined	24.3.21/402
4000_9008	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCD0_NBYTES_MLOFFNO)	32	R/W	Undefined	24.3.22/402
4000_9008	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCD0_NBYTES_MLOFFYES)	32	R/W	Undefined	24.3.23/404
4000_900C	TCD Last Source Address Adjustment (DMA_TCD0_SLAST)	32	R/W	Undefined	24.3.24/405
4000_9010	TCD Destination Address (DMA_TCD0_DADDR)	32	R/W	Undefined	24.3.25/405
4000_9014	TCD Signed Destination Address Offset (DMA_TCD0_DOFF)	16	R/W	Undefined	24.3.26/406
4000_9016	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD0_CITER_ELINKYES)	16	R/W	Undefined	24.3.27/406
4000_9016	DMA_TCD0_CITER_ELINKNO	16	R/W	Undefined	24.3.28/408
4000_9018	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCD0_DLASTSGA)	32	R/W	Undefined	24.3.29/409
4000_901C	TCD Control and Status (DMA_TCD0_CSR)	16	R/W	Undefined	24.3.30/409
4000_901E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD0_BITER_ELINKYES)	16	R/W	Undefined	24.3.31/412
4000_901E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD0_BITER_ELINKNO)	16	R/W	Undefined	24.3.32/413
4000_9020	TCD Source Address (DMA_TCD1_SADDR)	32	R/W	Undefined	24.3.18/400
4000_9024	TCD Signed Source Address Offset (DMA_TCD1_SOFF)	16	R/W	Undefined	24.3.19/400
4000_9026	TCD Transfer Attributes (DMA_TCD1_ATTR)	16	R/W	Undefined	24.3.20/401
4000_9028	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCD1_NBYTES_MLNO)	32	R/W	Undefined	24.3.21/402
4000_9028	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCD1_NBYTES_MLOFFNO)	32	R/W	Undefined	24.3.22/402
4000_9028	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCD1_NBYTES_MLOFFYES)	32	R/W	Undefined	24.3.23/404
4000_902C	TCD Last Source Address Adjustment (DMA_TCD1_SLAST)	32	R/W	Undefined	24.3.24/405
4000_9030	TCD Destination Address (DMA_TCD1_DADDR)	32	R/W	Undefined	24.3.25/405
4000_9034	TCD Signed Destination Address Offset (DMA_TCD1_DOFF)	16	R/W	Undefined	24.3.26/406
4000_9036	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD1_CITER_ELINKYES)	16	R/W	Undefined	24.3.27/406
4000_9036	DMA_TCD1_CITER_ELINKNO	16	R/W	Undefined	24.3.28/408

Table continues on the next page...

wemory map/register definition

DMA memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4000_9038	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCD1_DLASTSGA)	32	R/W	Undefined	24.3.29/409
4000_903C	TCD Control and Status (DMA_TCD1_CSR)	16	R/W	Undefined	24.3.30/409
4000_903E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD1_BITER_ELINKYES)	16	R/W	Undefined	24.3.31/412
4000_903E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD1_BITER_ELINKNO)	16	R/W	Undefined	24.3.32/413
4000_9040	TCD Source Address (DMA_TCD2_SADDR)	32	R/W	Undefined	24.3.18/400
4000_9044	TCD Signed Source Address Offset (DMA_TCD2_SOFF)	16	R/W	Undefined	24.3.19/400
4000_9046	TCD Transfer Attributes (DMA_TCD2_ATTR)	16	R/W	Undefined	24.3.20/401
4000_9048	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCD2_NBYTES_MLNO)	32	R/W	Undefined	24.3.21/402
4000_9048	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCD2_NBYTES_MLOFFNO)	32	R/W	Undefined	24.3.22/402
4000_9048	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCD2_NBYTES_MLOFFYES)	32	R/W	Undefined	24.3.23/404
4000_904C	TCD Last Source Address Adjustment (DMA_TCD2_SLAST)	32	R/W	Undefined	24.3.24/405
4000_9050	TCD Destination Address (DMA_TCD2_DADDR)	32	R/W	Undefined	24.3.25/405
4000_9054	TCD Signed Destination Address Offset (DMA_TCD2_DOFF)	16	R/W	Undefined	24.3.26/406
4000_9056	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD2_CITER_ELINKYES)	16	R/W	Undefined	24.3.27/406
4000_9056	DMA_TCD2_CITER_ELINKNO	16	R/W	Undefined	24.3.28/408
4000_9058	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCD2_DLASTSGA)	32	R/W	Undefined	24.3.29/409
4000_905C	TCD Control and Status (DMA_TCD2_CSR)	16	R/W	Undefined	24.3.30/409
4000_905E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD2_BITER_ELINKYES)	16	R/W	Undefined	24.3.31/412
4000_905E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD2_BITER_ELINKNO)	16	R/W	Undefined	24.3.32/413
4000_9060	TCD Source Address (DMA_TCD3_SADDR)	32	R/W	Undefined	24.3.18/400
4000_9064	TCD Signed Source Address Offset (DMA_TCD3_SOFF)	16	R/W	Undefined	24.3.19/400
4000_9066	TCD Transfer Attributes (DMA_TCD3_ATTR)	16	R/W	Undefined	24.3.20/401
4000_9068	TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCD3_NBYTES_MLNO)	32	R/W	Undefined	24.3.21/402
4000_9068	TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCD3_NBYTES_MLOFFNO)	32	R/W	Undefined	24.3.22/402
4000_9068	TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCD3_NBYTES_MLOFFYES)	32	R/W	Undefined	24.3.23/404

Table continues on the next page ...

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4000_906C	TCD Last Source Address Adjustment (DMA_TCD3_SLAST)	32	R/W	Undefined	24.3.24/405
4000_9070	TCD Destination Address (DMA_TCD3_DADDR)	32	R/W	Undefined	24.3.25/405
4000_9074	TCD Signed Destination Address Offset (DMA_TCD3_DOFF)	16	R/W	Undefined	24.3.26/406
4000_9076	TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD3_CITER_ELINKYES)	16	R/W	Undefined	24.3.27/406
4000_9076	DMA_TCD3_CITER_ELINKNO	16	R/W	Undefined	24.3.28/408
4000_9078	TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCD3_DLASTSGA)	32	R/W	Undefined	24.3.29/409
4000_907C	TCD Control and Status (DMA_TCD3_CSR)	16	R/W	Undefined	24.3.30/409
4000_907E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD3_BITER_ELINKYES)	16	R/W	Undefined	24.3.31/412
4000_907E	TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD3_BITER_ELINKNO)	16	R/W	Undefined	24.3.32/413

DMA memory map (continued)

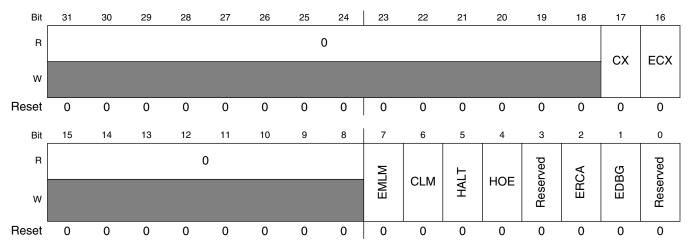
24.3.1 Control Register (DMA_CR)

The CR defines the basic operating configuration of the DMA.

Arbitration can be configured to use either a fixed-priority or a round-robin scheme. For fixed-priority arbitration, the highest priority channel requesting service is selected to execute. The channel priority registers assign the priorities; see the DCHPRIn registers. For round-robin arbitration, the channel priorities are ignored and channels are cycled through (from high to low channel number) without regard to priority.

NOTE

For correct operation, writes to the CR register must be performed only when the DMA channels are inactive; that is, when TCDn_CSR[ACTIVE] bits are cleared.


Minor loop offsets are address offset values added to the final source address (TCDn_SADDR) or destination address (TCDn_DADDR) upon minor loop completion. When minor loop offsets are enabled, the minor loop offset (MLOFF) is added to the final source address (TCDn_SADDR), to the final destination address (TCDn_DADDR), or to both prior to the addresses being written back into the TCD. If the major loop is complete, the minor loop offset is ignored and the major loop address offsets (TCDn_SLAST and TCDn_DLAST_SGA) are used to compute the next TCDn_SADDR and TCDn_DADDR values.

wemory map/register definition

When minor loop mapping is enabled (EMLM is 1), TCDn word2 is redefined. A portion of TCDn word2 is used to specify multiple fields: a source enable bit (SMLOE) to specify the minor loop offset should be applied to the source address (TCDn_SADDR) upon minor loop completion, a destination enable bit (DMLOE) to specify the minor loop offset should be applied to the destination address (TCDn_DADDR) upon minor loop completion, and the sign extended minor loop offset value (MLOFF). The same offset value (MLOFF) is used for both source and destination minor loop offsets. When either minor loop offset is enabled (SMLOE set or DMLOE set), the NBYTES field is reduced to 10 bits. When both minor loop offsets are disabled (SMLOE cleared and DMLOE cleared), the NBYTES field is a 30-bit vector.

When minor loop mapping is disabled (EMLM is 0), all 32 bits of TCDn word2 are assigned to the NBYTES field.

Address: 4000_8000h base + 0h offset = 4000_8000h

DMA_CR field descriptions

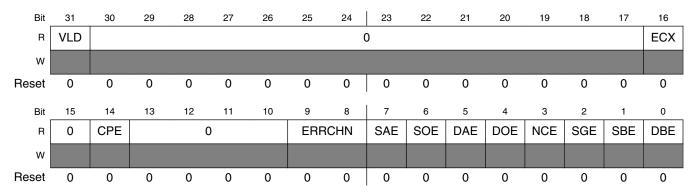
Field	Description					
31–18 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.					
17 CX	 Cancel Transfer Normal operation Cancel the remaining data transfer. Stop the executing channel and force the minor loop to finish. The cancel takes effect after the last write of the current read/write sequence. The CX bit clears itself after the cancel has been honored. This cancel retires the channel normally as if the minor loop was completed. 					
16 ECX	 Error Cancel Transfer Normal operation Cancel the remaining data transfer in the same fashion as the CX bit. Stop the executing channel and force the minor loop to finish. The cancel takes effect after the last write of the current read/write sequence. The ECX bit clears itself after the cancel is honored. In addition to cancelling the transfer, ECX treats the cancel as an error condition, thus updating the Error Status register (DMAx_ES) and generating an optional error interrupt. 					

Table continues on the next page ...

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

DMA_CR field descriptions (continued)

Field	Description
15–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7 EMLM	 Enable Minor Loop Mapping Disabled. TCDn.word2 is defined as a 32-bit NBYTES field. Enabled. TCDn.word2 is redefined to include individual enable fields, an offset field, and the NBYTES field. The individual enable fields allow the minor loop offset to be applied to the source address, the destination address, or both. The NBYTES field is reduced when either offset is enabled.
6 CLM	Continuous Link Mode
	NOTE: Do not use continuous link mode with a channel linking to itself if there is only one minor loop iteration per service request. If the channel's NBYTES value is the same as either the source or destination size, do not use channel linking to itself. The same data transfer profile can be achieved by simply increasing the NBYTES value. A larger NBYTES value provides more efficient, faster processing.
	0 A minor loop channel link made to itself goes through channel arbitration before being activated again.
	1 A minor loop channel link made to itself does not go through channel arbitration before being activated again. Upon minor loop completion, the channel activates again if that channel has a minor loop channel link enabled and the link channel is itself. This effectively applies the minor loop offsets and restarts the next minor loop.
5 HALT	Halt DMA Operations 0 Normal operation
	 Stall the start of any new channels. Executing channels are allowed to complete. Channel execution resumes when this bit is cleared.
4	Halt On Error
HOE	0 Normal operation
	 Any error causes the HALT bit to set. Subsequently, all service requests are ignored until the HALT bit is cleared.
3 Reserved	This field is reserved.
2 ERCA	 Enable Round Robin Channel Arbitration Fixed priority arbitration is used for channel selection . Round robin arbitration is used for channel selection .
1	Enable Debug
EDBG	0 When in debug mode, the DMA continues to operate.
	 When in debug mode, the DMA stalls the start of a new channel. Executing channels are allowed to complete. Channel execution resumes when the system exits debug mode or the EDBG bit is cleared.
0 Reserved	This field is reserved.


24.3.2 Error Status Register (DMA_ES)

The ES provides information concerning the last recorded channel error. Channel errors can be caused by:

- A configuration error, that is:
 - An illegal setting in the transfer-control descriptor, or
 - An illegal priority register setting in fixed-arbitration
- An error termination to a bus master read or write cycle

See the Error Reporting and Handling section for more details.

Address: 4000	8000h base + 4h	n offset = 400	0 8004h
/ laar 000. 1000_	_000011 buoo 1 11	1011001 - 100	0_000 m

DMA_ES field descriptions

Field	Description
31 VLD	Logical OR of all ERR status bits
	0 No ERR bits are set.
	1 At least one ERR bit is set indicating a valid error exists that has not been cleared.
30–17	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
16 ECX	Transfer Canceled
	0 No canceled transfers
	1 The last recorded entry was a canceled transfer by the error cancel transfer input
15	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
14 CPE	Channel Priority Error
	0 No channel priority error
	1 The last recorded error was a configuration error in the channel priorities . Channel priorities are not unique.
13–10	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

Table continues on the next page...

DMA_ES field descriptions (continued)

Field	Description
9–8 ERRCHN	Error Channel Number or Canceled Channel Number
Ennorm	The channel number of the last recorded error, excluding CPE errors, or last recorded error canceled transfer.
7 SAE	Source Address Error
0,12	0 No source address configuration error.
	1 The last recorded error was a configuration error detected in the TCDn_SADDR field. TCDn_SADDR is inconsistent with TCDn_ATTR[SSIZE].
6 SOE	Source Offset Error
302	0 No source offset configuration error
	1 The last recorded error was a configuration error detected in the TCDn_SOFF field. TCDn_SOFF is inconsistent with TCDn_ATTR[SSIZE].
5 DAE	Destination Address Error
	0 No destination address configuration error
	1 The last recorded error was a configuration error detected in the TCDn_DADDR field. TCDn_DADDR is inconsistent with TCDn_ATTR[DSIZE].
4 DOE	Destination Offset Error
DOE	0 No destination offset configuration error
	1 The last recorded error was a configuration error detected in the TCDn_DOFF field. TCDn_DOFF is inconsistent with TCDn_ATTR[DSIZE].
3 NCE	NBYTES/CITER Configuration Error
	0 No NBYTES/CITER configuration error
	1 The last recorded error was a configuration error detected in the TCDn_NBYTES or TCDn_CITER fields.
	 TCDn_NBYTES is not a multiple of TCDn_ATTR[SSIZE] and TCDn_ATTR[DSIZE], or
	 TCDn_CITER[CITER] is equal to zero, or TCDn_CITER[ELINK] is not equal to TCDn_BITER[ELINK]
2 SGE	Scatter/Gather Configuration Error
	0 No scatter/gather configuration error
	1 The last recorded error was a configuration error detected in the TCDn_DLASTSGA field. This field is checked at the beginning of a scatter/gather operation after major loop completion if TCDn_CSR[ESG] is enabled. TCDn_DLASTSGA is not on a 32 byte boundary.
1 SBE	Source Bus Error
	0 No source bus error
	1 The last recorded error was a bus error on a source read
0 DBE	Destination Bus Error
	0 No destination bus error
	1 The last recorded error was a bus error on a destination write

24.3.3 Enable Request Register (DMA_ERQ)

The ERQ register provides a bit map for the 4 channels to enable the request signal for each channel. The state of any given channel enable is directly affected by writes to this register; it is also affected by writes to the SERQ and CERQ registers. These registers are provided so the request enable for a single channel can easily be modified without needing to perform a read-modify-write sequence to the ERQ.

DMA request input signals and this enable request flag must be asserted before a channel's hardware service request is accepted. The state of the DMA enable request flag does not affect a channel service request made explicitly through software or a linked channel request.

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R								()							
W																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R						()						FBO3	ERQ2	ERQ1	ERQ0
w															LIIGI	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Address: 4000_8000h base + Ch offset = 4000_800Ch

Field	Description							
31–4	Fhis field is reserved.							
Reserved	This read-only field is reserved and always has the value 0.							
3 ERQ3	Enable DMA Request 3							
	0 The DMA request signal for the corresponding channel is disabled							
	1 The DMA request signal for the corresponding channel is enabled							
2 ERQ2	Enable DMA Request 2							
	0 The DMA request signal for the corresponding channel is disabled							
	1 The DMA request signal for the corresponding channel is enabled							
1 ERQ1	Enable DMA Request 1							
	0 The DMA request signal for the corresponding channel is disabled							
	1 The DMA request signal for the corresponding channel is enabled							
0 ERQ0	Enable DMA Request 0							
	0 The DMA request signal for the corresponding channel is disabled							
	1 The DMA request signal for the corresponding channel is enabled							

DMA_ERQ field descriptions

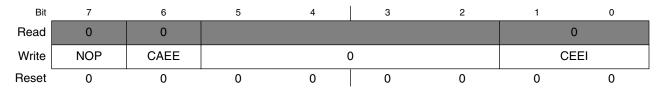
24.3.4 Enable Error Interrupt Register (DMA_EEI)

The EEI register provides a bit map for the 4 channels to enable the error interrupt signal for each channel. The state of any given channel's error interrupt enable is directly affected by writes to this register; it is also affected by writes to the SEEI and CEEI. These registers are provided so that the error interrupt enable for a single channel can easily be modified without the need to perform a read-modify-write sequence to the EEI register.

The DMA error indicator and the error interrupt enable flag must be asserted before an error interrupt request for a given channel is asserted to the interrupt controller.

		_				_										
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R								(0							
W																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R						(C						EEI3	EEI2	EEI1	EEI0
w																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Address: 4000_8000h base + 14h offset = 4000_8014h


DMA_EEI field descriptions

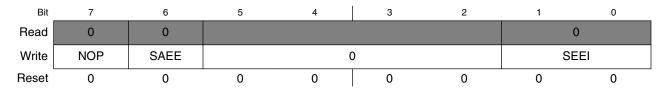
Field	Description
31–4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3 EEI3	Enable Error Interrupt 3
LEIO	0 The error signal for corresponding channel does not generate an error interrupt
	1 The assertion of the error signal for corresponding channel generates an error interrupt request
2 EEI2	Enable Error Interrupt 2
	0 The error signal for corresponding channel does not generate an error interrupt
	1 The assertion of the error signal for corresponding channel generates an error interrupt request
1	Enable Error Interrupt 1
EEI1	0 The error signal for corresponding channel does not generate an error interrupt
	1 The assertion of the error signal for corresponding channel generates an error interrupt request
0	Enable Error Interrupt 0
EEIO	0 The error signal for corresponding channel does not generate an error interrupt
	1 The assertion of the error signal for corresponding channel generates an error interrupt request

24.3.5 Clear Enable Error Interrupt Register (DMA_CEEI)

The CEEI provides a simple memory-mapped mechanism to clear a given bit in the EEI to disable the error interrupt for a given channel. The data value on a register write causes the corresponding bit in the EEI to be cleared. Setting the CAEE bit provides a global clear function, forcing the EEI contents to be cleared, disabling all DMA request inputs. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.

Address: 4000_8000h base + 18h offset = 4000_8018h

DMA_CEEI field descriptions

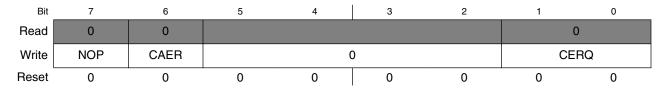

Field	Description
7 NOP	No Op enable
	0 Normal operation
	1 No operation, ignore the other bits in this register
6 CAEE	Clear All Enable Error Interrupts
	0 Clear only the EEI bit specified in the CEEI field
	1 Clear all bits in EEI
5-2	This field is reserved.
Reserved	
1–0 CEEI	Clear Enable Error Interrupt
	Clears the corresponding bit in EEI

24.3.6 Set Enable Error Interrupt Register (DMA_SEEI)

The SEEI provides a simple memory-mapped mechanism to set a given bit in the EEI to enable the error interrupt for a given channel. The data value on a register write causes the corresponding bit in the EEI to be set. Setting the SAEE bit provides a global set function, forcing the entire EEI contents to be set. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.

Address: 4000_8000h base + 19h offset = 4000_8019h

DMA_SEEI field descriptions

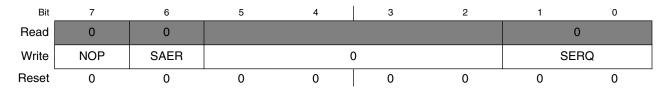

Field	Description
7	No Op enable
NOP	0 Normal operation
	1 No operation, ignore the other bits in this register
6 SAEE	Sets All Enable Error Interrupts
0,122	0 Set only the EEI bit specified in the SEEI field.
	1 Sets all bits in EEI
5–2 Reserved	This field is reserved.
1–0 SEEI	Set Enable Error Interrupt
	Sets the corresponding bit in EEI

24.3.7 Clear Enable Request Register (DMA_CERQ)

The CERQ provides a simple memory-mapped mechanism to clear a given bit in the ERQ to disable the DMA request for a given channel. The data value on a register write causes the corresponding bit in the ERQ to be cleared. Setting the CAER bit provides a global clear function, forcing the entire contents of the ERQ to be cleared, disabling all DMA request inputs. If NOP is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.

Address: 4000_8000h base + 1Ah offset = 4000_801Ah

DMA_CERQ field descriptions

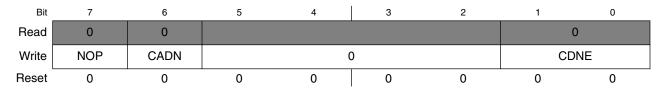

Field	Description
7	No Op enable
NOP	0 Normal operation
	1 No operation, ignore the other bits in this register
6 CAER	Clear All Enable Requests
	0 Clear only the ERQ bit specified in the CERQ field
	1 Clear all bits in ERQ
5–2	This field is reserved.
Reserved	
1–0 CERQ	Clear Enable Request
	Clears the corresponding bit in ERQ.

24.3.8 Set Enable Request Register (DMA_SERQ)

The SERQ provides a simple memory-mapped mechanism to set a given bit in the ERQ to enable the DMA request for a given channel. The data value on a register write causes the corresponding bit in the ERQ to be set. Setting the SAER bit provides a global set function, forcing the entire contents of ERQ to be set. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.

Address: 4000_8000h base + 1Bh offset = 4000_801Bh

DMA_SERQ field descriptions

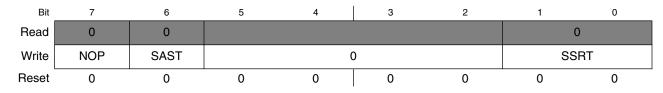

Field	Description
7	No Op enable
NOP	0 Normal operation
	 No operation, ignore the other bits in this register
6 SAER	Set All Enable Requests
UALIT	0 Set only the ERQ bit specified in the SERQ field
	1 Set all bits in ERQ
5–2	This field is reserved.
Reserved	
1–0 SERQ	Set Enable Request
	Sets the corresponding bit in ERQ.

24.3.9 Clear DONE Status Bit Register (DMA_CDNE)

The CDNE provides a simple memory-mapped mechanism to clear the DONE bit in the TCD of the given channel. The data value on a register write causes the DONE bit in the corresponding transfer control descriptor to be cleared. Setting the CADN bit provides a global clear function, forcing all DONE bits to be cleared. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.

Address: 4000_8000h base + 1Ch offset = 4000_801Ch

DMA_CDNE field descriptions

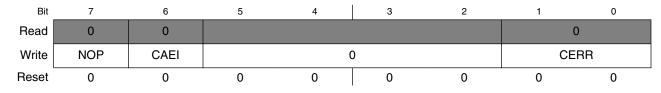

Field	Description
7 NOP	No Op enable
	0 Normal operation
	1 No operation, ignore the other bits in this register
6 CADN	Clears All DONE Bits
	0 Clears only the TCDn_CSR[DONE] bit specified in the CDNE field
	1 Clears all bits in TCDn_CSR[DONE]
5–2 Reserved	This field is reserved.
1–0 CDNE	Clear DONE Bit
	Clears the corresponding bit in TCDn_CSR[DONE]

24.3.10 Set START Bit Register (DMA_SSRT)

The SSRT provides a simple memory-mapped mechanism to set the START bit in the TCD of the given channel. The data value on a register write causes the START bit in the corresponding transfer control descriptor to be set. Setting the SAST bit provides a global set function, forcing all START bits to be set. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.

Address: 4000_8000h base + 1Dh offset = 4000_801Dh

DMA_SSRT field descriptions

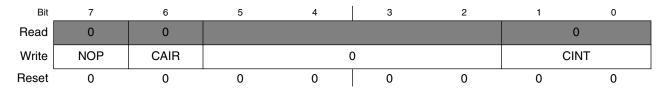

Field	Description
7	No Op enable
NOP	0 Normal operation
	0 Normal operation
	1 No operation, ignore the other bits in this register
6 SAST	Set All START Bits (activates all channels)
0,101	0 Set only the TCDn_CSR[START] bit specified in the SSRT field
	1 Set all bits in TCDn_CSR[START]
5–2	This field is reserved.
Reserved	
1–0	Set START Bit
SSRT	
	Sets the corresponding bit in TCDn_CSR[START]

24.3.11 Clear Error Register (DMA_CERR)

The CERR provides a simple memory-mapped mechanism to clear a given bit in the ERR to disable the error condition flag for a given channel. The given value on a register write causes the corresponding bit in the ERR to be cleared. Setting the CAEI bit provides a global clear function, forcing the ERR contents to be cleared, clearing all channel error indicators. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.

Address: 4000_8000h base + 1Eh offset = 4000_801Eh

DMA_CERR field descriptions


Field	Description
7 NOP	No Op enable
	0 Normal operation
	1 No operation, ignore the other bits in this register
6 CAEI	Clear All Error Indicators
	0 Clear only the ERR bit specified in the CERR field
	1 Clear all bits in ERR
5–2 Reserved	This field is reserved.
1–0 CERR	Clear Error Indicator
	Clears the corresponding bit in ERR

24.3.12 Clear Interrupt Request Register (DMA_CINT)

The CINT provides a simple, memory-mapped mechanism to clear a given bit in the INT to disable the interrupt request for a given channel. The given value on a register write causes the corresponding bit in the INT to be cleared. Setting the CAIR bit provides a global clear function, forcing the entire contents of the INT to be cleared, disabling all DMA interrupt requests. If the NOP bit is set, the command is ignored. This allows you to write multiple-byte registers as a 32-bit word. Reads of this register return all zeroes.

Address: 4000_8000h base + 1Fh offset = 4000_801Fh

DMA_CINT field descriptions

Field	Description
7	No Op enable
NOP	0 Normal operation
	1 No operation, ignore the other bits in this register
6 CAIR	Clear All Interrupt Requests
_	0 Clear only the INT bit specified in the CINT field
	1 Clear all bits in INT
5–2 Reserved	This field is reserved.
1–0 CINT	Clear Interrupt Request
CINT	Clears the corresponding bit in INT

24.3.13 Interrupt Request Register (DMA_INT)

The INT register provides a bit map for the 4 channels signaling the presence of an interrupt request for each channel. Depending on the appropriate bit setting in the transfer-control descriptors, the eDMA engine generates an interrupt on data transfer completion. The outputs of this register are directly routed to the interrupt controller (INTC). During the interrupt-service routine associated with any given channel, it is the software's responsibility to clear the appropriate bit, negating the interrupt request. Typically, a write to the CINT register in the interrupt service routine is used for this purpose.

The state of any given channel's interrupt request is directly affected by writes to this register; it is also affected by writes to the CINT register. On writes to INT, a 1 in any bit position clears the corresponding channel's interrupt request. A zero in any bit position has no affect on the corresponding channel's current interrupt status. The CINT register is provided so the interrupt request for a single channel can easily be cleared without the need to perform a read-modify-write sequence to the INT register.

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R								()							
w																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R						()						INT3	INT2	INT1	INT0
w													w1c	w1c	w1c	w1c
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Address: 4000_8000h base + 24h offset = 4000_8024h

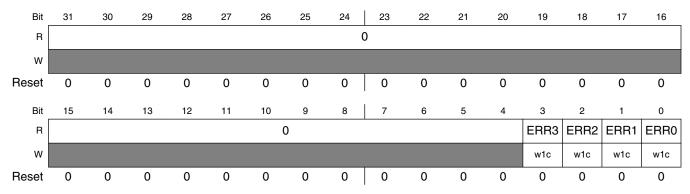
DMA	INT	field	descriptions

Field	Description
31–4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3	Interrupt Request 3
INT3	
	0 The interrupt request for corresponding channel is cleared
	1 The interrupt request for corresponding channel is active
2	Interrupt Request 2
INT2	
	0 The interrupt request for corresponding channel is cleared
	1 The interrupt request for corresponding channel is active
1	Interrupt Request 1
INT1	

Table continues on the next page ...

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

Chapter 24 Enhanced Direct Memory Access (eDMA)


Field	Description					
	0 The interrupt request for corresponding channel is cleared					
	1 The interrupt request for corresponding channel is active					
0	Interrupt Request 0					
INT0						
	0 The interrupt request for corresponding channel is cleared					
	1 The interrupt request for corresponding channel is active					

DMA_INT field descriptions (continued)

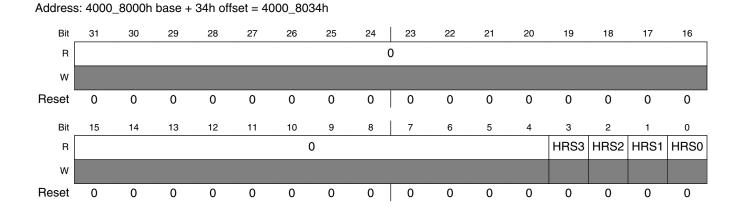
24.3.14 Error Register (DMA_ERR)

The ERR provides a bit map for the 4 channels, signaling the presence of an error for each channel. The eDMA engine signals the occurrence of an error condition by setting the appropriate bit in this register. The outputs of this register are enabled by the contents of the EEI, and then routed to the interrupt controller. During the execution of the interrupt-service routine associated with any DMA errors, it is software's responsibility to clear the appropriate bit, negating the error-interrupt request. Typically, a write to the CERR in the interrupt-service routine is used for this purpose. The normal DMA channel completion indicators (setting the transfer control descriptor DONE flag and the possible assertion of an interrupt request) are not affected when an error is detected.

The contents of this register can also be polled because a non-zero value indicates the presence of a channel error regardless of the state of the EEI. The state of any given channel's error indicators is affected by writes to this register; it is also affected by writes to the CERR. On writes to the ERR, a one in any bit position clears the corresponding channel's error status. A zero in any bit position has no affect on the corresponding channel's current error status. The CERR is provided so the error indicator for a single channel can easily be cleared.

Address: 4000_8000h base + 2Ch offset = 4000_802Ch

Field	Description					
31–4	This field is reserved.					
Reserved	This read-only field is reserved and always has the value 0.					
3 ERR3	Error In Channel 3					
	0 An error in this channel has not occurred					
	1 An error in this channel has occurred					
2 ERR2	Error In Channel 2					
	0 An error in this channel has not occurred					
	1 An error in this channel has occurred					
1 ERR1	Error In Channel 1					
	0 An error in this channel has not occurred					
	1 An error in this channel has occurred					
0 ERR0	Error In Channel 0					
	0 An error in this channel has not occurred					
	1 An error in this channel has occurred					

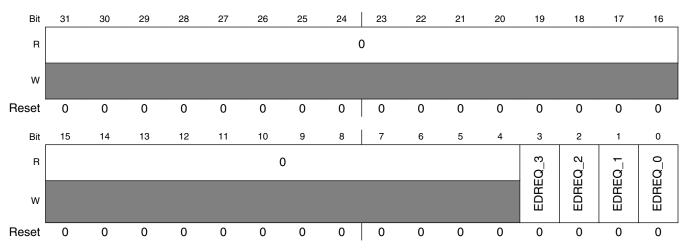

DMA_ERR field descriptions

24.3.15 Hardware Request Status Register (DMA_HRS)

The HRS register provides a bit map for the DMA channels, signaling the presence of a hardware request for each channel. The hardware request status bits reflect the current state of the register and qualified (via the ERQ fields) DMA request signals as seen by the DMA's arbitration logic. This view into the hardware request signals may be used for debug purposes.

NOTE

These bits reflect the state of the request as seen by the arbitration logic. Therefore, this status is affected by the ERQ bits.

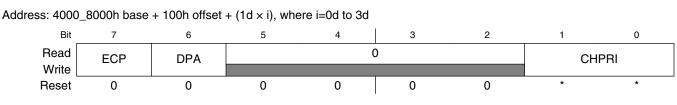

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

DMA_HRS field descriptions

Field	Description
31–4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
3 HRS3	Hardware Request Status Channel 3
	The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware.
	0 A hardware service request for channel 3 is not present
	1 A hardware service request for channel 3 is present
2 HRS2	Hardware Request Status Channel 2
	The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware.
	0 A hardware service request for channel 2 is not present
	1 A hardware service request for channel 2 is present
1 HRS1	Hardware Request Status Channel 1
	The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware.
	0 A hardware service request for channel 1 is not present
	1 A hardware service request for channel 1 is present
0 HRS0	Hardware Request Status Channel 0
	The HRS bit for its respective channel remains asserted for the period when a Hardware Request is Present on the Channel. After the Request is completed and Channel is free, the HRS bit is automatically cleared by hardware.
	0 A hardware service request for channel 0 is not present
	1 A hardware service request for channel 0 is present

24.3.16 Enable Asynchronous Request in Stop Register (DMA_EARS)

Address: 4000_8000h base + 44h offset = 4000_8044h


DMA_EARS field descriptions

Field	Description
31–4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3 EDREQ 3	Enable asynchronous DMA request in stop mode for channel 3.
_	0 Disable asynchronous DMA request for channel 3.
	1 Enable asynchronous DMA request for channel 3.
2 EDREQ_2	Enable asynchronous DMA request in stop mode for channel 2.
	0 Disable asynchronous DMA request for channel 2.
	1 Enable asynchronous DMA request for channel 2.
1 EDREQ_1	Enable asynchronous DMA request in stop mode for channel 1.
	0 Disable asynchronous DMA request for channel 1
	1 Enable asynchronous DMA request for channel 1.
0 EDREQ_0	Enable asynchronous DMA request in stop mode for channel 0.
	0 Disable asynchronous DMA request for channel 0.
	1 Enable asynchronous DMA request for channel 0.

24.3.17 Channel n Priority Register (DMA_DCHPRIn)

When fixed-priority channel arbitration is enabled (CR[ERCA] = 0), the contents of these registers define the unique priorities associated with each channel. The channel priorities are evaluated by numeric value; for example, 0 is the lowest priority, 1 is the next higher priority, then 2, 3, etc. Software must program the channel priorities with unique values; otherwise, a configuration error is reported. The range of the priority value is limited to the values of 0 through 3.

* Notes:

Field

• CHPRI field: See bit field description.

-
Description
Enable Channel Preemption.
Channel n cannot be suspended by a bigher priority channel's service request

DMA_DCHPRIn field descriptions

ECP	 0 Channel n cannot be suspended by a higher priority channel's service request. 1 Channel n can be temporarily suspended by the service request of a higher priority channel.
6 DPA	 Disable Preempt Ability. O Channel n can suspend a lower priority channel. 1 Channel n cannot suspend any channel, regardless of channel priority.
5–2 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
1–0 CHPRI	 Channel n Arbitration Priority Channel priority when fixed-priority arbitration is enabled NOTE: Reset value for the channel priority field, CHPRI, is equal to the corresponding channel number for each priority register, that is, DCHPRI3[CHPRI] = 0b11.

24.3.18 TCD Source Address (DMA_TCDn_SADDR)

Address: 4000_{8000h} base + 1000h offset + $(32d \times i)$, where i=0d to 3d

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R																SAD	DR															
Reset	x *	x*																														

* Notes:

• x = Undefined at reset.

DMA_TCDn_SADDR field descriptions

Field	Description
31–0 SADDR	Source Address
-	Memory address pointing to the source data.

24.3.19 TCD Signed Source Address Offset (DMA_TCDn_SOFF)

Address	: 4000 <u></u>	_8000h	base +	1004h	offset +	$(32d \times$	i), whei	re i=0d	to 3d							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read Write								SC	DFF							
Reset	Х*	х*	Х*	Х*	x*	х*	x*	Х*	x*	Х*	х*	х*	х*	х*	х*	x *

* Notes:

• x = Undefined at reset.

DMA_TCDn_SOFF field descriptions

Field	Description
SOFF	Source address signed offset Sign-extended offset applied to the current source address to form the next-state value as each source read is completed.

24.3.20 TCD Transfer Attributes (DMA_TCDn_ATTR)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read Write			SMOD				SSIZE				DMOD				DSIZE	
Reset	Х*	Х*	Х*	X*	х*	Х*	Х*	Х*	x*	Х*	Х*	Х*	Х*	X*	Х*	X*

Address: 4000_8000h base + 1006h offset + $(32d \times i)$, where i=0d to 3d

* Notes:

• x = Undefined at reset.

Field	Description
15–11 SMOD	Source Address Modulo
	0 Source address modulo feature is disabled
	≠0 This value defines a specific address range specified to be the value after SADDR + SOFF calculation is performed on the original register value. Setting this field provides the ability to implement a circular data queue easily. For data queues requiring power-of-2 size bytes, the queue should start at a 0-modulo-size address and the SMOD field should be set to the appropriate value for the queue, freezing the desired number of upper address bits. The value programmed into this field specifies the number of lower address bits allowed to change. For a circular queue application, the SOFF is typically set to the transfer size to implement post-increment addressing with the SMOD function constraining the addresses to a 0-modulo-size range.
10–8 SSIZE	Source data transfer size
	NOTE: Using a Reserved value causes a configuration error.
	000 8-bit
	001 16-bit
	010 32-bit
	011 Reserved
	100 16-byte burst
	101 32-byte burst
	110 Reserved
	111 Reserved
7–3 DMOD	Destination Address Modulo
DIVIOD	See the SMOD definition
2–0 DSIZE	Destination data transfer size
	See the SSIZE definition

DMA_TCDn_ATTR field descriptions

24.3.21 TCD Minor Byte Count (Minor Loop Disabled) (DMA_TCDn_NBYTES_MLNO)

This register, or one of the next two registers (TCD_NBYTES_MLOFFNO, TCD_NBYTES_MLOFFYES), defines the number of bytes to transfer per request. Which register to use depends on whether minor loop mapping is disabled, enabled but not used for this channel, or enabled and used.

TCD word 2 is defined as follows if:

• Minor loop mapping is disabled (CR[EMLM] = 0)

If minor loop mapping is enabled, see the TCD_NBYTES_MLOFFNO and TCD_NBYTES_MLOFFYES register descriptions for the definition of TCD word 2.

Address: 4000_8000h base + 1008h offset + (32d \times i), where i=0d to 3d

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R W															1	NBY	TES	3														
Reset	х*	Х*	x *	x *	х*	х*	х*	х*	x *	х*	х*	х*	x *	x *	х*	х*	x *	х*	x *													

* Notes:

• x = Undefined at reset.

DMA_TCDn_NBYTES_MLNO field descriptions

Field	Description
31–0 NBYTES	Minor Byte Transfer Count Number of bytes to be transferred in each service request of the channel. As a channel activates, the appropriate TCD contents load into the eDMA engine, and the appropriate reads and writes perform until the minor byte transfer count has transferred. This is an indivisible operation and cannot be halted. It can, however, be stalled by using the bandwidth control field, or via preemption. After the minor count is exhausted, the SADDR and DADDR values are written back into the TCD memory, the major iteration count is decremented and restored to the TCD memory. If the major iteration count is completed, additional processing is performed. NOTE: An NBYTES value of 0x0000_0000 is interpreted as a 4 GB transfer.

24.3.22 TCD Signed Minor Loop Offset (Minor Loop Enabled and Offset Disabled) (DMA_TCDn_NBYTES_MLOFFNO)

One of three registers (this register, TCD_NBYTES_MLNO, or TCD_NBYTES_MLOFFYES), defines the number of bytes to transfer per request. Which register to use depends on whether minor loop mapping is disabled, enabled but not used for this channel, or enabled and used.

TCD word 2 is defined as follows if:

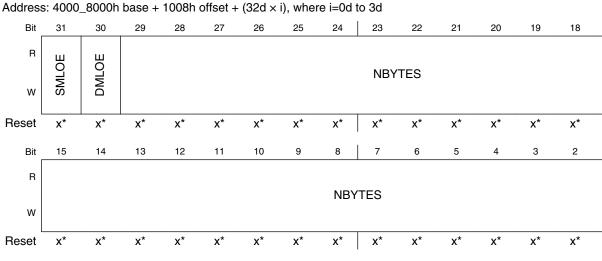
17

х*

1

х*

16


х*

0

х*

- Minor loop mapping is enabled (CR[EMLM] = 1) and
- SMLOE = 0 and DMLOE = 0

If minor loop mapping is enabled and SMLOE or DMLOE is set, then refer to the TCD_NBYTES_MLOFFYES register description. If minor loop mapping is disabled, then refer to the TCD_NBYTES_MLNO register description.

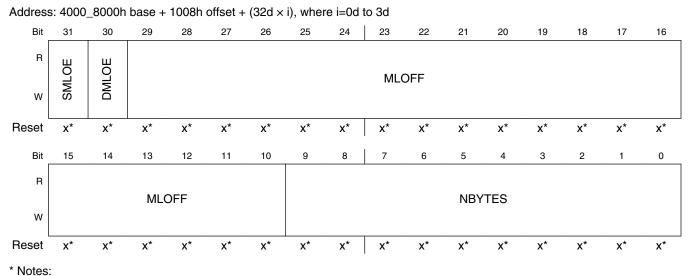
* Notes:

• x = Undefined at reset.

DMA_TCDn_NBYTES_MLOFFNO field descriptions

Field	Description
31 SMLOE	Source Minor Loop Offset Enable
	Selects whether the minor loop offset is applied to the source address upon minor loop completion.
	0 The minor loop offset is not applied to the SADDR
	1 The minor loop offset is applied to the SADDR
30 DMLOE	Destination Minor Loop Offset enable
	Selects whether the minor loop offset is applied to the destination address upon minor loop completion.
	0 The minor loop offset is not applied to the DADDR
	1 The minor loop offset is applied to the DADDR
29–0 NBYTES	Minor Byte Transfer Count
	Number of bytes to be transferred in each service request of the channel.
	As a channel activates, the appropriate TCD contents load into the eDMA engine, and the appropriate reads and writes perform until the minor byte transfer count has transferred. This is an indivisible operation and cannot be halted. It can, however, be stalled by using the bandwidth control field, or via preemption. After the minor count is exhausted, the SADDR and DADDR values are written back into the TCD memory, the major iteration count is decremented and restored to the TCD memory. If the major iteration count is completed, additional processing is performed.

24.3.23 TCD Signed Minor Loop Offset (Minor Loop and Offset Enabled) (DMA_TCDn_NBYTES_MLOFFYES)


One of three registers (this register, TCD_NBYTES_MLNO, or

TCD_NBYTES_MLOFFNO), defines the number of bytes to transfer per request. Which register to use depends on whether minor loop mapping is disabled, enabled but not used for this channel, or enabled and used.

TCD word 2 is defined as follows if:

- Minor loop mapping is enabled (CR[EMLM] = 1) and
- Minor loop offset is enabled (SMLOE or DMLOE = 1)

If minor loop mapping is enabled and SMLOE and DMLOE are cleared, then refer to the TCD_NBYTES_MLOFFNO register description. If minor loop mapping is disabled, then refer to the TCD_NBYTES_MLNO register description.

x = Undefined at reset.

DMA_TCDn_NBYTES_MLOFFYES field descriptions

Field	Description
31 SMLOE	Source Minor Loop Offset Enable
0	Selects whether the minor loop offset is applied to the source address upon minor loop completion.
	0 The minor loop offset is not applied to the SADDR
	1 The minor loop offset is applied to the SADDR
30 DMLOE	Destination Minor Loop Offset enable
DIVILUE	Selects whether the minor loop offset is applied to the destination address upon minor loop completion.

Table continues on the next page...

DMA_TCDn_NBYTES_MLOFFYES field descriptions (continued)

Field	Description
	0 The minor loop offset is not applied to the DADDR
	1 The minor loop offset is applied to the DADDR
29–10	If SMLOE or DMLOE is set, this field represents a sign-extended offset applied to the source or
MLOFF	destination address to form the next-state value after the minor loop completes.
9–0 NBYTES	Minor Byte Transfer Count
	Number of bytes to be transferred in each service request of the channel.
	As a channel activates, the appropriate TCD contents load into the eDMA engine, and the appropriate reads and writes perform until the minor byte transfer count has transferred. This is an indivisible operation and cannot be halted. It can, however, be stalled by using the bandwidth control field, or via preemption. After the minor count is exhausted, the SADDR and DADDR values are written back into the TCD memory, the major iteration count is decremented and restored to the TCD memory. If the major iteration count is completed, additional processing is performed.

24.3.24 TCD Last Source Address Adjustment (DMA_TCDn_SLAST)

Add	lres	s: 4(000	_80()0h	bas	e +	100	Cho	offse	et +	(320	i × I), wl	nere	e i=0	d to	3d														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R W	-			-											-	SLA	\ ST					-										
Reset	х*	х*	x *	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	x*	х*	х*	х*	х*	х*	x *	х*	x *							

* Notes:

• x = Undefined at reset.

DMA_TCDn_SLAST field descriptions

Field	Description
31–0 SLAST	Last Source Address Adjustment Adjustment value added to the source address at the completion of the major iteration count. This value can be applied to restore the source address to the initial value, or adjust the address to reference the next data structure.
	This register uses two's complement notation; the overflow bit is discarded.

24.3.25 TCD Destination Address (DMA_TCDn_DADDR)

Add	lres	s: 40	000_	_800	00h	bas	e +	101()h o	ffse	t + (32d	× i)	, wł	ere	i=00	d to	3d														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R W										-			-			DAD	DDR	ł														
Reset	х*	Х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	х*	Х*	х*	X *

* Notes:

• x = Undefined at reset.

wemory map/register definition

DMA	_TCDn	DADDR fie	Id descriptions
-----	-------	-----------	-----------------

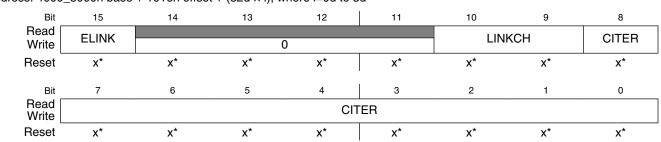
Field	Description
31–0 DADDR	Destination Address
	Memory address pointing to the destination data.

24.3.26 TCD Signed Destination Address Offset (DMA_TCDn_DOFF)

Address: 4000_8000h base + 1014h offset + ($32d \times i$), where i=0d to 3d

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read Write								DC	FF							
Reset	х*	X*	Х*	х*	х*	х*	Х*	х*	x *							

* Notes:


• x = Undefined at reset.

DMA_TCDn_DOFF field descriptions

Field	Description
15–0 DOFF	Destination Address Signed Offset
	Sign-extended offset applied to the current destination address to form the next-state value as each destination write is completed.

24.3.27 TCD Current Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCD*n*_CITER_ELINKYES)

If TCDn_CITER[ELINK] is set, the TCDn_CITER register is defined as follows.

Address: 4000_8000h base + 1016h offset + ($32d \times i$), where i=0d to 3d

* Notes:

• x = Undefined at reset.

DMA_TCDn_CITER_ELINKYES field descriptions

Field	Description
15	Enable channel-to-channel linking on minor-loop complete
ELINK	As the channel completes the minor loop, this flag enables linking to another channel, defined by the LINKCH field. The link target channel initiates a channel service request via an internal mechanism that sets the TCDn_CSR[START] bit of the specified channel.
	If channel linking is disabled, the CITER value is extended to 15 bits in place of a link channel number. If the major loop is exhausted, this link mechanism is suppressed in favor of the MAJORELINK channel linking.
	NOTE: This bit must be equal to the BITER[ELINK] bit; otherwise, a configuration error is reported.
	0 The channel-to-channel linking is disabled
	1 The channel-to-channel linking is enabled
14–11 Reserved	This field is reserved.
10–9 LINKCH	Link Channel Number
LINKOH	If channel-to-channel linking is enabled (ELINK = 1), then after the minor loop is exhausted, the eDMA engine initiates a channel service request to the channel defined by this field by setting that channel's TCDn_CSR[START] bit.
8–0	Current Major Iteration Count
CITER	This 9-bit (ELINK = 1) or 15-bit (ELINK = 0) count represents the current major loop count for the channel. It is decremented each time the minor loop is completed and updated in the transfer control descriptor memory. After the major iteration count is exhausted, the channel performs a number of operations, for example, final source and destination address calculations, optionally generating an interrupt to signal channel completion before reloading the CITER field from the Beginning Iteration Count (BITER) field.
	NOTE: When the CITER field is initially loaded by software, it must be set to the same value as that contained in the BITER field.
	NOTE: If the channel is configured to execute a single service request, the initial values of BITER and CITER should be 0x0001.

24.3.28 TCD Current Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCD*n*_CITER_ELINKNO)

If TCDn_CITER[ELINK] is cleared, the TCDn_CITER register is defined as follows.

Address: 4000_8000h base + 1016h offset + $(32d \times i)$, where i=0d to 3d Bit 15 14 13 12 11 10 9 8 Read ELINK CITER Write Reset х* х* х* х* х* х* х* х* Bit 7 6 5 4 3 2 1 0 Read CITER Write Reset х* х* х* х* х* х* х* х*

* Notes:

• x = Undefined at reset.

DMA_TCDn_CITER_ELINKNO field descriptions

Field	Description
15 ELINK	Enable channel-to-channel linking on minor-loop complete
	As the channel completes the minor loop, this flag enables linking to another channel, defined by the LINKCH field. The link target channel initiates a channel service request via an internal mechanism that sets the TCDn_CSR[START] bit of the specified channel.
	If channel linking is disabled, the CITER value is extended to 15 bits in place of a link channel number. If the major loop is exhausted, this link mechanism is suppressed in favor of the MAJORELINK channel linking.
	NOTE: This bit must be equal to the BITER[ELINK] bit; otherwise, a configuration error is reported.
	0 The channel-to-channel linking is disabled
	1 The channel-to-channel linking is enabled
14–0	Current Major Iteration Count
CITER	This 9-bit (ELINK = 1) or 15-bit (ELINK = 0) count represents the current major loop count for the channel. It is decremented each time the minor loop is completed and updated in the transfer control descriptor memory. After the major iteration count is exhausted, the channel performs a number of operations, for example, final source and destination address calculations, optionally generating an interrupt to signal channel completion before reloading the CITER field from the Beginning Iteration Count (BITER) field.
	NOTE: When the CITER field is initially loaded by software, it must be set to the same value as that contained in the BITER field.
	NOTE: If the channel is configured to execute a single service request, the initial values of BITER and CITER should be 0x0001.

24.3.29 TCD Last Destination Address Adjustment/Scatter Gather Address (DMA_TCDn_DLASTSGA)

Address: 4000_8000h base + 1018h offset + ($32d \times i$), where i=0d to 3d

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R W															DI	AS	TSC	ΞA														
Reset	х*	x *	х*	X*																												

* Notes:

x = Undefined at reset.

DMA_TCDn_DLASTSGA field descriptions

Field	Description
31–0 DLASTSGA	Destination last address adjustment or the memory address for the next transfer control descriptor to be loaded into this channel (scatter/gather).
	If (TCDn_CSR[ESG] = 0) then:
	 Adjustment value added to the destination address at the completion of the major iteration count. This value can apply to restore the destination address to the initial value or adjust the address to reference the next data structure. This field uses two's complement notation for the final destination address adjustment.
	Otherwise:
	 This address points to the beginning of a 0-modulo-32-byte region containing the next transfer control descriptor to be loaded into this channel. This channel reload is performed as the major iteration count completes. The scatter/gather address must be 0-modulo-32-byte, otherwise a configuration error is reported.

24.3.30 TCD Control and Status (DMA_TCDn_CSR)

Bit	15	14	13	12	11	10	9	8
Read Write	B\	NC		()		MAJORI	INKCH
Reset	Х*	Х*	X*	X*	X*	Х*	X*	X*
Bit	7	6	5	4	3	2	1	0
Read Write	DONE	ACTIVE	MAJORELI NK	ESG	DREQ	INTHALF	INTMAJOR	START
Reset	X*	x*	x*	x*	X*	x*	x*	X*

Address: 4000_8000h base + 101Ch offset + $(32d \times i)$, where i=0d to 3d

* Notes:

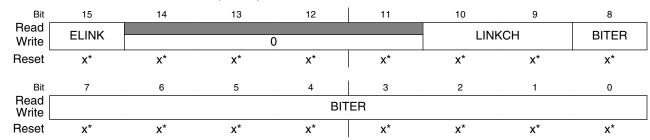
• x = Undefined at reset.

wemory map/register definition

Field	Description							
15–14	Bandwidth Control							
BWC	Throttles the amount of bus bandwidth consumed by the eDMA. Generally, as the eDMA processes the minor loop, it continuously generates read/write sequences until the minor count is exhausted. This field forces the eDMA to stall after the completion of each read/write access to control the bus request bandwidth seen by the crossbar switch.							
	NOTE: If the source and destination sizes are equal, this field is ignored between the first and second transfers and after the last write of each minor loop. This behavior is a side effect of reducing start-up latency.							
	00 No eDMA engine stalls							
	01 Reserved							
	10 eDMA engine stalls for 4 cycles after each R/W.							
	11 eDMA engine stalls for 8 cycles after each R/W.							
13–10 Reserved	This field is reserved.							
9–8	Link Channel Number							
MAJORLINKCH	 If (MAJORELINK = 0) then: No channel-to-channel linking, or chaining, is performed after the major loop counter is exhausted. 							
	Otherwise:							
	 After the major loop counter is exhausted, the eDMA engine initiates a channel service request at the channel defined by this field by setting that channel's TCDn_CSR[START] bit. 							
7	Channel Done							
DONE	This flag indicates the eDMA has completed the major loop. The eDMA engine sets it as the CITER count reaches zero. The software clears it, or the hardware when the channel is activated.							
	NOTE: This bit must be cleared to write the MAJORELINK or ESG bits.							
6	Channel Active							
ACTIVE	This flag signals the channel is currently in execution. It is set when channel service begins, and is cleared by the eDMA as the minor loop completes or when any error condition is detected.							
5	Enable channel-to-channel linking on major loop complete							
MAJORELINK	As the channel completes the major loop, this flag enables the linking to another channel, defined by MAJORLINKCH. The link target channel initiates a channel service request via an internal mechanism that sets the TCDn_CSR[START] bit of the specified channel.							
	NOTE: To support the dynamic linking coherency model, this field is forced to zero when written to while the TCDn_CSR[DONE] bit is set.							
	0 The channel-to-channel linking is disabled.							
	1 The channel-to-channel linking is enabled.							
4	Enable Scatter/Gather Processing							
ESG	As the channel completes the major loop, this flag enables scatter/gather processing in the current channel. If enabled, the eDMA engine uses DLASTSGA as a memory pointer to a 0-modulo-32 address containing a 32-byte data structure loaded as the transfer control descriptor into the local memory.							
	NOTE: To support the dynamic scatter/gather coherency model, this field is forced to zero when written to while the TCDn_CSR[DONE] bit is set.							
	Table continues on the next page							

DMA_TCDn_CSR field descriptions

Table continues on the next page...


DMA_TCDn_CSR field descriptions (continued)

Field	Description
	0 The current channel's TCD is normal format.
	1 The current channel's TCD specifies a scatter gather format. The DLASTSGA field provides a memory pointer to the next TCD to be loaded into this channel after the major loop completes its execution.
3 DREQ	Disable Request
	If this flag is set, the eDMA hardware automatically clears the corresponding ERQ bit when the current major iteration count reaches zero.
	0 The channel's ERQ bit is not affected.
	1 The channel's ERQ bit is cleared when the major loop is complete.
2	Enable an interrupt when major counter is half complete.
INTHALF	If this flag is set, the channel generates an interrupt request by setting the appropriate bit in the INT register when the current major iteration count reaches the halfway point. Specifically, the comparison performed by the eDMA engine is (CITER == (BITER >> 1)). This halfway point interrupt request is provided to support double-buffered, also known as ping-pong, schemes or other types of data movement where the processor needs an early indication of the transfer's progress.
	NOTE: If BITER = 1, do not use INTHALF. Use INTMAJOR instead.
	0 The half-point interrupt is disabled.
	1 The half-point interrupt is enabled.
	Enable an interrupt when major iteration count completes.
INTMAJOR	If this flag is set, the channel generates an interrupt request by setting the appropriate bit in the INT when the current major iteration count reaches zero.
	0 The end-of-major loop interrupt is disabled.
	1 The end-of-major loop interrupt is enabled.
0 START	Channel Start
START	If this flag is set, the channel is requesting service. The eDMA hardware automatically clears this flag after the channel begins execution.
	0 The channel is not explicitly started.
	1 The channel is explicitly started via a software initiated service request.

24.3.31 TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Enabled) (DMA_TCDn_BITER_ELINKYES)

If the TCDn_BITER[ELINK] bit is set, the TCDn_BITER register is defined as follows.

Address: 4000_8000h base + 101Eh offset + (32d \times i), where i=0d to 3d

* Notes:

• x = Undefined at reset.

DMA_TCDn_BITER_ELINKYES	S field descriptions
-------------------------	----------------------

Field	Description						
15 ELINK	Enables channel-to-channel linking on minor loop complete						
	As the channel completes the minor loop, this flag enables the linking to another channel, defined by BITER[LINKCH]. The link target channel initiates a channel service request via an internal mechanism that sets the TCDn_CSR[START] bit of the specified channel. If channel linking disables, the BITER value extends to 15 bits in place of a link channel number. If the major loop is exhausted, this link mechanism is suppressed in favor of the MAJORELINK channel linking.						
	NOTE: When the software loads the TCD, this field must be set equal to the corresponding CITER field; otherwise, a configuration error is reported. As the major iteration count is exhausted, the contents of this field are reloaded into the CITER field.						
	0 The channel-to-channel linking is disabled						
	1 The channel-to-channel linking is enabled						
14–11 Reserved	This field is reserved.						
10–9	Link Channel Number						
LINKCH	If channel-to-channel linking is enabled (ELINK = 1), then after the minor loop is exhausted, the eDMA engine initiates a channel service request at the channel defined by this field by setting that channel's TCDn_CSR[START] bit.						
	NOTE: When the software loads the TCD, this field must be set equal to the corresponding CITER field; otherwise, a configuration error is reported. As the major iteration count is exhausted, the contents of this field are reloaded into the CITER field.						
8–0	Starting major iteration count						
BITER	As the transfer control descriptor is first loaded by software, this 9-bit (ELINK = 1) or 15-bit (ELINK = 0) field must be equal to the value in the CITER field. As the major iteration count is exhausted, the contents of this field are reloaded into the CITER field.						

Table continues on the next page...

Field		Description
	NOTE:	When the software loads the TCD, this field must be set equal to the corresponding CITER field;
		otherwise, a configuration error is reported. As the major iteration count is exhausted, the
		contents of this field are reloaded into the CITER field. If the channel is configured to execute a
		single service request, the initial values of BITER and CITER should be 0x0001.

DMA_TCDn_BITER_ELINKYES field descriptions (continued)

24.3.32 TCD Beginning Minor Loop Link, Major Loop Count (Channel Linking Disabled) (DMA_TCDn_BITER_ELINKNO)

If the TCDn_BITER[ELINK] bit is cleared, the TCDn_BITER register is defined as follows.

Address: 4000_8000h base + 101Eh offset + (32d × i), where i=0d to 3d

Bit	15	14	13	12	11	10	9	8
Read Write	ELINK				BITER			
Reset	X*	X*	x *	x *	X*	X *	X*	X*
Bit	7	6	5	4	3	2	1	0
Read Write				BIT	ER			
Reset	Х*	Х*	x *	Х*				

* Notes:

• x = Undefined at reset.

DMA_	_TCDn_	BITER	_ELINKNO	field	descriptions
------	--------	-------	----------	-------	--------------

Field	Description
15 ELINK	Enables channel-to-channel linking on minor loop complete
	As the channel completes the minor loop, this flag enables the linking to another channel, defined by BITER[LINKCH]. The link target channel initiates a channel service request via an internal mechanism that sets the TCDn_CSR[START] bit of the specified channel. If channel linking is disabled, the BITER value extends to 15 bits in place of a link channel number. If the major loop is exhausted, this link mechanism is suppressed in favor of the MAJORELINK channel linking.
	NOTE: When the software loads the TCD, this field must be set equal to the corresponding CITER field; otherwise, a configuration error is reported. As the major iteration count is exhausted, the contents of this field are reloaded into the CITER field.
	0 The channel-to-channel linking is disabled
	1 The channel-to-channel linking is enabled
14–0	Starting Major Iteration Count
BITER	As the transfer control descriptor is first loaded by software, this 9-bit (ELINK = 1) or 15-bit (ELINK = 0) field must be equal to the value in the CITER field. As the major iteration count is exhausted, the contents of this field are reloaded into the CITER field.
	NOTE: When the software loads the TCD, this field must be set equal to the corresponding CITER field; otherwise, a configuration error is reported. As the major iteration count is exhausted, the
	Table continues on the next page

Table continues on the next page...

Field	Description
	contents of this field is reloaded into the CITER field. If the channel is configured to execute a single service request, the initial values of BITER and CITER should be 0x0001.

DMA_TCDn_BITER_ELINKNO field descriptions (continued)

24.4 Functional description

The operation of the eDMA is described in the following subsections.

24.4.1 eDMA basic data flow

The basic flow of a data transfer can be partitioned into three segments.

As shown in the following diagram, the first segment involves the channel activation:

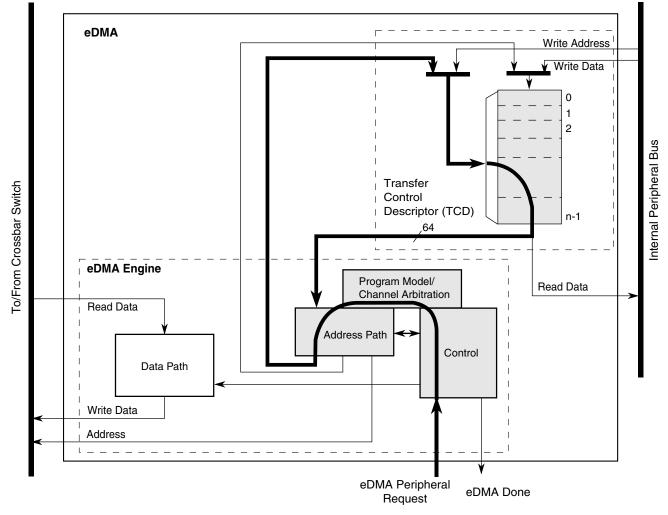


Figure 24-98. eDMA operation, part 1

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

Chapter 24 Enhanced Direct Memory Access (eDMA)

This example uses the assertion of the eDMA peripheral request signal to request service for channel *n*. Channel activation via software and the $TCDn_CSR[START]$ bit follows the same basic flow as peripheral requests. The eDMA request input signal is registered internally and then routed through the eDMA engine: first through the control module, then into the program model and channel arbitration. In the next cycle, the channel arbitration performs, using the fixed-priority or round-robin algorithm. After arbitration is complete, the activated channel number is sent through the address path and converted into the required address to access the local memory for TCDn. Next, the TCD memory is accessed and the required descriptor read from the local memory and loaded into the eDMA engine address path channel x or y registers. The TCD memory is 64 bits wide to minimize the time needed to fetch the activated channel descriptor and load it into the address path channel x or y registers.

The following diagram illustrates the second part of the basic data flow:

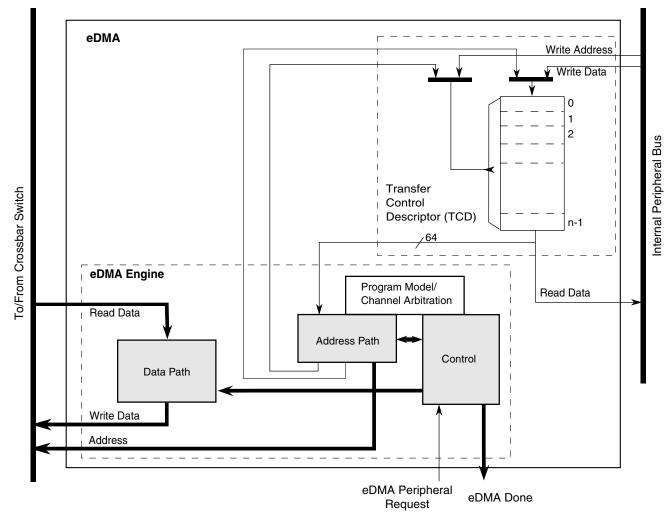


Figure 24-99. eDMA operation, part 2

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

runctional description

The modules associated with the data transfer (address path, data path, and control) sequence through the required source reads and destination writes to perform the actual data movement. The source reads are initiated and the fetched data is temporarily stored in the data path block until it is gated onto the internal bus during the destination write. This source read/destination write processing continues until the minor byte count has transferred.

After the minor byte count has moved, the final phase of the basic data flow is performed. In this segment, the address path logic performs the required updates to certain fields in the appropriate TCD, e.g., SADDR, DADDR, CITER. If the major iteration count is exhausted, additional operations are performed. These include the final address adjustments and reloading of the BITER field into the CITER. Assertion of an optional interrupt request also occurs at this time, as does a possible fetch of a new TCD from memory using the scatter/gather address pointer included in the descriptor (if scatter/gather is enabled). The updates to the TCD memory and the assertion of an interrupt request are shown in the following diagram.

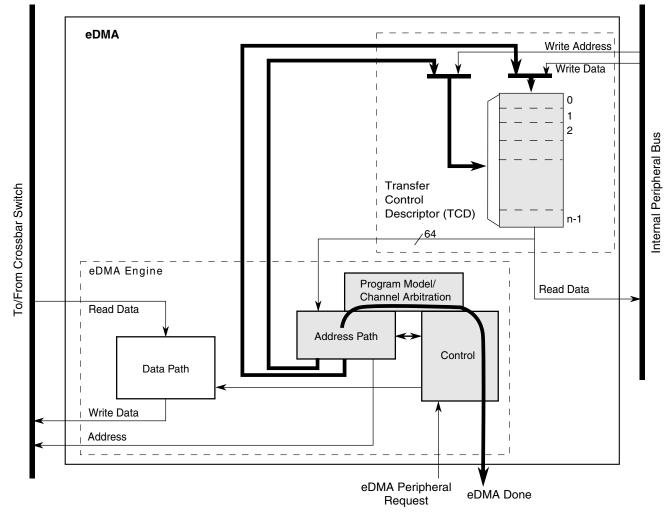


Figure 24-100. eDMA operation, part 3

24.4.2 Fault reporting and handling

Channel errors are reported in the Error Status register (DMAx_ES) and can be caused by:

- A configuration error, which is an illegal setting in the transfer-control descriptor or an illegal priority register setting in Fixed-Arbitration mode, or
- An error termination to a bus master read or write cycle

A configuration error is reported when the starting source or destination address, source or destination offsets, minor loop byte count, or the transfer size represent an inconsistent state. Each of these possible causes are detailed below:

- The addresses and offsets must be aligned on 0-modulo-transfer-size boundaries.
- The minor loop byte count must be a multiple of the source and destination transfer sizes.
- All source reads and destination writes must be configured to the natural boundary of the programmed transfer size respectively.
- In fixed arbitration mode, a configuration error is caused by any two channel priorities being equal. All channel priority levels must be unique when fixed arbitration mode is enabled.

NOTE

When two channels have the same priority, a channel priority error exists and will be reported in the Error Status register. However, the channel number will not be reported in the Error Status register. When all of the channel priorities within a group are not unique, the channel number selected by arbitration in undetermined.

To aid in Channel Priority Error (CPE) debug, set the Halt On Error bit in the DMA's Control Register. If all of the channel priorities within a group are not unique, the DMA will be halted after the CPE error is recorded. The DMA will remain halted and will not process any channel service requests. Once all of the channel priorities are set to unique numbers, the DMA may be enabled again by clearing the Halt bit.

runctional description

- If a scatter/gather operation is enabled upon channel completion, a configuration error is reported if the scatter/gather address (DLAST_SGA) is not aligned on a 32-byte boundary.
- If minor loop channel linking is enabled upon channel completion, a configuration error is reported when the link is attempted if the TCDn_CITER[E_LINK] bit does not equal the TCDn_BITER[E_LINK] bit.

If enabled, all configuration error conditions, except the scatter/gather and minor-loop link errors, report as the channel activates and asserts an error interrupt request. A scatter/ gather configuration error is reported when the scatter/gather operation begins at major loop completion when properly enabled. A minor loop channel link configuration error is reported when the link operation is serviced at minor loop completion.

If a system bus read or write is terminated with an error, the data transfer is stopped and the appropriate bus error flag set. In this case, the state of the channel's transfer control descriptor is updated by the eDMA engine with the current source address, destination address, and current iteration count at the point of the fault. When a system bus error occurs, the channel terminates after the next transfer. Due to pipeline effect, the next transfer is already in progress when the bus error is received by the eDMA. If a bus error occurs on the last read prior to beginning the write sequence, the write executes using the data captured during the bus error. If a bus error occurs on the last write prior to switching to the next read sequence, the read sequence executes before the channel terminates due to the destination bus error.

A transfer may be cancelled by software with the CR[CX] bit. When a cancel transfer request is recognized, the DMA engine stops processing the channel. The current read-write sequence is allowed to finish. If the cancel occurs on the last read-write sequence of a major or minor loop, the cancel request is discarded and the channel retires normally.

The error cancel transfer is the same as a cancel transfer except the Error Status register (DMAx_ES) is updated with the cancelled channel number and ECX is set. The TCD of a cancelled channel contains the source and destination addresses of the last transfer saved in the TCD. If the channel needs to be restarted, you must re-initialize the TCD because the aforementioned fields no longer represent the original parameters. When a transfer is cancelled by the error cancel transfer mechanism, the channel number is loaded into DMA_ES[ERRCHN] and ECX and VLD are set. In addition, an error interrupt may be generated if enabled.

NOTE

The cancel transfer request allows the user to stop a large data transfer should the full data transfer no longer be needed. The cancel transfer bit does not abort the channel. It simply stops the transferring of data and then retires the channel through its normal shutdown sequence. The application software must handle the context of the cancel. If an interrupt is desired (or not), then the interrupt should be enabled (or disabled) before the cancel request. The application software must clean up the transfer control descriptor since the full transfer did not occur.

The occurrence of any error causes the eDMA engine to stop normal processing of the active channel immediately (it goes to its error processing states and the transaction to the system bus still has pipeline effect), and the appropriate channel bit in the eDMA error register is asserted. At the same time, the details of the error condition are loaded into the Error Status register (DMAx_ES). The major loop complete indicators, setting the transfer control descriptor DONE flag and the possible assertion of an interrupt request, are not affected when an error is detected. After the error status has been updated, the eDMA engine continues operating by servicing the next appropriate channel. A channel that experiences an error condition is not automatically disabled. If a channel is terminated by an error and then issues another service request before the error is fixed, that channel executes and terminates with the same error condition.

24.4.3 Channel preemption

Channel preemption is enabled on a per-channel basis by setting the DCHPRIn[ECP] bit. Channel preemption allows the executing channel's data transfers to temporarily suspend in favor of starting a higher priority channel. After the preempting channel has completed all its minor loop data transfers, the preempted channel is restored and resumes execution. After the restored channel completes one read/write sequence, it is again eligible for preemption. If any higher priority channel is requesting service, the restored channel is suspended and the higher priority channel is serviced. Nested preemption, that is, attempting to preempt a preempting channel, is not supported. After a preempting channel begins execution, it cannot be preempted. Preemption is available only when fixed arbitration is selected.

A channel's ability to preempt another channel can be disabled by setting DCHPRIn[DPA]. When a channel's preempt ability is disabled, that channel cannot suspend a lower priority channel's data transfer, regardless of the lower priority channel's ECP setting. This allows for a pool of low priority, large data-moving channels to be defined. These low priority channels can be configured to not preempt each other, thus preventing a low priority channel from consuming the preempt slot normally available to a true, high priority channel.

runctional description

24.4.4 Performance

This section addresses the performance of the eDMA module, focusing on two separate metrics:

- In the traditional data movement context, performance is best expressed as the peak data transfer rates achieved using the eDMA. In most implementations, this transfer rate is limited by the speed of the source and destination address spaces.
- In a second context where device-paced movement of single data values to/from peripherals is dominant, a measure of the requests that can be serviced in a fixed time is a more relevant metric. In this environment, the speed of the source and destination address spaces remains important. However, the microarchitecture of the eDMA also factors significantly into the resulting metric.

24.4.4.1 Peak transfer rates

The peak transfer rates for several different source and destination transfers are shown in the following tables. These tables assume:

- Internal SRAM can be accessed with zero wait-states when viewed from the system bus data phase
- All internal peripheral bus reads require two wait-states, and internal peripheral bus writes three wait-states, when viewed from the system bus data phase
- All internal peripheral bus accesses are 32-bits in size

NOTE

All architectures will not meet the assumptions listed above. See the SRAM configuration section for more information.

This table compares peak transfer rates based on different possible system speeds. Specific chips/devices may not support all system speeds listed.

Sustam Snood Width	Internal SRAM-to-	32 bit internal peripheral	Internal SRAM-to-32 bit
System Speed, Width	Internal SRAM	bus-to-Internal SRAM	internal peripheral bus
66.7 MHz, 32 bit	133.3	66.7	53.3
83.3 MHz, 32 bit	166.7	83.3	66.7
100.0 MHz, 32 bit	200.0	100.0	80.0
133.3 MHz, 32 bit	266.7	133.3	106.7
150.0 MHz, 32 bit	300.0	150.0	120.0

Table 24-101. eDMA peak transfer rates (Mbytes/sec)

Internal-SRAM-to-internal-SRAM transfers occur at the core's datapath width. For all transfers involving the internal peripheral bus, 32-bit transfer sizes are used. In all cases, the transfer rate includes the time to read the source plus the time to write the destination.

24.4.4.2 Peak request rates

The second performance metric is a measure of the number of DMA requests that can be serviced in a given amount of time. For this metric, assume that the peripheral request causes the channel to move a single internal peripheral bus-mapped operand to/from internal SRAM. The same timing assumptions used in the previous example apply to this calculation. In particular, this metric also reflects the time required to activate the channel.

The eDMA design supports the following hardware service request sequence. Note that the exact timing from Cycle 7 is a function of the response times for the channel's read and write accesses. In the case of an internal peripheral bus read and internal SRAM write, the combined data phase time is 4 cycles. For an SRAM read and internal peripheral bus write, it is 5 cycles.

Cycle		Description	
With internal peripheral bus read and internal SRAM write	With SRAM read and internal peripheral bus write		
-	1	eDMA peripheral request is asserted.	
2		The eDMA peripheral request is registered locally in the eDMA module and qualified. TCD <i>n</i> _CSR[START] bit initiated requests start at this point with the registering of the user write to TCD <i>n</i> word 7.	
3	3	Channel arbitration begins.	
	1	Channel arbitration completes. The transfer control descriptor local memory read is initiated.	
5-	-6	The first two parts of the activated channel's TCD is read from the local memory. The memory width to the eDMA engine is 64 bits, so the entire descriptor can be accessed in four cycles	
7		The first system bus read cycle is initiated, as the third part of the channel's TCD is read from the local memory. Depending on the state of the crossbar switch, arbitration at the system bus may insert an additional cycle of delay here.	
8–11 8–12		The last part of the TCD is read in. This cycle represents the first data phase for the read, and the address phase for the destination write.	
12 13		This cycle represents the data phase of the last destination write.	

Table continues on the next page...

Cycle		Description
With internal peripheral bus read and internal SRAM write	With SRAM read and internal peripheral bus write	
13	14	The eDMA engine completes the execution of the inner minor loop and prepares to write back the required TCD <i>n</i> fields into the local memory. The TCD <i>n</i> word 7 is read and checked for channel linking or scatter/gather requests.
14	15	The appropriate fields in the first part of the TCD <i>n</i> are written back into the local memory.
15	16	The fields in the second part of the TCD <i>n</i> are written back into the local memory. This cycle coincides with the next channel arbitration cycle start.
16	17	The next channel to be activated performs the read of the first part of its TCD from the local memory. This is equivalent to Cycle 4 for the first channel's service request.

 Table 24-102.
 Hardware service request process (continued)

Assuming zero wait states on the system bus, DMA requests can be processed every 9 cycles. Assuming an average of the access times associated with internal peripheral bus-to-SRAM (4 cycles) and SRAM-to-internal peripheral bus (5 cycles), DMA requests can be processed every 11.5 cycles (4 + (4+5)/2 + 3). This is the time from Cycle 4 to Cycle x +5. The resulting peak request rate, as a function of the system frequency, is shown in the following table.

Table 24-103. eDMA peak request rate (MReq/sec)

Suctor from on (MHz)	Request rate	Request rate
System frequency (MHz)	with zero wait states	with wait states
66.6	7.4	5.8
83.3	9.2	7.2
100.0	11.1	8.7
133.3	14.8	11.6
150.0	16.6	13.0

A general formula to compute the peak request rate with overlapping requests is:

$$PEAKreq = freq / [entry + (1 + read_ws) + (1 + write_ws) + exit]$$

where:

Table 24-104.	Peak request formula operands
---------------	-------------------------------

Operand	Description
PEAKreq	Peak request rate

Table continues on the next page...

Chapter 24 Enhanced Direct Memory Access (eDMA)

Operand	Description
freq	System frequency
entry	Channel startup (4 cycles)
read_ws	Wait states seen during the system bus read data phase
write_ws	Wait states seen during the system bus write data phase
exit	Channel shutdown (3 cycles)

Table 24-104. Peak request formula operands (continued)

24.4.4.3 eDMA performance example

Consider a system with the following characteristics:

- Internal SRAM can be accessed with one wait-state when viewed from the system bus data phase
- All internal peripheral bus reads require two wait-states, and internal peripheral bus writes three wait-states viewed from the system bus data phase
- System operates at 150 MHz

For an SRAM to internal peripheral bus transfer,

PEAKreq = 150 MHz / [4 + (1 + 1) + (1 + 3) + 3] cycles = 11.5 Mreq/sec

For an internal peripheral bus to SRAM transfer,

PEAKreq = 150 MHz / [4 + (1 + 2) + (1 + 1) + 3] cycles = 12.5 Mreq/sec

Assuming an even distribution of the two transfer types, the average peak request rate would be:

PEAKreq = (11.5 Mreq/sec + 12.5 Mreq/sec) / 2 = 12.0 Mreq/sec

The minimum number of cycles to perform a single read/write, zero wait states on the system bus, from a cold start where no channel is executing and eDMA is idle are:

- 11 cycles for a software, that is, a TCDn_CSR[START] bit, request
- 12 cycles for a hardware, that is, an eDMA peripheral request signal, request

Two cycles account for the arbitration pipeline and one extra cycle on the hardware request resulting from the internal registering of the eDMA peripheral request signals. For the peak request rate calculations above, the arbitration and request registering is absorbed in or overlaps the previous executing channel.

Note

When channel linking or scatter/gather is enabled, a two cycle delay is imposed on the next channel selection and startup. This allows the link channel or the scatter/gather channel to be eligible and considered in the arbitration pool for next channel selection.

24.5 Initialization/application information

The following sections discuss initialization of the eDMA and programming considerations.

24.5.1 eDMA initialization

To initialize the eDMA:

- 1. Write to the CR if a configuration other than the default is desired.
- 2. Write the channel priority levels to the DCHPRI*n* registers if a configuration other than the default is desired.
- 3. Enable error interrupts in the EEI register if so desired.
- 4. Write the 32-byte TCD for each channel that may request service.
- 5. Enable any hardware service requests via the ERQH and ERQL registers.
- 6. Request channel service via either:
 - Software: setting the TCD*n*_CSR[START]
 - Hardware: slave device asserting its eDMA peripheral request signal

After any channel requests service, a channel is selected for execution based on the arbitration and priority levels written into the programmer's model. The eDMA engine reads the entire TCD, including the TCD control and status fields, as shown in the following table, for the selected channel into its internal address path module.

As the TCD is read, the first transfer is initiated on the internal bus, unless a configuration error is detected. Transfers from the source, as defined by TCD n_SADDR , to the destination, as defined by TCD n_DADDR , continue until the number of bytes specified by TCD n_NBYTES are transferred.

When the transfer is complete, the eDMA engine's local TCD n_SADDR , TCD n_DADDR , and TCD n_CITER are written back to the main TCD memory and any minor loop channel linking is performed, if enabled. If the major loop is exhausted, further post processing executes, such as interrupts, major loop channel linking, and scatter/gather operations, if enabled.

TCDn_CSR field name	Description	
START	Control bit to start channel explicitly when using a software initiated DMA service (Automatically cleared by hardware)	
ACTIVE	Status bit indicating the channel is currently in execution	
DONE	Status bit indicating major loop completion (cleared by software when using a software initiated DMA service)	
D_REQ	Control bit to disable DMA request at end of major loop completion when using a hardware initiated DMA service	
BWC	Control bits for throttling bandwidth control of a channel	
E_SG	Control bit to enable scatter-gather feature	
INT_HALF	Control bit to enable interrupt when major loop is half complete	
INT_MAJ	Control bit to enable interrupt when major loop completes	

Table 24-105. TCD Control and Status fields

The following figure shows how each DMA request initiates one minor-loop transfer, or iteration, without CPU intervention. DMA arbitration can occur after each minor loop, and one level of minor loop DMA preemption is allowed. The number of minor loops in a major loop is specified by the beginning iteration count (BITER).

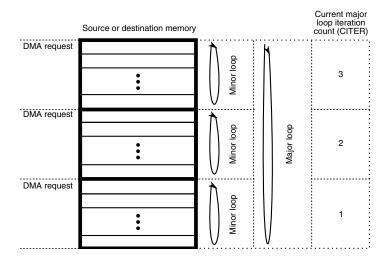


Figure 24-101. Example of multiple loop iterations

The following figure lists the memory array terms and how the TCD settings interrelate.

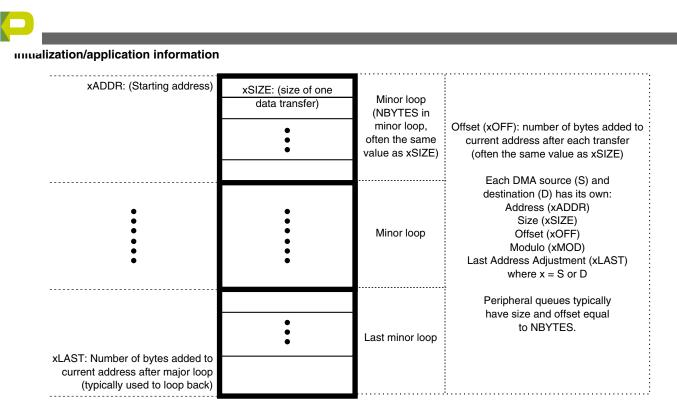


Figure 24-102. Memory array terms

24.5.2 Programming errors

The eDMA performs various tests on the transfer control descriptor to verify consistency in the descriptor data. Most programming errors are reported on a per channel basis with the exception of channel priority error (ES[CPE]).

For all error types other than channel priority error, the channel number causing the error is recorded in the Error Status register (DMAx_ES). If the error source is not removed before the next activation of the problem channel, the error is detected and recorded again.

If priority levels are not unique, when any channel requests service, a channel priority error is reported. The highest channel priority with an active request is selected, but the lowest numbered channel with that priority is selected by arbitration and executed by the eDMA engine. The hardware service request handshake signals, error interrupts, and error reporting is associated with the selected channel.

24.5.3 Arbitration mode considerations

This section discusses arbitration considerations for the eDMA.

24.5.3.1 Fixed channel arbitration

In this mode, the channel service request from the highest priority channel is selected to execute.

24.5.3.2 Round-robin channel arbitration

Channels are serviced starting with the highest channel number and rotating through to the lowest channel number without regard to the channel priority levels.

24.5.4 Performing DMA transfers

This section presents examples on how to perform DMA transfers with the eDMA.

24.5.4.1 Single request

To perform a simple transfer of n bytes of data with one activation, set the major loop to one (TCDn_CITER = TCDn_BITER = 1). The data transfer begins after the channel service request is acknowledged and the channel is selected to execute. After the transfer is complete, the TCDn_CSR[DONE] bit is set and an interrupt generates if properly enabled.

For example, the following TCD entry is configured to transfer 16 bytes of data. The eDMA is programmed for one iteration of the major loop transferring 16 bytes per iteration. The source memory has a byte wide memory port located at 0x1000. The destination memory has a 32-bit port located at 0x2000. The address offsets are programmed in increments to match the transfer size: one byte for the source and four bytes for the destination. The final source and destination addresses are adjusted to return to their beginning values.

```
TCDn_CITER = TCDn_BITER = 1
TCDn_NBYTES = 16
TCDn_SADDR = 0x1000
TCDn_SOFF = 1
TCDn_ATTR[SSIZE] = 0
TCDn_SLAST = -16
TCDn_DADDR = 0x2000
TCDn_DOFF = 4
TCDn_ATTR[DSIZE] = 2
TCDn_DLAST_SGA= -16
TCDn_CSR[INT_MAJ] = 1
TCDn_CSR[START] = 1 (Should be written last after all other fields have been initialized)
All other TCDn fields = 0
```

This generates the following event sequence:

mualization/application information

- 1. User write to the TCDn_CSR[START] bit requests channel service.
- 2. The channel is selected by arbitration for servicing.
- 3. eDMA engine writes: TCD*n*_CSR[DONE] = 0, TCD*n*_CSR[START] = 0, TCD*n*_CSR[ACTIVE] = 1.
- 4. eDMA engine reads: channel TCD data from local memory to internal register file.
- 5. The source-to-destination transfers are executed as follows:
 - a. Read byte from location 0x1000, read byte from location 0x1001, read byte from 0x1002, read byte from 0x1003.
 - b. Write 32-bits to location $0x2000 \rightarrow$ first iteration of the minor loop.
 - c. Read byte from location 0x1004, read byte from location 0x1005, read byte from 0x1006, read byte from 0x1007.
 - d. Write 32-bits to location $0x2004 \rightarrow$ second iteration of the minor loop.
 - e. Read byte from location 0x1008, read byte from location 0x1009, read byte from 0x100A, read byte from 0x100B.
 - f. Write 32-bits to location $0x2008 \rightarrow$ third iteration of the minor loop.
 - g. Read byte from location 0x100C, read byte from location 0x100D, read byte from 0x100E, read byte from 0x100F.
 - h. Write 32-bits to location $0x200C \rightarrow last$ iteration of the minor loop \rightarrow major loop complete.
- 6. The eDMA engine writes: $TCDn_SADDR = 0x1000$, $TCDn_DADDR = 0x2000$, $TCDn_CITER = 1$ ($TCDn_BITER$).
- The eDMA engine writes: TCDn_CSR[ACTIVE] = 0, TCDn_CSR[DONE] = 1, INT[n] = 1.
- 8. The channel retires and the eDMA goes idle or services the next channel.

24.5.4.2 Multiple requests

The following example transfers 32 bytes via two hardware requests, but is otherwise the same as the previous example. The only fields that change are the major loop iteration count and the final address offsets. The eDMA is programmed for two iterations of the major loop transferring 16 bytes per iteration. After the channel's hardware requests are enabled in the ERQ register, the slave device initiates channel service requests.


```
TCDn_CITER = TCDn_BITER = 2
TCDn_SLAST = -32
TCDn_DLAST_SGA = -32
```

This would generate the following sequence of events:

- 1. First hardware, that is, eDMA peripheral, request for channel service.
- 2. The channel is selected by arbitration for servicing.
- 3. eDMA engine writes: TCD*n*_CSR[DONE] = 0, TCD*n*_CSR[START] = 0, TCD*n*_CSR[ACTIVE] = 1.
- 4. eDMA engine reads: channel TCDn data from local memory to internal register file.
- 5. The source to destination transfers are executed as follows:
 - a. Read byte from location 0x1000, read byte from location 0x1001, read byte from 0x1002, read byte from 0x1003.
 - b. Write 32-bits to location $0x2000 \rightarrow$ first iteration of the minor loop.
 - c. Read byte from location 0x1004, read byte from location 0x1005, read byte from 0x1006, read byte from 0x1007.
 - d. Write 32-bits to location $0x2004 \rightarrow$ second iteration of the minor loop.
 - e. Read byte from location 0x1008, read byte from location 0x1009, read byte from 0x100A, read byte from 0x100B.
 - f. Write 32-bits to location $0x2008 \rightarrow$ third iteration of the minor loop.
 - g. Read byte from location 0x100C, read byte from location 0x100D, read byte from 0x100E, read byte from 0x100F.
 - h. Write 32-bits to location $0x200C \rightarrow last$ iteration of the minor loop.
- 6. eDMA engine writes: $TCDn_SADDR = 0x1010$, $TCDn_DADDR = 0x2010$, $TCDn_CITER = 1$.
- 7. eDMA engine writes: $TCDn_CSR[ACTIVE] = 0$.
- 8. The channel retires \rightarrow one iteration of the major loop. The eDMA goes idle or services the next channel.
- 9. Second hardware, that is, eDMA peripheral, requests channel service.
- 10. The channel is selected by arbitration for servicing.
- 11. eDMA engine writes: TCD*n*_CSR[DONE] = 0, TCD*n*_CSR[START] = 0, TCD*n*_CSR[ACTIVE] = 1.

mualization/application information

- 12. eDMA engine reads: channel TCD data from local memory to internal register file.
- 13. The source to destination transfers are executed as follows:
 - a. Read byte from location 0x1010, read byte from location 0x1011, read byte from 0x1012, read byte from 0x1013.
 - b. Write 32-bits to location $0x2010 \rightarrow$ first iteration of the minor loop.
 - c. Read byte from location 0x1014, read byte from location 0x1015, read byte from 0x1016, read byte from 0x1017.
 - d. Write 32-bits to location $0x2014 \rightarrow$ second iteration of the minor loop.
 - e. Read byte from location 0x1018, read byte from location 0x1019, read byte from 0x101A, read byte from 0x101B.
 - f. Write 32-bits to location $0x2018 \rightarrow$ third iteration of the minor loop.
 - g. Read byte from location 0x101C, read byte from location 0x101D, read byte from 0x101E, read byte from 0x101F.
 - h. Write 32-bits to location $0x201C \rightarrow last$ iteration of the minor loop \rightarrow major loop complete.
- 14. eDMA engine writes: $TCDn_SADDR = 0x1000$, $TCDn_DADDR = 0x2000$, $TCDn_CITER = 2$ ($TCDn_BITER$).
- 15. eDMA engine writes: TCD*n*_CSR[ACTIVE] = 0, TCD*n*_CSR[DONE] = 1, INT[n] = 1.
- 16. The channel retires → major loop complete. The eDMA goes idle or services the next channel.

24.5.4.3 Using the modulo feature

The modulo feature of the eDMA provides the ability to implement a circular data queue in which the size of the queue is a power of 2. MOD is a 5-bit field for the source and destination in the TCD, and it specifies which lower address bits increment from their original value after the address+offset calculation. All upper address bits remain the same as in the original value. A setting of 0 for this field disables the modulo feature.

Chapter 24 Enhanced Direct Memory Access (eDMA)

The following table shows how the transfer addresses are specified based on the setting of the MOD field. Here a circular buffer is created where the address wraps to the original value while the 28 upper address bits (0x1234567x) retain their original value. In this example the source address is set to 0x12345670, the offset is set to 4 bytes and the MOD field is set to 4, allowing for a 2⁴ byte (16-byte) size queue.

Transfer Number	Address
1	0x12345670
2	0x12345674
3	0x12345678
4	0x1234567C
5	0x12345670
6	0x12345674

24.5.5 Monitoring transfer descriptor status

This section discusses how to monitor eDMA status.

24.5.5.1 Testing for minor loop completion

There are two methods to test for minor loop completion when using software initiated service requests. The first is to read the TCD $n_$ CITER field and test for a change. Another method may be extracted from the sequence shown below. The second method is to test the TCD $n_$ CSR[START] bit and the TCD $n_$ CSR[ACTIVE] bit. The minor-loop-complete condition is indicated by both bits reading zero after the TCD $n_$ CSR[START] was set. Polling the TCD $n_$ CSR[ACTIVE] bit may be inconclusive, because the active status may be missed if the channel execution is short in duration.

The TCD status bits execute the following sequence for a software activated channel:

Store	TCDn_CSR bits			State	
Stage	START	ACTIVE	DONE	State	
1	1	0	0	Channel service request via software	
2	0	1	0	Channel is executing	
3a	0	0	0	Channel has completed the minor loop and is idle	
3b	0	0	1	Channel has completed the major loop and is idle	

mualization/application information

The best method to test for minor-loop completion when using hardware, that is, peripheral, initiated service requests is to read the TCD*n*_CITER field and test for a change. The hardware request and acknowledge handshake signals are not visible in the programmer's model.

The TCD status bits execute the following sequence for a hardware-activated channel:

Stage	TCDn_CSR bits			State
	START	ACTIVE	DONE	
1	0	0	0	Channel service request via hardware (peripheral request asserted)
2	0	1	0	Channel is executing
3a	0	0	0	Channel has completed the minor loop and is idle
3b	0	0	1	Channel has completed the major loop and is idle

For both activation types, the major-loop-complete status is explicitly indicated via the TCD*n*_CSR[DONE] bit.

The $TCDn_CSR[START]$ bit is cleared automatically when the channel begins execution regardless of how the channel activates.

24.5.5.2 Reading the transfer descriptors of active channels

The eDMA reads back the true TCD*n*_SADDR, TCD*n*_DADDR, and TCD*n*_NBYTES values if read while a channel executes. The true values of the SADDR, DADDR, and NBYTES are the values the eDMA engine currently uses in its internal register file and not the values in the TCD local memory for that channel. The addresses, SADDR and DADDR, and NBYTES, which decrement to zero as the transfer progresses, can give an indication of the progress of the transfer. All other values are read back from the TCD local memory.

24.5.5.3 Checking channel preemption status

Preemption is available only when fixed arbitration is selected as the channel arbitration mode. A preemptive situation is one in which a preempt-enabled channel runs and a higher priority request becomes active. When the eDMA engine is not operating in fixed channel arbitration mode, the determination of the actively running relative priority outstanding requests become undefined. Channel priorities are treated as equal, that is, constantly rotating, when Round-Robin Arbitration mode is selected.

The TCD $n_CSR[ACTIVE]$ bit for the preempted channel remains asserted throughout the preemption. The preempted channel is temporarily suspended while the preempting channel executes one major loop iteration. If two TCD $n_CSR[ACTIVE]$ bits are set simultaneously in the global TCD map, a higher priority channel is actively preempting a lower priority channel.

24.5.6 Channel Linking

Channel linking (or chaining) is a mechanism where one channel sets the $TCDn_CSR[START]$ bit of another channel (or itself), therefore initiating a service request for that channel. When properly enabled, the EDMA engine automatically performs this operation at the major or minor loop completion.

The minor loop channel linking occurs at the completion of the minor loop (or one iteration of the major loop). The $TCDn_CITER[E_LINK]$ field determines whether a minor loop link is requested. When enabled, the channel link is made after each iteration of the major loop except for the last. When the major loop is exhausted, only the major loop channel link fields are used to determine if a channel link should be made. For example, the initial fields of:

```
TCDn_CITER[E_LINK] = 1
TCDn_CITER[LINKCH] = 0xC
TCDn_CITER[CITER] value = 0x4
TCDn_CSR[MAJOR_E_LINK] = 1
TCDn_CSR[MAJOR_LINKCH] = 0x7
```

executes as:

- 1. Minor loop done \rightarrow set TCD12_CSR[START] bit
- 2. Minor loop done \rightarrow set TCD12_CSR[START] bit
- 3. Minor loop done \rightarrow set TCD12_CSR[START] bit
- 4. Minor loop done, major loop done \rightarrow set TCD7_CSR[START] bit

When minor loop linking is enabled (TCD*n*_CITER[E_LINK] = 1), the TCD*n*_CITER[CITER] field uses a nine bit vector to form the current iteration count. When minor loop linking is disabled (TCD*n*_CITER[E_LINK] = 0), the TCD*n*_CITER[CITER] field uses a 15-bit vector to form the current iteration count. The bits associated with the TCD*n*_CITER[LINKCH] field are concatenated onto the CITER value to increase the range of the CITER.

Note

The TCD*n*_CITER[E_LINK] bit and the TCD*n*_BITER[E_LINK] bit must equal or a configuration error is reported. The CITER and BITER vector widths must be equal to calculate the major loop, half-way done interrupt point.

The following table summarizes how a DMA channel can link to another DMA channel, i.e, use another channel's TCD, at the end of a loop.

Desired Link Behavior	TCD Control Field Name	Description		
Link at end of Minor Loop	CITER[E_LINK]	Enable channel-to-channel linking on minor loop completion (current iteration)		
	CITER[LINKCH]	Link channel number when linking at end of minor loop (current iteration)		
Link at end of	CSR[MAJOR_E_LINK]	Enable channel-to-channel linking on major loop completion		
Major Loop	CSR[MAJOR_LINKCH]	Link channel number when linking at end of major loop		

Table 24-107. Channel Linking Parameters

24.5.7 Dynamic programming

This section provides recommended methods to change the programming model during channel execution.

24.5.7.1 Dynamically changing the channel priority

The following two options are recommended for dynamically changing channel priority levels:

- 1. Switch to Round-Robin Channel Arbitration mode, change the channel priorities, then switch back to Fixed Arbitration mode,
- 2. Disable all the channels, change the channel priorities, then enable the appropriate channels.

24.5.7.2 Dynamic channel linking

Dynamic channel linking is the process of setting the TCD.major.e_link bit during channel execution. This bit is read from the TCD local memory at the end of channel execution, thus allowing the user to enable the feature during channel execution.

Because the user is allowed to change the configuration during execution, a coherency model is needed. Consider the scenario where the user attempts to execute a dynamic channel link by enabling the TCD.major.e_link bit at the same time the eDMA engine is retiring the channel. The TCD.major.e_link would be set in the programmer's model, but it would be unclear whether the actual link was made before the channel retired.

The following coherency model is recommended when executing a dynamic channel link request.

- 1. Write 1 to the TCD.major.e_link bit.
- 2. Read back the TCD.major.e_link bit.
- 3. Test the TCD.major.e_link request status:
 - If TCD.major.e_link = 1, the dynamic link attempt was successful.
 - If TCD.major.e_link = 0, the attempted dynamic link did not succeed (the channel was already retiring).

For this request, the TCD local memory controller forces the TCD.major.e_link bit to zero on any writes to a channel's TCD.word7 after that channel's TCD.done bit is set, indicating the major loop is complete.

NOTE

The user must clear the TCD.done bit before writing the TCD.major.e_link bit. The TCD.done bit is cleared automatically by the eDMA engine after a channel begins execution.

24.5.7.3 Dynamic scatter/gather

Scatter/gather is the process of automatically loading a new TCD into a channel. It allows a DMA channel to use multiple TCDs; this enables a DMA channel to scatter the DMA data to multiple destinations or gather it from multiple sources. When scatter/gather is enabled and the channel has finished its major loop, a new TCD is fetched from system memory and loaded into that channel's descriptor location in eDMA programmer's model, thus replacing the current descriptor.

Because the user is allowed to change the configuration during execution, a coherency model is needed. Consider the scenario where the user attempts to execute a dynamic scatter/gather operation by enabling the TCD.e_sg bit at the same time the eDMA engine is retiring the channel. The TCD.e_sg would be set in the programmer's model, but it would be unclear whether the actual scatter/gather request was honored before the channel retired.

mualization/application information

Two methods for this coherency model are shown in the following subsections. Method 1 has the advantage of reading the major.linkch field and the e_sg bit with a single read. For both dynamic channel linking and scatter/gather requests, the TCD local memory controller forces the TCD.major.e_link and TCD.e_sg bits to zero on any writes to a channel's TCD.word7 if that channel's TCD.done bit is set indicating the major loop is complete.

NOTE

The user must clear the TCD.done bit before writing the TCD.major.e_link or TCD.e_sg bits. The TCD.done bit is cleared automatically by the eDMA engine after a channel begins execution.

24.5.7.3.1 Method 1 (channel not using major loop channel linking)

For a channel not using major loop channel linking, the coherency model described here may be used for a dynamic scatter/gather request.

When the TCD.major.e_link bit is zero, the TCD.major.linkch field is not used by the eDMA. In this case, the TCD.major.linkch bits may be used for other purposes. This method uses the TCD.major.linkch field as a TCD indentification (ID).

- 1. When the descriptors are built, write a unique TCD ID in the TCD.major.linkch field for each TCD associated with a channel using dynamic scatter/gather.
- 2. Write 1b to the TCD.d_req bit.

Should a dynamic scatter/gather attempt fail, setting the TCD.d_req bit will prevent a future hardware activation of this channel. This stops the channel from executing with a destination address (daddr) that was calculated using a scatter/gather address (written in the next step) instead of a dlast final offest value.

- 3. Write the TCD.dlast_sga field with the scatter/gather address.
- 4. Write 1b to the TCD.e_sg bit.
- 5. Read back the 16 bit TCD control/status field.
- 6. Test the TCD.e_sg request status and TCD.major.linkch value:

If e_sg = 1b, the dynamic link attempt was successful.

If e_sg = 0b and the major.linkch (ID) did not change, the attempted dynamic link did not succeed (the channel was already retiring).

If $e_sg = 0b$ and the major.linkch (ID) changed, the dynamic link attempt was successful (the new TCD's e_sg value cleared the e_sg bit).

24.5.7.3.2 Method 2 (channel using major loop channel linking)

For a channel using major loop channel linking, the coherency model described here may be used for a dynamic scatter/gather request. This method uses the TCD.dlast_sga field as a TCD indentification (ID).

1. Write 1b to the TCD.d_req bit.

Should a dynamic scatter/gather attempt fail, setting the d_req bit will prevent a future hardware activation of this channel. This stops the channel from executing with a destination address (daddr) that was calculated using a scatter/gather address (written in the next step) instead of a dlast final offest value.

- 2. Write the TCD.dlast_sga field with the scatter/gather address.
- 3. Write 1b to the TCD.e_sg bit.
- 4. Read back the TCD.e_sg bit.
- 5. Test the TCD.e_sg request status:

If e_sg = 1b, the dynamic link attempt was successful.

If $e_sg = 0b$, read the 32 bit TCD dlast_sga field.

If e_sg = 0b and the dlast_sga did not change, the attempted dynamic link did not succeed (the channel was already retiring).

If e_sg = 0b and the dlast_sga changed, the dynamic link attempt was successful (the new TCD's e_sg value cleared the e_sg bit).

mualization/application information

Chapter 25 External Watchdog Monitor (EWM)

25.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The watchdog is generally used to monitor the flow and execution of embedded software within an MCU. The watchdog consists of a counter that if allowed to overflow, forces an internal reset (asynchronous) to all on-chip peripherals and optionally assert the \overrightarrow{RESET} pin to reset external devices/circuits. The overflow of the watchdog counter must not occur if the software code works well and services the watchdog to re-start the actual counter.

For safety, a redundant watchdog system, External Watchdog Monitor (EWM), is designed to monitor external circuits, as well as the MCU software flow. This provides a back-up mechanism to the internal watchdog that resets the MCU's CPU and peripherals.

The EWM differs from the internal watchdog in that it does not reset the MCU's CPU and peripherals. The EWM if allowed to time-out, provides an independent EWM_out pin that when asserted resets or places an external circuit into a safe mode. The CPU resets the EWM counter that is logically ANDed with an external digital input pin. This pin allows an external circuit to influence the reset_out signal.

25.1.1 Features

Features of EWM module include:

- Independent LPO clock source
- Programmable time-out period specified in terms of number of EWM LPO clock cycles.

nuroduction

- Windowed refresh option
 - Provides robust check that program flow is faster than expected.
 - Programmable window.
 - Refresh outside window leads to assertion of $\overline{\text{EWM}}$ -out.
- Robust refresh mechanism
 - Write values of 0xB4 and 0x2C to EWM Refresh Register within 15 (*EWM_service_time*) peripheral bus clock cycles.
- One output port, <u>EWM_out</u>, when asserted is used to reset or place the external circuit into safe mode.
- One Input port, EWM_in, allows an external circuit to control the $\overline{\text{EWM}}$ -out signal.

25.1.2 Modes of Operation

This section describes the module's operating modes.

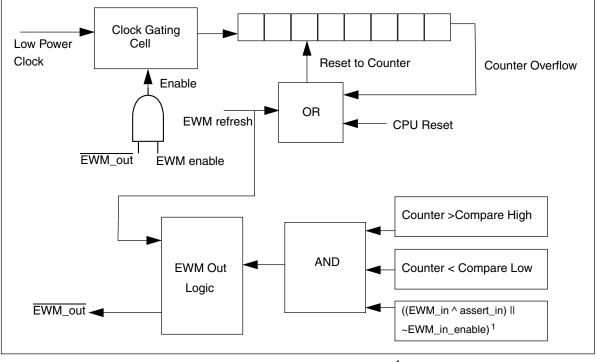
25.1.2.1 Stop Mode

When the EWM is in stop mode, the CPU services to the EWM cannot occur. On entry to stop mode, the EWM's counter freezes.

There are two possible ways to exit from Stop mode:

- On exit from stop mode through a reset, the EWM remains disabled.
- On exit from stop mode by an interrupt, the EWM is re-enabled, and the counter continues to be clocked from the same value prior to entry to stop mode.

Note the following if the EWM enters the stop mode during CPU service mechanism: At the exit from stop mode by an interrupt, refresh mechanism state machine starts from the previous state which means, if first service command is written correctly and EWM enters the stop mode immediately, the next command has to be written within the next 15 (*EWM_service_time*) peripheral bus clocks after exiting from stop mode. User must mask all interrupts prior to executing EWM service instructions.


25.1.2.2 Debug Mode

Entry to debug mode has no effect on the EWM.

- If the EWM is enabled prior to entry of debug mode, it remains enabled.
- If the EWM is disabled prior to entry of debug mode, it remains disabled.

25.1.3 Block Diagram

This figure shows the EWM block diagram.

¹Compare High > Counter > Compare Low

Figure 25-1. EWM Block Diagram

25.2 EWM Signal Descriptions

The EWM has two external signals and internal options for the counter clock sources, as shown in the following table.

wemory Map/Register Definition

Signal	Description	I/O
EWM_in	EWM input for safety status of external safety circuits. The polarity of EWM_in is programmable using the EWM_CTRL[ASSIN] bit. The default polarity is active-low.	I
EWM_out	EWM reset out signal	0
lpo_clk[3:0]	Low power clock sources for running counter	I

Table 25-1. EWM Signal Descriptions

25.3 Memory Map/Register Definition

This section contains the module memory map and registers.

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4006_1000	Control Register (EWM_CTRL)	8	R/W	00h	25.3.1/442
4006_1001	Service Register (EWM_SERV)	8	W (always reads 0)	00h	25.3.2/443
4006_1002	Compare Low Register (EWM_CMPL)	8	R/W	00h	25.3.3/443
4006_1003	Compare High Register (EWM_CMPH)	8	R/W	FFh	25.3.4/444
4006_1004	Clock Control Register (EWM_CLKCTRL)	8	R/W	00h	25.3.5/445
4006_1005	Clock Prescaler Register (EWM_CLKPRESCALER)	8	R/W	00h	25.3.6/445

EWM memory map

25.3.1 Control Register (EWM_CTRL)

The CTRL register is cleared by any reset.

NOTE

INEN, ASSIN and EWMEN bits can be written once after a CPU reset. Modifying these bits more than once, generates a bus transfer error.

Address: 4006_1000h base + 0h offset = 4006_1000h

Bit	7	6	5	4	3	2	1	0
Read		C)		INTEN	INEN	ASSIN	EWMEN
Write								
Reset	0	0	0	0	0	0	0	0

EWM_CTRL field descriptions

Field	Description
7–4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3	Interrupt Enable.
INTEN	This bit when set and EWM_out is asserted, an interrupt request is generated. To de-assert interrupt request, user should clear this bit by writing 0.
2	Input Enable.
INEN	This bit when set, enables the EWM_in port.
1 ASSIN	EWM_in's Assertion State Select. Default assert state of the EWM_in signal is logic zero. Setting ASSIN bit inverts the assert state to a logic one.
0 EWMEN	EWM enable. This bit when set, enables the EWM module. This resets the EWM counter to zero and deasserts the EWM_out signal. Clearing EWMEN bit disables the EWM, and therefore it cannot be enabled until a reset occurs, due to the write-once nature of this bit.

25.3.2 Service Register (EWM_SERV)

The SERV register provides the interface from the CPU to the EWM module. It is writeonly and reads of this register return zero.

Address: 4006_1000h base + 1h offset = 4006_1001h

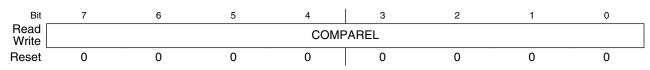
Bit	7	6	5	4	3	2	1	0
Read	0							
Write	SERVICE							
Reset	0	0	0	0	0	0	0	0

EWM_SERV field descriptions

Field	Description
	 The EWM service mechanism requires the CPU to write two values to the SERV register: a first data byte of 0xB4, followed by a second data byte of 0x2C. The EWM service is illegal if either of the following conditions is true. The first or second data byte is not written correctly. The second data byte is not written within a fixed number of peripheral bus cycles of the first data byte. This fixed number of cycles is called <i>EWM_service_time</i>.

25.3.3 Compare Low Register (EWM_CMPL)

The CMPL register is reset to zero after a CPU reset. This provides no minimum time for the CPU to service the EWM counter.


KV10 Sub-Family Reference Manual, Rev. 7, September 2014

NOTE

This register can be written only once after a CPU reset. Writing this register more than once generates a bus transfer error.

Address: 4006_1000h base + 2h offset = 4006_1002h

EWM_CMPL field descriptions

Field	Description
	To prevent runaway code from changing this field, software should write to this field after a CPU reset even if the (default) minimum service time is required.

25.3.4 Compare High Register (EWM_CMPH)

The CMPH register is reset to 0xFF after a CPU reset. This provides a maximum of 256 clocks time, for the CPU to service the EWM counter.

NOTE

This register can be written only once after a CPU reset. Writing this register more than once generates a bus transfer error.

NOTE

The valid values for CMPH are up to 0xFE because the EWM counter never expires when CMPH = 0xFF. The expiration happens only if EWM counter is greater than CMPH.

Address: 4006_1000h base + 3h offset = 4006_1003h

Bit	7	6	5	4	3	2	1	0
Read Write	COMPAREH							
Reset	1	1	1	1	1	1	1	1

EWM_CMPH field descriptions

	Field	Description
cc		To prevent runaway code from changing this field, software should write to this field after a CPU reset even if the (default) maximum service time is required.

25.3.5 Clock Control Register (EWM_CLKCTRL)

This CLKCTRL register is reset to 0x00 after a CPU reset.

NOTE

This register can be written only once after a CPU reset. Writing this register more than once generates a bus transfer error.

NOTE

User should select the required low power clock before enabling the EWM.

Address: 4006_1000h base + 4h offset = 4006_1004h

EWM_CLKCTRL field descriptions

Field	Description
7–2 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
1–0 CLKSEL	 EWM has 4 possible low power clock sources for running EWM counter. One of the clock source can be selected by writing into this field. 00 - lpo_clk[0] will be selected for running EWM counter. 01 - lpo_clk[1] will be selected for running EWM counter. 10 - lpo_clk[2] will be selected for running EWM counter. 11 - lpo_clk[3] will be selected for running EWM counter.

25.3.6 Clock Prescaler Register (EWM_CLKPRESCALER)

This CLKPRESCALER register is reset to 0x00 after a CPU reset.

NOTE

This register can be written only once after a CPU reset. Writing this register more than once generates a bus transfer error.

NOTE

Write the required prescaler value before enabling the EWM.

NOTE

The implementation of this register is chip-specific. See the Chip Configuration details.

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

runctional Description

Address: 4006_1000h base + 5h offset = 4006_1005h

Bit	7	6	5	4	3	2	1	0
Read Write	CLK_DIV							
Reset	0	0	0	0	0	0	0	0

EWM_CLKPRESCALER field descriptions

Field	Description
7–0 CLK_DIV	 Selected low power source for running the EWM counter can be prescaled as below. Prescaled clock frequency = low power clock source frequency/ (1+ CLK_DIV)

25.4 Functional Description

The following sections describe functional details of the EWM module.

25.4.1 The EWM_out Signal

The $\overline{\text{EWM}}$ -out is a digital output signal used to gate an external circuit (application specific) that controls critical safety functions.

The EWM_out signal remains deasserted when the EWM is being regularly serviced by the CPU within the programmable service window, indicating that the application code is executed as expected.

The $\overline{\text{EWM}}$ -out signal is asserted in any of the following conditions:

- Servicing the EWM when the counter value is less than CMPL value.
- If the EWM counter value reaches the CMPH value, and no EWM service has occurred.
- Servicing the EWM when the counter value is more than CMPL and less than CMPH values and EWM_in signal is asserted.
- If functionality of EWM_in pin is enabled and EWM_in pin is asserted while servicing the EWM.
- After any reset (by the virtue of the external pull-down mechanism on the EWM_out pin)

On a normal reset, the $\overline{\text{EWM}}_{\text{out}}$ is asserted. To deassert the $\overline{\text{EWM}}_{\text{out}}$, set EWMEN bit in the CTRL register to enable the EWM.

If the $\overline{\text{EWM}}$ -out signal shares its pad with a digital I/O pin, on reset this actual pad defers to being an input signal. It takes the $\overline{\text{EWM}}$ -out output condition only after you enable the EWM by the EWMEN bit in the CTRL register.

When the $\overline{\text{EWM}}$ out pin is asserted, it can only be deasserted by forcing a MCU reset.

Note

EWM_out pad must be in pull down state when EWM functionality is used and when EWM is under Reset.

25.4.2 The EWM_in Signal

The EWM_in is a digital input signal that allows an external circuit to control the $\overline{\text{EWM}}$ -out signal. For example, in the application, an external circuit monitors a critical safety function, and if there is fault with this circuit's behavior, it can then actively initiate the $\overline{\text{EWM}}$ -out signal that controls the gating circuit.

The EWM_in signal is ignored if the EWM is disabled, or if INEN bit of CTRL register is cleared, as after any reset.

On enabling the EWM (setting the CTRL[EWMEN] bit) and enabling EWM_in functionality (setting the CTRL[INEN] bit), the EWM_in signal must be in the deasserted state prior to the CPU servicing the EWM. This ensures that the EWM_out stays in the deasserted state; otherwise, the EWM_out pin is asserted.

Note

You must update the CMPH and CMPL registers prior to enabling the EWM. After enabling the EWM, the counter resets to zero, therefore providing a reasonable time after a power-on reset for the external monitoring circuit to stabilize and ensure that the EWM_in pin is deasserted.

25.4.3 EWM Counter

It is an 8-bit ripple counter fed from a clock source that is independent of the peripheral bus clock source. As the preferred time-out is between 1 ms and 100 ms the actual clock source should be in the kHz range.

The counter is reset to zero, after a CPU reset, or a EWM refresh cycle. The counter value is not accessible to the CPU.

25.4.4 EWM Compare Registers

The compare registers CMPL and CMPH are write-once after a CPU reset and cannot be modified until another CPU reset occurs.

The EWM compare registers are used to create a service window, which is used by the CPU to service/refresh the EWM module.

- If the CPU services the EWM when the counter value lies between CMPL value and CMPH value, the counter is reset to zero. This is a legal service operation.
- If the CPU executes a EWM service/refresh action outside the legal service window, $\overline{\text{EWM}_{\text{out}}}$ is asserted.

It is illegal to program CMPL and CMPH with same value. In this case, as soon as counter reaches (CMPL + 1), $\overline{\text{EWM}}$ is asserted.

25.4.5 EWM Refresh Mechanism

Other than the initial configuration of the EWM, the CPU can only access the EWM by the EWM Service Register. The CPU must access the EWM service register with correct write of unique data within the windowed time frame as determined by the CMPL and CMPH registers. Therefore, three possible conditions can occur:

Condition	Mechanism
A unique EWM service occurs when CMPL < Counter < CMPH.	The software behaves as expected and the counter of the EWM is reset to zero, and EWM_out pin remains in the deasserted state.
	Note: EWM_in pin is also assumed to be in the deasserted state.
A unique EWM service occurs when Counter < CMPL	The software services the EWM and therefore resets the counter to zero and asserts the EWM_out pin (irrespective of the EWM_in pin). The EWM_out pin is expected to gate critical safety circuits.
Counter value reaches CMPH prior to a unique EWM service	The counter value reaches the CMPH value and no service of the EWM resets the counter to zero and assert the EWM_out pin (irrespective of the EWM_in pin). The EWM_out pin is expected to gate critical safety circuits.

Table 25-9.	EWM Refresh Mechanisms	

Any illegal service on EWM has no effect on $\overline{\text{EWM}}$ -out.

25.4.6 EWM Interrupt

When $\overline{\text{EWM}}$ out is asserted, an interrupt request is generated to indicate the assertion of the EWM reset out signal. This interrupt is enabled when CTRL[INTEN] is set. Clearing this bit clears the interrupt request but does not affect $\overline{\text{EWM}}$ out. The $\overline{\text{EWM}}$ out signal can be deasserted only by forcing a system reset.

25.4.7 Selecting the EWM counter clock

There are four possible low power clock sources for the EWM counter. Select one of the available clock sources by programming CLKCTRL[CLKSEL].

25.4.8 Counter clock prescaler

The EWM counter clock source can be prescaled by a clock divider, by programming CLKPRESCALER[CLK_DIV]. This divided clock is used to run the EWM counter.

NOTE

The divided clock used to run the EWM counter must be no more than half the frequency of the bus clock.

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

Chapter 26 Watchdog Timer (WDOG)

26.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The Watchdog Timer (WDOG) keeps a watch on the system functioning and resets it in case of its failure. Reasons for failure include run-away software code and the stoppage of the system clock that in a safety critical system can lead to serious consequences. In such cases, the watchdog brings the system into a safe state of operation. The watchdog monitors the operation of the system by expecting periodic communication from the software, generally known as servicing or refreshing the watchdog. If this periodic refreshing does not occur, the watchdog resets the system.

26.2 Features

The features of the Watchdog Timer (WDOG) include:

- Clock source input independent from CPU/bus clock. Choice between two clock sources:
 - Low-power oscillator (LPO)
 - External system clock
- Unlock sequence for allowing updates to write-once WDOG control/configuration bits.
- All WDOG control/configuration bits are writable once only within 256 bus clock cycles of being unlocked.

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

• You need to always update these bits after unlocking within 256 bus clock cycles. Failure to update these bits resets the system.

- Programmable time-out period specified in terms of number of WDOG clock cycles.
- Ability to test WDOG timer and reset with a flag indicating watchdog test.
 - Quick test—Small time-out value programmed for quick test.
 - Byte test—Individual bytes of timer tested one at a time.
 - Read-only access to the WDOG timer—Allows dynamic check that WDOG timer is operational.

NOTE

Reading the watchdog timer counter while running the watchdog on the bus clock might not give the accurate counter value.

- Windowed refresh option
 - Provides robust check that program flow is faster than expected.
 - Programmable window.
 - Refresh outside window leads to reset.
- Robust refresh mechanism
 - Write values of 0xA602 and 0xB480 to WDOG Refresh Register within 20 bus clock cycles.
- Count of WDOG resets as they occur.
- Configurable interrupt on time-out to provide debug breadcrumbs. This is followed by a reset after 256 bus clock cycles.

26.3 Functional overview

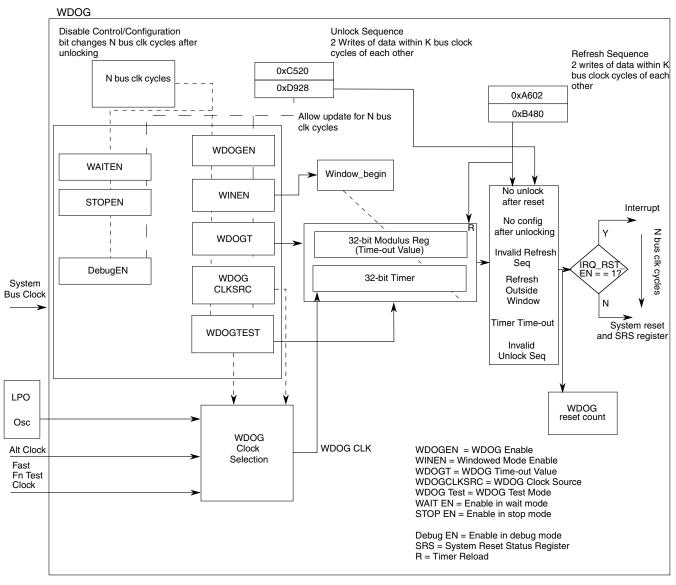


Figure 26-1. WDOG operation

The preceding figure shows the operation of the watchdog. The values for N and K are:

- N = 256
- K = 20

The watchdog is a fail safe mechanism that brings the system into a known initial state in case of its failure due to CPU clock stopping or a run-away condition in code execution. In its simplest form, the watchdog timer runs continuously off a clock source and expects

runctional overview

to be serviced periodically, failing which it resets the system. This ensures that the software is executing correctly and has not run away in an unintended direction. Software can adjust the period of servicing or the time-out value for the watchdog timer to meet the needs of the application.

You can select a windowed mode of operation that expects the servicing to be done only in a particular window of the time-out period. An attempted servicing of the watchdog outside this window results in a reset. By operating in this mode, you can get an indication of whether the code is running faster than expected. The window length is also user programmable.

If a system fails to update/refresh the watchdog due to an unknown and persistent cause, it will be caught in an endless cycle of resets from the watchdog. To analyze the cause of such conditions, you can program the watchdog to first issue an interrupt, followed by a reset. In the interrupt service routine, the software can analyze the system stack to aid debugging.

To enhance the independence of watchdog from the system, it runs off an independent LPO oscillator clock. You can also switch over to an alternate clock source if required, through a control register bit.

26.3.1 Unlocking and updating the watchdog

As long as ALLOW_UPDATE in the watchdog control register is set, you can unlock and modify the write-once-only control and configuration registers:

- 1. Write 0xC520 followed by 0xD928 within 20 bus clock cycles to a specific unlock register (WDOG_UNLOCK).
- 2. Wait one bus clock cycle. You cannot update registers on the bus clock cycle immediately following the write of the unlock sequence.
- 3. An update window equal in length to the watchdog configuration time (WCT) opens. Within this window, you can update the configuration and control register bits.

These register bits can be modified only once after unlocking.

If none of the configuration and control registers is updated within the update window, the watchdog issues a reset, that is, interrupt-then-reset, to the system. Trying to unlock the watchdog within the WCT after an initial unlock has no effect. During the update operation, the watchdog timer is not paused and continues running in the background. After the update window closes, the watchdog timer restarts and the watchdog functions according to the new configuration.

The update feature is useful for applications that have an initial, non-safety critical part, where the watchdog is kept disabled or with a conveniently long time-out period. This means the application coder does not have to frequently service the watchdog. After the critical part of the application begins, the watchdog can be reconfigured as needed.

The watchdog issues a reset, that is, interrupt-then-reset if enabled, to the system for any of these invalid unlock sequences:

- Write any value other than 0xC520 or 0xD928 to the unlock register.
- ALLOW_UPDATE is set and a gap of more than 20 bus clock cycles is inserted between the writing of the unlock sequence values.

An attempted refresh operation between the two writes of the unlock sequence and in the WCT time following a successful unlock, goes undetected. Also, see Watchdog Operation with 8-bit access for guidelines related to 8-bit accesses to the unlock register.

Note

A context switch during unlocking and refreshing may lead to a watchdog reset.

26.3.2 Watchdog configuration time (WCT)

To prevent unintended modification of the watchdog's control and configuration register bits, you are allowed to update them only within a period of 256 bus clock cycles after unlocking. This period is known as the watchdog configuration time (WCT). In addition, these register bits can be modified only once after unlocking them for editing, even after reset.

You must unlock the registers within WCT after system reset, failing which the WDOG issues a reset to the system. In other words, you must write at least the first word of the unlocking sequence within the WCT after reset. After this is done, you have a further 20 bus clock cycles, the maximum allowed gap between the words of the unlock sequence, to complete the unlocking operation. Thereafter, to make sure that you do not forget to configure the watchdog, the watchdog issues a reset if none of the WDOG control and configuration registers is updated in the WCT after unlock. After the close of this window or after the first write, these register bits are locked out from any further changes.

The watchdog timer keeps running according to its default configuration through unlocking and update operations that can extend up to a maximum total of 2xWCT + 20 bus clock cycles. Therefore, it must be ensured that the time-out value for the watchdog is always greater than 2xWCT time + 20 bus clock cycles.

runctional overview

Updates in the write-once registers take effect only after the WCT window closes with the following exceptions for which changes take effect immediately:

- Stop, Wait, and Debug mode enable
- IRQ_RST_EN

The operations of refreshing the watchdog goes undetected during the WCT.

26.3.3 Refreshing the watchdog

A robust refreshing mechanism has been chosen for the watchdog. A valid refresh is a write of 0xA602 followed by 0xB480 within 20 bus clock cycles to watchdog refresh register. If these two values are written more than 20 bus cycles apart or if something other than these two values is written to the register, a watchdog reset, or interrupt-then-reset if enabled, is issued to the system. A valid refresh makes the watchdog timer restart on the next bus clock. Also, an attempted unlock operation in between the two writes of the refresh sequence goes undetected. See Watchdog Operation with 8-bit access for guidelines related to 8-bit accesses to the refresh register.

26.3.4 Windowed mode of operation

In this mode of operation, a restriction is placed on the point in time within the time-out period at which the watchdog can be refreshed. The refresh is considered valid only when the watchdog timer increments beyond a certain count as specified by the watchdog window register. This is known as refreshing the watchdog within a window of the total time-out period. If a refresh is attempted before the timer reaches the window value, the watchdog generates a reset, or interrupt-then-reset if enabled. If there is no refresh at all, the watchdog times out and generates a reset or interrupt-then-reset if enabled.

26.3.5 Watchdog disabled mode of operation

When the watchdog is disabled through the WDOG_EN bit in the watchdog status and control register, the watchdog timer is reset to zero and is disabled from counting until you enable it or it is enabled again by the system reset. In this mode, the watchdog timer cannot be refreshed-there is no requirement to do so while the timer is disabled. However, the watchdog still generates a reset, or interrupt-then-reset if enabled, on a non-

time-out exception. See Generated Resets and Interrupts. You need to unlock the watchdog before enabling it. A system reset brings the watchdog out of the disabled mode.

26.3.6 Low-power modes of operation

The low-power modes of operation of the watchdog are described in the following table:

Mode	Behavior
Wait	If the WDOG is enabled (WAIT_EN = 1), it can run on bus clock or low-power oscillator clock (CLK_SRC = x) to generate interrupt (IRQ_RST_EN=1) followed by a reset on time-out. After reset the WDOG reset counter increments by one.
Stop	Where the bus clock is gated, the WDOG can run only on low-power oscillator clock (CLK_SRC=0) if it is enabled in stop (STOP_EN=1). In this case, the WDOG runs to time-out twice, and then generates a reset from its backup circuitry. Therefore, if you program the watchdog to time-out after 100 ms and then enter such a stop mode, the reset will occur after 200 ms. Also, in this case, no interrupt will be generated irrespective of the value of IRQ_RST_EN bit. After WDOG reset, the WDOG reset counter will also not increment.
Power-Down	The watchdog is

 Table 26-1.
 Low-power modes of operation

26.3.7 Debug modes of operation

You can program the watchdog to disable in debug modes through DBG_EN in the watchdog control register. This results in the watchdog timer pausing for the duration of the mode. Register read/writes are still allowed, which means that operations like refresh, unlock, and so on are allowed. Upon exit from the mode, the timer resumes its operation from the point of pausing.

The entry of the system into the debug mode does not excuse it from compulsorily configuring the watchdog in the WCT time after unlock, unless the system bus clock is gated off, in which case the internal state machine pauses too. Failing to do so still results in a reset, or interrupt-then-reset, if enabled, to the system. Also, all of the exception conditions that result in a reset to the system, as described in Generated Resets and Interrupts, are still valid in this mode. So, if an exception condition occurs and the system bus clock is on, a reset occurs, or interrupt-then-reset, if enabled.

The entry into Debug mode within WCT after reset is treated differently. The WDOG timer is kept reset to zero and there is no need to unlock and configure it within WCT. You must not try to refresh or unlock the WDOG in this state or unknown behavior may result. Upon exit from this mode, the WDOG timer restarts and the WDOG has to be unlocked and configured within WCT.

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

26.4 Testing the watchdog

For IEC 60730 and other safety standards, the expectation is that anything that monitors a safety function must be tested, and this test is required to be fault tolerant. To test the watchdog, its main timer and its associated compare and reset logic must be tested. To this end, two tests are implemented for the watchdog, as described in Quick Test and Byte Test. A control bit is provided to put the watchdog into functional test mode. There is also an overriding test-disable control bit which allows the functional test mode to be disabled permanently. After it is set, this test-disable bit can only be cleared by a reset.

These two tests achieve the overall aim of testing the counter functioning and the compare and reset logic.

Note

Do not enable the watchdog interrupt during these tests. If required, you must ensure that the effective time-out value is greater than WCT time. See Generated Resets and Interrupts for more details.

To run a particular test:

- 1. Select either quick test or byte test..
- 2. Set a certain test mode bit to put the watchdog in the functional test mode. Setting this bit automatically switches the watchdog timer to a fast clock source. The switching of the clock source is done to achieve a faster time-out and hence a faster test.

In a successful test, the timer times out after reaching the programmed time-out value and generates a system reset.

Note

After emerging from a reset due to a watchdog test, unlock and configure the watchdog. The refresh and unlock operations and interrupt are not automatically disabled in the test mode.

26.4.1 Quick test

In this test, the time-out value of watchdog timer is programmed to a very low value to achieve quick time-out. The only difference between the quick test and the normal mode of the watchdog is that TESTWDOG is set for the quick test. This allows for a faster test of the watchdog reset mechanism.

26.4.2 Byte test

The byte test is a more thorough a test of the watchdog timer. In this test, the timer is split up into its constituent byte-wide stages that are run independently and tested for time-out against the corresponding byte of the time-out value register. The following figure explains the splitting concept:

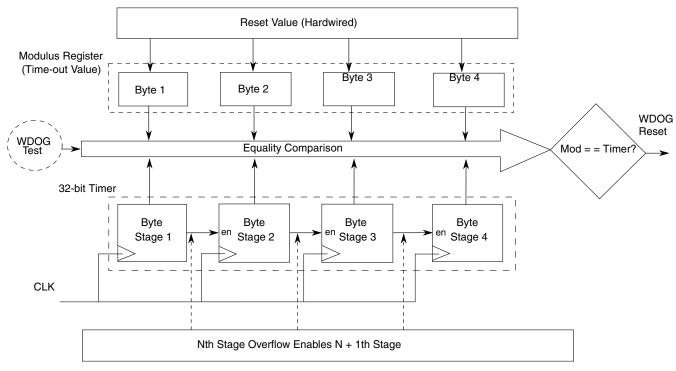


Figure 26-2. Watchdog timer byte splitting

Each stage is an 8-bit synchronous counter followed by combinational logic that generates an overflow signal. The overflow signal acts as an enable to the N + 1th stage.

In the test mode, when an individual byte, N, is tested, byte N – 1 is loaded forcefully with 0xFF, and both these bytes are allowed to run off the clock source. By doing so, the overflow signal from stage N – 1 is generated immediately, enabling counter stage N. The Nth stage runs and compares with the Nth byte of the time-out value register. In this way, the byte N is also tested along with the link between it and the preceding stage. No

Dackup reset generator

other stages, N - 2, N - 3... and N + 1, N + 2... are enabled for the test on byte N. These disabled stages, except the most significant stage of the counter, are loaded with a value of 0xFF.

26.5 Backup reset generator

The backup reset generator generates the final reset which goes out to the system. It has a backup mechanism which ensures that in case the bus clock stops and prevents the main state machine from generating a reset exception/interrupt, the watchdog timer's time-out is separately routed out as a reset to the system. Two successive timer time-outs without an intervening system reset result in the backup reset generator routing out the time-out signal as a reset to the system.

26.6 Generated resets and interrupts

The watchdog generates a reset in the following events, also referred to as exceptions:

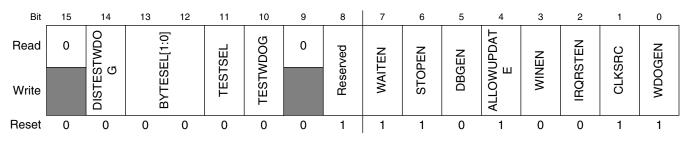
- A watchdog time-out
- Failure to unlock the watchdog within WCT time after system reset deassertion
- No update of the control and configuration registers within the WCT window after unlocking. At least one of the following registers must be written to within the WCT window to avoid reset:
 - WDOG_ST_CTRL_H, WDOG_ST_CTRL_L
 - WDOG_TO_VAL_H, WDOG_TO_VAL_L
 - WDOG_WIN_H, WDOG_WIN_L
 - WDOG_PRESCALER
- A value other than the unlock sequence or the refresh sequence is written to the unlock and/or refresh registers, respectively.
- A gap of more than 20 bus cycles exists between the writes of two values of the unlock sequence.
- A gap of more than 20 bus cycles exists between the writes of two values of the refresh sequence.

The watchdog can also generate an interrupt. If IRQ_RST_EN is set, then on the above mentioned events WDOG_ST_CTRL_L[INT_FLG] is set, generating an interrupt. A watchdog reset is also generated WCT time later to ensure the watchdog is fault tolerant. The interrupt can be cleared by writing 1 to INT_FLG.

The gap of WCT between interrupt and reset means that the WDOG time-out value must be greater than WCT. Otherwise, if the interrupt was generated due to a time-out, a second consecutive time-out will occur in that WCT gap. This will trigger the backup reset generator to generate a reset to the system, prematurely ending the interrupt service routine execution. Also, jobs such as counting the number of watchdog resets would not be done.

26.7 Memory map and register definition

This section consists of the memory map and register descriptions.


Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4005_2000	Watchdog Status and Control Register High (WDOG_STCTRLH)	16	R/W	01D3h	26.7.1/462
4005_2002	Watchdog Status and Control Register Low (WDOG_STCTRLL)	16	R/W	0001h	26.7.2/463
4005_2004	Watchdog Time-out Value Register High (WDOG_TOVALH)	16	R/W	004Ch	26.7.3/464
4005_2006	Watchdog Time-out Value Register Low (WDOG_TOVALL)	16	R/W	4B4Ch	26.7.4/464
4005_2008	Watchdog Window Register High (WDOG_WINH)	16	R/W	0000h	26.7.5/465
4005_200A	Watchdog Window Register Low (WDOG_WINL)	16	R/W	0010h	26.7.6/465
4005_200C	Watchdog Refresh register (WDOG_REFRESH)	16	R/W	B480h	26.7.7/466
4005_200E	Watchdog Unlock register (WDOG_UNLOCK)	16	R/W	D928h	26.7.8/466
4005_2010	Watchdog Timer Output Register High (WDOG_TMROUTH)	16	R/W	0000h	26.7.9/466
4005_2012	Watchdog Timer Output Register Low (WDOG_TMROUTL)	16	R/W	0000h	26.7.10/467
4005_2014	Watchdog Reset Count register (WDOG_RSTCNT)	16	R/W	0000h	26.7.11/467
4005_2016	Watchdog Prescaler register (WDOG_PRESC)	16	R/W	0400h	26.7.12/468

WDOG memory map

26.7.1 Watchdog Status and Control Register High (WDOG_STCTRLH)

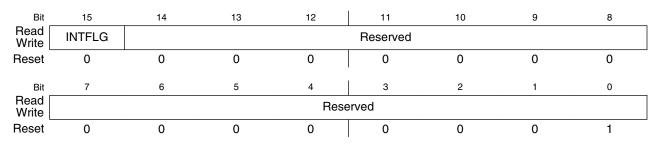
Address: 4005_2000h base + 0h offset = 4005_2000h

WDOG_STCTRLH field descriptions

Field	Description
15 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
14 DISTESTWDOG	Allows the WDOG's functional test mode to be disabled permanently. After it is set, it can only be cleared by a reset. It cannot be unlocked for editing after it is set.
	0 WDOG functional test mode is not disabled.
	1 WDOG functional test mode is disabled permanently until reset.
13–12 BYTESEL[1:0]	This 2-bit field selects the byte to be tested when the watchdog is in the byte test mode.
	00 Byte 0 selected 01 Byte 1 selected
	10 Byte 2 selected
	11 Byte 3 selected
11 TESTSEL	Effective only if TESTWDOG is set. Selects the test to be run on the watchdog timer.
	 Quick test. The timer runs in normal operation. You can load a small time-out value to do a quick test. Byte test. Puts the timer in the byte test mode where individual bytes of the timer are enabled for operation and are compared for time-out against the corresponding byte of the programmed time-out value. Select the byte through BYTESEL[1:0] for testing.
10 TESTWDOG	Puts the watchdog in the functional test mode. In this mode, the watchdog timer and the associated compare and reset generation logic is tested for correct operation. The clock for the timer is switched from the main watchdog clock to the fast clock input for watchdog functional test. The TESTSEL bit selects the test to be run.
9 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
8 Reserved	This field is reserved.
7 WAITEN	Enables or disables WDOG in Wait mode.
	0 WDOG is disabled in CPU Wait mode.
	1 WDOG is enabled in CPU Wait mode.
6 STOPEN	Enables or disables WDOG in Stop mode.

Table continues on the next page ...

KV10 Sub-Family Reference Manual, Rev. 7, September 2014



WDOG_STCTRLH field descriptions (continued)

Field	Description
	0 WDOG is disabled in CPU Stop mode.
	1 WDOG is enabled in CPU Stop mode.
5 DBGEN	Enables or disables WDOG in Debug mode.
	0 WDOG is disabled in CPU Debug mode.
	1 WDOG is enabled in CPU Debug mode.
4 ALLOWUPDATE	Enables updates to watchdog write-once registers, after the reset-triggered initial configuration window (WCT) closes, through unlock sequence.
	0 No further updates allowed to WDOG write-once registers.
	1 WDOG write-once registers can be unlocked for updating.
3 WINEN	Enables Windowing mode.
	0 Windowing mode is disabled.
	1 Windowing mode is enabled.
2 IRQRSTEN	Used to enable the debug breadcrumbs feature. A change in this bit is updated immediately, as opposed to updating after WCT.
	0 WDOG time-out generates reset only.
	1 WDOG time-out initially generates an interrupt. After WCT, it generates a reset.
1 CLKSRC	Selects clock source for the WDOG timer and other internal timing operations.
	0 WDOG clock sourced from LPO .
	1 WDOG clock sourced from alternate clock source.
0 WDOGEN	Enables or disables the WDOG's operation. In the disabled state, the watchdog timer is kept in the reset state, but the other exception conditions can still trigger a reset/interrupt. A change in the value of this bit must be held for more than one WDOG_CLK cycle for the WDOG to be enabled or disabled.
	0 WDOG is disabled.
	1 WDOG is enabled.

26.7.2 Watchdog Status and Control Register Low (WDOG_STCTRLL)

Address: 4005_2000h base + 2h offset = 4005_2002h

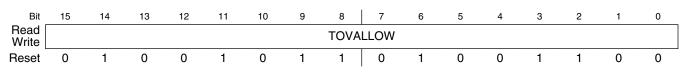
Field	Description
INTFLG	Interrupt flag. It is set when an exception occurs. IRQRSTEN = 1 is a precondition to set this flag. INTFLG = 1 results in an interrupt being issued followed by a reset, WCT later. The interrupt can be cleared by writing 1 to this bit. It also gets cleared on a system reset.
14–0 Reserved	This field is reserved. NOTE: Do not modify this field value.

WDOG_STCTRLL field descriptions

26.7.3 Watchdog Time-out Value Register High (WDOG_TOVALH)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read Write	TOVALHIGH															
Reset	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0

Address: 4005_2000h base + 4h offset = 4005_2004h


WDOG_TOVALH field descriptions

Field	Description
	Defines the upper 16 bits of the 32-bit time-out value for the watchdog timer. It is defined in terms of cycles of the watchdog clock.

26.7.4 Watchdog Time-out Value Register Low (WDOG_TOVALL)

The time-out value of the watchdog must be set to a minimum of four watchdog clock cycles. This is to take into account the delay in new settings taking effect in the watchdog clock domain.

Address: 4005_2000h base + 6h offset = 4005_2006h

WDOG_TOVALL field descriptions

Field	Description
	Defines the lower 16 bits of the 32-bit time-out value for the watchdog timer. It is defined in terms of cycles of the watchdog clock.

26.7.5 Watchdog Window Register High (WDOG_WINH)

NOTE You must set the Window Register value lower than the Timeout Value Register.

Address: 4005_2000h base + 8h offset = 4005_2008h

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read Write	WINHIGH															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

WDOG_WINH field descriptions

Field	Description
WINHIGH	Defines the upper 16 bits of the 32-bit window for the windowed mode of operation of the watchdog. It is defined in terms of cycles of the watchdog clock. In this mode, the watchdog can be refreshed only when the timer has reached a value greater than or equal to this window length. A refresh outside this window resets the system or if IRQRSTEN is set, it interrupts and then resets the system.

26.7.6 Watchdog Window Register Low (WDOG_WINL)

NOTE

You must set the Window Register value lower than the Timeout Value Register.

Address: 4005_2000h base + Ah offset = 4005_200Ah

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read Write		_		-		<u>.</u>		WIN	LOW							
Reset	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0

WDOG_WINL field descriptions

Field	Description
WINLOW	Defines the lower 16 bits of the 32-bit window for the windowed mode of operation of the watchdog. It is defined in terms of cycles of the pre-scaled watchdog clock. In this mode, the watchdog can be refreshed only when the timer reaches a value greater than or equal to this window length value. A refresh outside of this window resets the system or if IRQRSTEN is set, it interrupts and then resets the system.

26.7.7 Watchdog Refresh register (WDOG_REFRESH)

Address	: 4005_	_2000h	base +	Ch offs	et = 40	05_200	Ch									
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read Write							V	/DOGR	EFRES	Н						
Reset	1	0	1	1	0	1	0	0	1	0	0	0	0	0	0	0

WDOG_REFRESH field descriptions

Field	Description
15–0 WDOGREFRESH	Watchdog refresh register. A sequence of 0xA602 followed by 0xB480 within 20 bus clock cycles written to this register refreshes the WDOG and prevents it from resetting the system. Writing a value other than the above mentioned sequence or if the sequence is longer than 20 bus cycles, resets the system, or if IRQRSTEN is set, it interrupts and then resets the system.

26.7.8 Watchdog Unlock register (WDOG_UNLOCK)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read Write							٧	VDOGL	JNLOCH	(
Reset	1	1	0	1	1	0	0	1	0	0	1	0	1	0	0	0

WDOG_UNLOCK field descriptions

Field	Description
	Writing the unlock sequence values to this register to makes the watchdog write-once registers writable again. The required unlock sequence is 0xC520 followed by 0xD928 within 20 bus clock cycles. A valid unlock sequence opens a window equal in length to the WCT within which you can update the registers. Writing a value other than the above mentioned sequence or if the sequence is longer than 20 bus cycles, resets the system or if IRQRSTEN is set, it interrupts and then resets the system. The unlock sequence is effective only if ALLOWUPDATE is set.

26.7.9 Watchdog Timer Output Register High (WDOG_TMROUTH)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read Write		-	-	-			Т	IMERO	UTHIG	Н	<u> </u>					
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Address: 4005_2000h base + 10h offset = 4005_2010h

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

Chapter 26 Watchdog Timer (WDOG)

WDOG_TMROUTH field descriptions

Field	Description
15–0 TIMEROUTHIGH	Shows the value of the upper 16 bits of the watchdog timer.

26.7.10 Watchdog Timer Output Register Low (WDOG_TMROUTL)

During Stop mode, the WDOG_TIMER_OUT will be caught at the pre-stop value of the watchdog timer. After exiting Stop mode, a maximum delay of 1 WDOG_CLK cycle + 3 bus clock cycles will occur before the WDOG_TIMER_OUT starts following the watchdog timer.

Address: 4005_2000h base + 12h offset = 4005_2012h

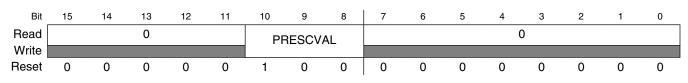
Address: 4005_2000h base + 14h offset = 4005_2014h

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read Write							Т	IMERC	UTLOV	V						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

WDOG_TMROUTL field descriptions

Field	Description
15–0 TIMEROUTLOW	Shows the value of the lower 16 bits of the watchdog timer.

26.7.11 Watchdog Reset Count register (WDOG_RSTCNT)


Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read Write								RST	CNT							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

WDOG_RSTCNT field descriptions

Field	Description
	Counts the number of times the watchdog resets the system. This register is reset only on a POR. Writing 1 to the bit to be cleared enables you to clear the contents of this register.

26.7.12 Watchdog Prescaler register (WDOG_PRESC)

Address: 4005_2000h base + 16h offset = 4005_2016h

WDOG_PRESC field descriptions

Field	Description
15–11	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
	3-bit prescaler for the watchdog clock source. A value of zero indicates no division of the input WDOG clock. The watchdog clock is divided by (PRESCVAL + 1) to provide the prescaled WDOG_CLK.
7–0	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

26.8 Watchdog operation with 8-bit access

26.8.1 General guideline

When performing 8-bit accesses to the watchdog's 16-bit registers where the intention is to access both the bytes of a register, place the two 8-bit accesses one after the other in your code.

26.8.2 Refresh and unlock operations with 8-bit access

One exception condition that generates a reset to the system is the write of any value other than those required for a legal refresh/update sequence to the respective refresh and unlock registers.

For an 8-bit access to these registers, writing a correct value requires at least two bus clock cycles, resulting in an invalid value in the registers for one cycle. Therefore, the system is reset even if the intention is to write a correct value to the refresh/unlock register. Keeping this in mind, the exception condition for 8-bit accesses is slightly modified.

Whereas the match for a correct value for a refresh/unlock sequence is as according to the original definition, the match for an incorrect value is done byte-wise on the refresh/ unlock rather than for the whole 16-bit value. This means that if the high byte of the refresh/unlock register contains any value other than high bytes of the two values that make up the sequence, it is treated as an exception condition, leading to a reset or interrupt-then-reset. The same holds true for the lower byte of the refresh or unlock register. Take the refresh operation that expects a write of 0xA602 followed by 0xB480 to the refresh register, as an example.

	WDOG_REFRESH[15:8]	WDOG_REFRESH[7:0]	Sequence value1 or value2 match	Mismatch exception
Current Value	0xB4	0x80	Value2 match	No
Write 1	0xB4	0x02	No match	No
Write 2	0xA6	0x02	Value1 match	No
Write 3	0xB4	0x02	No match	No
Write 4	0xB4	0x80	Value2 match. Sequence complete.	No
Write 5	0x02	0x80	No match	Yes

Table 26-15.	Refresh for 8-bit access

As shown in the preceding table, the refresh register holds its reset value initially. Thereafter, two 8-bit accesses are performed on the register to write the first value of the refresh sequence. No mismatch exception is registered on the intermediate write, Write1. The sequence is completed by performing two more 8-bit accesses, writing in the second value of the sequence for a successful refresh. It must be noted that the match of value2 takes place only when the complete 16-bit value is correctly written, write4. Hence, the requirement of writing value2 of the sequence within 20 bus clock cycles of value1 is checked by measuring the gap between write2 and write4.

It is reiterated that the condition for matching values 1 and 2 of the refresh or unlock sequence remains unchanged. The difference for 8-bit accesses is that the criterion for detecting a mismatch is less strict. Any 16-bit access still needs to adhere to the original guidelines, mentioned in the sections Refreshing the Watchdog.

26.9 Restrictions on watchdog operation

This section mentions some exceptions to the watchdog operation that may not be apparent to you.

nestrictions on watchdog operation

- Restriction on unlock/refresh operations—In the period between the closure of the WCT window after unlock and the actual reload of the watchdog timer, unlock and refresh operations need not be attempted.
- The update and reload of the watchdog timer happens two to three watchdog clocks after WCT window closes, following a successful configuration on unlock.
- Clock Switching Delay—The watchdog uses glitch-free multiplexers at two places one to choose between the LPO oscillator input and alternate clock input, and the other to choose between the watchdog functional clock and fast clock input for watchdog functional test. A maximum time period of ~2 clock A cycles plus ~2 clock B cycles elapses from the time a switch is requested to the occurrence of the actual clock switch, where clock A and B are the two input clocks to the clock mux.
- For the windowed mode, there is a two to three bus clock latency between the watchdog counter going past the window value and the same registering in the bus clock domain.
- For proper operation of the watchdog, the watchdog clock must be at least five times slower than the system bus clock at all times. An exception is when the watchdog clock is synchronous to the bus clock wherein the watchdog clock can be as fast as the bus clock.
- WCT must be equivalent to at least three watchdog clock cycles. If not ensured, this means that even after the close of the WCT window, you have to wait for the synchronized system reset to deassert in the watchdog clock domain, before expecting the configuration updates to take effect.
- The time-out value of the watchdog should be set to a minimum of four watchdog clock cycles. This is to take into account the delay in new settings taking effect in the watchdog clock domain.
- You must take care not only to refresh the watchdog within the watchdog timer's actual time-out period, but also provide enough allowance for the time it takes for the refresh sequence to be detected by the watchdog timer, on the watchdog clock.
- Updates cannot be made in the bus clock cycle immediately following the write of the unlock sequence, but one bus clock cycle later.
- It should be ensured that the time-out value for the watchdog is always greater than 2xWCT time + 20 bus clock cycles.
- An attempted refresh operation, in between the two writes of the unlock sequence and in the WCT time following a successful unlock, will go undetected.

- Trying to unlock the watchdog within the WCT time after an initial unlock has no effect.
- The refresh and unlock operations and interrupt are not automatically disabled in the watchdog functional test mode.
- After emerging from a reset due to a watchdog functional test, you are still expected to go through the mandatory steps of unlocking and configuring the watchdog. The watchdog continues to be in its functional test mode and therefore you should pull the watchdog out of the functional test mode within WCT time of reset.
- After emerging from a reset due to a watchdog functional test, you still need to go through the mandatory steps of unlocking and configuring the watchdog.
- You must ensure that both the clock inputs to the glitchless clock multiplexers are alive during the switching of clocks. Failure to do so results in a loss of clock at their outputs.
- There is a gap of two to three watchdog clock cycles from the point that stop mode is entered to the watchdog timer actually pausing, due to synchronization. The same holds true for an exit from the stop mode, this time resulting in a two to three watchdog clock cycle delay in the timer restarting. In case the duration of the stop mode is less than one watchdog clock cycle, the watchdog timer is not guaranteed to pause.
- Consider the case when the first refresh value is written, following which the system enters stop mode with system bus clk still on. If the second refresh value is not written within 20 bus cycles of the first value, the system is reset, or interrupt-then-reset if enabled.

nestrictions on watchdog operation

Chapter 27 Multipurpose Clock Generator (MCG)

27.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

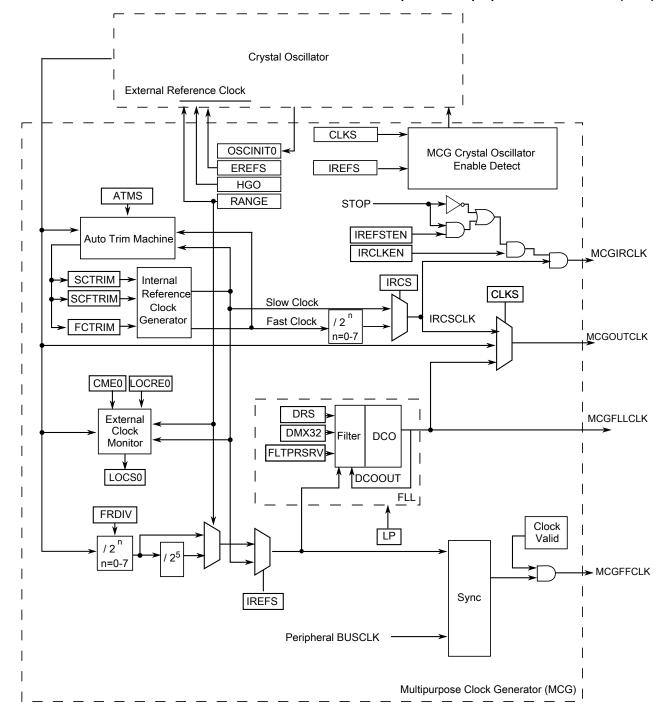
The multipurpose clock generator (MCG) module provides several clock source choices for the MCU.

The module contains a frequency-locked loop (FLL). The FLL is controllable by either an internal or an external reference clock. The module can select either an FLL output clock, or a reference clock (internal or external) as a source for the MCU system clock. The MCG operates in conjuction with a crystal oscillator, which allows an external crystal, ceramic resonator, or another external clock source to produce the external reference clock.

27.1.1 Features

Key features of the MCG module are:

- Frequency-locked loop (FLL):
 - Digitally-controlled oscillator (DCO)
 - DCO frequency range is programmable for up to four different frequency ranges.
 - Option to program and maximize DCO output frequency for a low frequency external reference clock source.
 - Option to prevent FLL from resetting its current locked frequency when switching clock modes if FLL reference frequency is not changed.


nuroduction

- Internal or external reference clock can be used as the FLL source.
- Can be used as a clock source for other on-chip peripherals.
- Internal reference clock generator:
 - Slow clock with nine trim bits for accuracy
 - Fast clock with four trim bits
 - Can be used as source clock for the FLL. In FEI mode, only the slow Internal Reference Clock (IRC) can be used as the FLL source.
 - Either the slow or the fast clock can be selected as the clock source for the MCU.
 - Can be used as a clock source for other on-chip peripherals.
- Control signals for the MCG external reference low power oscillator clock generators are provided:
 - HGO, RANGE, EREFS
- External clock from the Crystal Oscillator :
 - Can be used as a source for the FLL.
 - Can be selected as the clock source for the MCU.
- External clock monitor with reset and interrupt request capability to check for external clock failure when running in FBE, BLPE, or FEE modes
- Internal Reference Clocks Auto Trim Machine (ATM) capability using an external clock as a reference
- Reference dividers for the FLL are provided
- Reference dividers for the Fast Internal Reference Clock are provided
- MCG FLL Clock (MCGFLLCLK) is provided as a clock source for other on-chip peripherals
- MCG Fixed Frequency Clock (MCGFFCLK) is provided as a clock source for other on-chip peripherals
- MCG Internal Reference Clock (MCGIRCLK) is provided as a clock source for other on-chip peripherals

This figure presents the block diagram of the MCG module.

Chapter 27 Multipurpose Clock Generator (MCG)

Figure 27-1. Multipurpose Clock Generator (MCG) block diagram

NOTE

Refer to the chip configuration chapter to identify the oscillator used in this MCU.

27.1.2 Modes of Operation

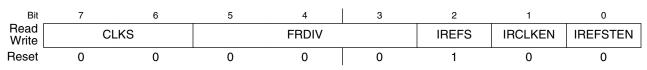
The MCG has the following modes of operation: FEI, FEE, FBI, FBE, BLPI, BLPE, and Stop. For details, see MCG modes of operation.

27.2 External Signal Description

There are no MCG signals that connect off chip.

27.3 Memory Map/Register Definition

This section includes the memory map and register definition.


The MCG registers can only be written when in supervisor mode. Write accesses when in user mode will result in a bus error. Read accesses may be performed in both supervisor and user mode.

Absolute address (hex)	Register name		Access	Reset value	Section/ page
4006_4000	MCG Control 1 Register (MCG_C1)	8	R/W	04h	27.3.1/476
4006_4001	MCG Control 2 Register (MCG_C2)	8	R/W	80h	27.3.2/477
4006_4002	MCG Control 3 Register (MCG_C3)		R/W	Undefined	27.3.3/479
4006_4003	MCG Control 4 Register (MCG_C4)	8	R/W	Undefined	27.3.4/479
4006_4005	MCG Control 6 Register (MCG_C6)	8	R/W	00h	27.3.5/481
4006_4006	MCG Status Register (MCG_S)	8	R	10h	27.3.6/481
4006_4008	MCG Status and Control Register (MCG_SC)	8	R/W	02h	27.3.7/482
4006_400A	MCG Auto Trim Compare Value High Register (MCG_ATCVH)	8	R/W	00h	27.3.8/484
4006_400B	MCG Auto Trim Compare Value Low Register (MCG_ATCVL)	8	R/W	00h	27.3.9/484

MCG memory map

27.3.1 MCG Control 1 Register (MCG_C1)

Address: 4006_4000h base + 0h offset = 4006_4000h

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

MCG_C1 field descriptions

Field	Description			
7–6 CLKS	Clock Source Select Selects the clock source for MCGOUTCLK.			
	Selects the clock source for MCGOOTCER.			
	00 Encoding 0 — Output of FLL is selected.			
	01 Encoding 1 — Internal reference clock is selected.			
	10 Encoding 2 — External reference clock is selected.			
	11 Encoding 3 — Reserved.			
5–3 FRDIV	FLL External Reference Divider			
	Selects the amount to divide down the external reference clock for the FLL. The resulting frequency must be in the range 31.25 kHz to 39.0625 kHz (This is required when FLL/DCO is the clock source for MCGOUTCLK . In FBE mode, it is not required to meet this range, but it is recommended in the cases when trying to enter a FLL mode from FBE).			
	000 If RANGE = 0, Divide Factor is 1; for all other RANGE values, Divide Factor is 32.			
	001 If RANGE = 0, Divide Factor is 2; for all other RANGE values, Divide Factor is 64.			
	010 If RANGE = 0, Divide Factor is 4; for all other RANGE values, Divide Factor is 128.			
	011 If RANGE = 0, Divide Factor is 8; for all other RANGE values, Divide Factor is 256.			
	100 If RANGE = 0, Divide Factor is 16; for all other RANGE values, Divide Factor is 512.			
	101 If RANGE = 0, Divide Factor is 32; for all other RANGE values, Divide Factor is 1024.			
	110 If RANGE = 0, Divide Factor is 64; for all other RANGE values, Divide Factor is 1280.			
	111 If RANGE = 0, Divide Factor is 128; for all other RANGE values, Divide Factor is 1536.			
2 IREFS	Internal Reference Select			
	Selects the reference clock source for the FLL.			
	0 External reference clock is selected.			
	1 The slow internal reference clock is selected.			
1 IRCLKEN	Internal Reference Clock Enable			
	Enables the internal reference clock for use as MCGIRCLK.			
	0 MCGIRCLK inactive.			
	1 MCGIRCLK active.			
0 IREFSTEN	Internal Reference Stop Enable			
INCLOSICI	Controls whether or not the internal reference clock remains enabled when the MCG enters Stop mode.			
	0 Internal reference clock is disabled in Stop mode.			
	1 Internal reference clock is enabled in Stop mode if IRCLKEN is set or if MCG is in FEI, FBI, or BLPI modes before entering Stop mode.			

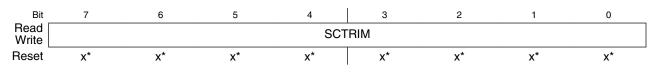
27.3.2 MCG Control 2 Register (MCG_C2)

Address: 4006_4000h base + 1h offset = 4006_4001h

7 6 5 Bit 4 3 2 1 0 Read LΡ LOCRE0 FCFTRIM RANGE HGO EREFS IRCS Write 1 0 0 0 0 0 0 0 Reset

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

wemory Map/Register Definition


Field	Description
7	Loss of Clock Reset Enable
LOCRE0	Determines whether an interrupt or a reset request is made following a loss of OSC0 external reference clock. The LOCRE0 only has an affect when CME0 is set.
	0 Interrupt request is generated on a loss of OSC0 external reference clock.
	1 Generate a reset request on a loss of OSC0 external reference clock.
6	Fast Internal Reference Clock Fine Trim
FCFTRIM	FCFTRIM controls the smallest adjustment of the fast internal reference clock frequency. Setting FCFTRIM increases the period and clearing FCFTRIM decreases the period by the smallest amount possible. If an FCFTRIM value stored in nonvolatile memory is to be used, it is your responsibility to copy that value from the nonvolatile memory location to this bit.
5–4	Frequency Range Select
RANGE	Selects the frequency range for the crystal oscillator or external clock source. See the Oscillator (OSC) chapter for more details and the device data sheet for the frequency ranges used.
	00 Encoding 0 — Low frequency range selected for the crystal oscillator .
	01 Encoding 1 — High frequency range selected for the crystal oscillator .
	1X Encoding 2 — Very high frequency range selected for the crystal oscillator .
3	High Gain Oscillator Select
HGO	Controls the crystal oscillator mode of operation. See the Oscillator (OSC) chapter for more details.
	0 Configure crystal oscillator for low-power operation.
	1 Configure crystal oscillator for high-gain operation.
2	External Reference Select
EREFS	Selects the source for the external reference clock. See the Oscillator (OSC) chapter for more details.
	0 External reference clock requested.
	1 Oscillator requested.
1 LP	Low Power Select
	Controls whether the FLL is disabled in BLPI and BLPE modes. In FBE mode, setting this bit to 1 will transition the MCG into BLPE mode; in FBI mode, setting this bit to 1 will transition the MCG into BLPI mode. In any other MCG mode, LP bit has no affect.
	0 FLL is not disabled in bypass modes.
	1 FLL is disabled in bypass modes (lower power)
0 IRCS	Internal Reference Clock Select
	Selects between the fast or slow internal reference clock source.
	0 Slow internal reference clock selected.
	1 Fast internal reference clock selected.

MCG_C2 field descriptions

27.3.3 MCG Control 3 Register (MCG_C3)

Address: 4006_4000h base + 2h offset = 4006_4002h

* Notes:

• x = Undefined at reset.

MCG_C3 field descriptions

Field	Description
7–0 SCTRIM	Slow Internal Reference Clock Trim Setting SCTRIM ¹ controls the slow internal reference clock frequency by controlling the slow internal reference clock period. The SCTRIM bits are binary weighted, that is, bit 1 adjusts twice as much as bit 0. Increasing the binary value increases the period, and decreasing the value decreases the period.
	An additional fine trim bit is available in C4 register as the SCFTRIM bit. Upon reset, this value is loaded with a factory trim value.
	If an SCTRIM value stored in nonvolatile memory is to be used, it is your responsibility to copy that value from the nonvolatile memory location to this register.

1. A value for SCTRIM is loaded during reset from a factory programmed location.

27.3.4 MCG Control 4 Register (MCG_C4)

NOTE

Reset values for DRST and DMX32 bits are 0.

Address: 4006_4000h base + 3h offset = 4006_4003h

Bit	7	6	5	4	3	2	1	0
Read Write	DMX32	DRST	_DRS		FCT	FRIM		SCFTRIM
Reset	0	0	0	X*	X*	X*	X *	X*

* Notes:

• x = Undefined at reset.

• A value for FCTRIM is loaded during reset from a factory programmed location. x = Undefined at reset.

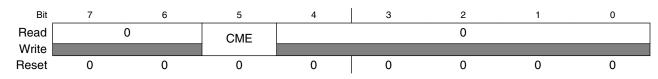
MCG_C4 field descriptions

Field	Description
	DCO Maximum Frequency with 32.768 kHz Reference
DMX32	The DMX32 bit controls whether the DCO frequency range is narrowed to its maximum frequency with a 32.768 kHz reference.

Table continues on the next page...

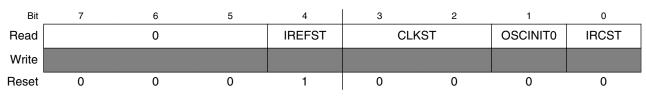
Field	Description						
	The following table identifies settings for the DCO frequency range.						
	NOTE: The system clocks derived from this source should not exceed their specified maximums.						
	DRST_DRS	DMX32	Reference Range	FLL Factor	DCO Range		
	00	0	31.25–39.0625 kHz	640	20–25 MHz		
		1	32.768 kHz	732	24 MHz		
	01	0	31.25–39.0625 kHz	1280	40–50 MHz		
		1	32.768 kHz	1464	48 MHz		
	10	0	31.25–39.0625 kHz	1920	60–75 MHz		
		1	32.768 kHz	2197	72 MHz		
	11	0	31.25–39.0625 kHz	2560	80–100 MHz		
		1	32.768 kHz	2929	96 MHz		
6–5 DRST_DRS	 1 DCO is fine-tuned for maximum frequency with 32.768 kHz reference. DCO Range Select The DRS bits select the frequency range for the FLL output, DCOOUT. When the LP bit is set, writes to the DRS bits are ignored. The DRST read field indicates the current frequency range for DCOOUT. The DRST field does not update immediately after a write to the DRS field due to internal synchronization between clock domains. See the DCO Frequency Range table for more details. 00 Encoding 0 — Low range (reset default). 01 Encoding 1 — Mid range. 10 Encoding 2 — Mid-high range. 						
	11 Encoding 3 — H	<u> </u>					
4–1 FCTRIM	 Fast Internal Reference Clock Trim Setting FCTRIM ¹ controls the fast internal reference clock frequency by controlling the fast internal reference clock period. The FCTRIM bits are binary weighted, that is, bit 1 adjusts twice as much as bit 0. Increasing the binary value increases the period, and decreasing the value decreases the period. If an FCTRIM[3:0] value stored in nonvolatile memory is to be used, it is your responsibility to copy that value from the nonvolatile memory location to this register. 						
0 SCFTRIM	Slow Internal Referen SCFTRIM ² controls the SCFTRIM increases the possible.	ce Clock Fine Trir ne smallest adjust he period and clea stored in nonvolat	n ment of the slow internal r aring SCFTRIM decreases ile memory is to be used, i	the period by the	smallest amount		

MCG_C4 field descriptions (continued)


- 1. A value for FCTRIM is loaded during reset from a factory programmed location.
- 2. A value for SCFTRIM is loaded during reset from a factory programmed location .

27.3.5 MCG Control 6 Register (MCG_C6)

Address: 4006_4000h base + 5h offset = 4006_4005h



MCG_C6 field descriptions

Field	Description
7–6 Reserved	Reserved
	This field is reserved.
	This read-only field is reserved and always has the value 0.
5	Clock Monitor Enable
CME	 Determines if a reset request is made following a loss of external clock indication. The CME bit should only be set to a logic 1 when the MCG is in an operational mode that uses the external clock (FEE, FBE, or BLPE). Whenever the CME bit is set to a logic 1, the value of the RANGE bits in the C2 register should not be changed. CME bit should be set to a logic 0 before the MCG enters any Stop mode. Otherwise, a reset request may occur when in Stop mode. CME should also be set to a logic 0 before entering VLPR or VLPW power modes if the MCG is in BLPE mode. 0 External clock monitor is disabled. 1 Generate a reset request on loss of external clock.
4–0	Reserved
Reserved	
	This field is reserved.
	This read-only field is reserved and always has the value 0.

27.3.6 MCG Status Register (MCG_S)

Address: 4006_4000h base + 6h offset = 4006_4006h

MCG_S field descriptions

Field	Description
7–5 Reserved	Reserved This field is reserved. This read-only field is reserved and always has the value 0.

Table continues on the next page ...

Field	Description			
4 IREFST	Internal Reference Status			
	This bit indicates the current source for the FLL reference clock. The IREFST bit does not update immediately after a write to the IREFS bit due to internal synchronization between clock domains.			
	0 Source of FLL reference clock is the external reference clock.			
	1 Source of FLL reference clock is the internal reference clock.			
3–2 CLKST	Clock Mode Status			
	These bits indicate the current clock mode. The CLKST bits do not update immediately after a write to the CLKS bits due to internal synchronization between clock domains.			
	00 Encoding 0 — Output of the FLL is selected (reset default).			
	01 Encoding 1 — Internal reference clock is selected.			
	10 Encoding 2 — External reference clock is selected.			
	11 Reserved.			
1 OSCINIT0	OSC Initialization			
	This bit, which resets to 0, is set to 1 after the initialization cycles of the crystal oscillator clock have completed. After being set, the bit is cleared to 0 if the OSC is subsequently disabled. See the OSC module's detailed description for more information.			
0 IRCST	Internal Reference Clock Status			
	The IRCST bit indicates the current source for the internal reference clock select clock (IRCSCLK). The			
	IRCST bit does not update immediately after a write to the IRCS bit due to internal synchronization between clock domains. The IRCST bit will only be updated if the internal reference clock is enabled,			
	either by the MCG being in a mode that uses the IRC or by setting the C1[IRCLKEN] bit .			
	0 Source of internal reference clock is the slow clock (32 kHz IRC).			
	1 Source of internal reference clock is the fast clock (4 MHz IRC).			

MCG_S field descriptions (continued)

27.3.7 MCG Status and Control Register (MCG_SC)

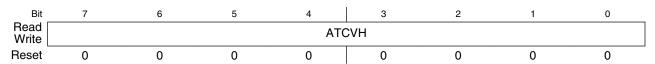
Address: 4006_4000h base + 8h offset = 4006_4008h

Bit	7	6	5	4	3	2	1	0
Read	ATME	ATMS				FCRDIV		LOCS0
Write	ATME	ATMS FLTPRSRV FCRDIV		FUNDIV		w1c		
Reset	0	0	0	0	0	0	1	0

MCG_SC field descriptions

Field	Description
7 ATME	Automatic Trim Machine Enable
	Enables the Auto Trim Machine to start automatically trimming the selected Internal Reference Clock.
	NOTE: ATME deasserts after the Auto Trim Machine has completed trimming all trim bits of the IRCS clock selected by the ATMS bit.

Table continues on the next page ...


MCG_SC field descriptions (continued)

Writing to C1, C3, C4, and SC registers or entering Stop mode aborts the auto trim operation and cl this bit. 0 Auto Trim Machine disabled. 1 Auto Trim Machine enabled. 6 Automatic Trim Machine Select Selects the IRCS clock for Auto Trim Test. Selects the IRCS clock for Auto Trim Test. 0 32 kHz Internal Reference Clock selected. 1 4 MHz Internal Reference Clock selected. 5 Automatic Trim Machine Fail Flag Fail flag for the Automatic Trim Machine (ATM). This bit asserts when the Automatic Trim Machine i enabled, ATME=1, and a write to the C1, C3, C4, and SC registers is detected or the MCG enters in Stop mode. A write to ATMF clears the flag. 0 Automatic Trim Machine completed normally. 1 Automatic Trim Machine failed. FLTPRSRV FLL Filter Preserve Enable This bit will prevent the FLL filter values from resetting allowing the FLL output frequency to remain same during clock mode changes where the FLL/DCO output is still valid. (Note: This requires that i FLL reference frequency to remain the same as what it was prior to the new clock mode switch. Other FLL filter and frequency values will change.) 0 FLL filter and FLL frequency will reset on changes to currect clock mode.	
1 Auto Trim Machine enabled. 6 Automatic Trim Machine Select Selects the IRCS clock for Auto Trim Test. 0 0 32 kHz Internal Reference Clock selected. 1 4 MHz Internal Reference Clock selected. 5 Automatic Trim Machine Fail Flag Fail flag for the Automatic Trim Machine (ATM). This bit asserts when the Automatic Trim Machine i enabled, ATME=1, and a write to the C1, C3, C4, and SC registers is detected or the MCG enters in Stop mode. A write to ATMF clears the flag. 0 Automatic Trim Machine completed normally. 1 Automatic Trim Machine failed. FLTPRSRV FLL Filter Preserve Enable This bit will prevent the FLL filter values from resetting allowing the FLL output frequency to remain same during clock mode changes where the FLL/DCO output is still valid. (Note: This requires that if FLL reference frequency to remain the same as what it was prior to the new clock mode switch. Other FLL filter and frequency values will change.)	
6 ATMS Automatic Trim Machine Select 9 ATMS Selects the IRCS clock for Auto Trim Test. 0 32 kHz Internal Reference Clock selected. 1 4 MHz Internal Reference Clock selected. 5 ATMF Fail flag for the Automatic Trim Machine Fail Flag Fail flag for the Automatic Trim Machine (ATM). This bit asserts when the Automatic Trim Machine i enabled, ATME=1, and a write to the C1, C3, C4, and SC registers is detected or the MCG enters in Stop mode. A write to ATMF clears the flag. 0 Automatic Trim Machine completed normally. 1 Automatic Trim Machine failed. FLTPRSRV 4 FLTPRSRV This bit will prevent the FLL filter values from resetting allowing the FLL output frequency to remain same during clock mode changes where the FLL/DCO output is still valid. (Note: This requires that the FLL reference frequency to remain the same as what it was prior to the new clock mode switch. Oth FLL filter and frequency values will change.)	
ATMS Selects the IRCS clock for Auto Trim Test. 0 32 kHz Internal Reference Clock selected. 1 4 MHz Internal Reference Clock selected. 5 Automatic Trim Machine Fail Flag Fail flag for the Automatic Trim Machine (ATM). This bit asserts when the Automatic Trim Machine i enabled, ATME=1, and a write to the C1, C3, C4, and SC registers is detected or the MCG enters in Stop mode. A write to ATMF clears the flag. 0 Automatic Trim Machine completed normally. 1 Automatic Trim Machine failed. FLTPRSRV FLL Filter Preserve Enable This bit will prevent the FLL filter values from resetting allowing the FLL output frequency to remain same during clock mode changes where the FLL/DCO output is still valid. (Note: This requires that filter reference frequency to remain the same as what it was prior to the new clock mode switch. Other FLL filter and frequency values will change.)	
0 32 kHz Internal Reference Clock selected. 1 4 MHz Internal Reference Clock selected. 5 Automatic Trim Machine Fail Flag Fail flag for the Automatic Trim Machine (ATM). This bit asserts when the Automatic Trim Machine i enabled, ATME=1, and a write to the C1, C3, C4, and SC registers is detected or the MCG enters in Stop mode. A write to ATMF clears the flag. 0 Automatic Trim Machine completed normally. 1 Automatic Trim Machine failed. FLTPRSRV FLL Filter Preserve Enable This bit will prevent the FLL filter values from resetting allowing the FLL output frequency to remain same during clock mode changes where the FLL/DCO output is still valid. (Note: This requires that i FLL reference frequency to remain the same as what it was prior to the new clock mode switch. Other FLL filter and frequency values will change.)	
1 4 MHz Internal Reference Clock selected. 5 Automatic Trim Machine Fail Flag Fail flag for the Automatic Trim Machine (ATM). This bit asserts when the Automatic Trim Machine i enabled, ATME=1, and a write to the C1, C3, C4, and SC registers is detected or the MCG enters in Stop mode. A write to ATMF clears the flag. 0 Automatic Trim Machine completed normally. 1 Automatic Trim Machine failed. 4 FLL Filter Preserve Enable This bit will prevent the FLL filter values from resetting allowing the FLL output frequency to remain same during clock mode changes where the FLL/DCO output is still valid. (Note: This requires that if FLL reference frequency to remain the same as what it was prior to the new clock mode switch. Oth FLL filter and frequency values will change.)	
5 Automatic Trim Machine Fail Flag ATMF Fail flag for the Automatic Trim Machine (ATM). This bit asserts when the Automatic Trim Machine i enabled, ATME=1, and a write to the C1, C3, C4, and SC registers is detected or the MCG enters in Stop mode. A write to ATMF clears the flag. 0 Automatic Trim Machine completed normally. 1 Automatic Trim Machine failed. 4 FLL Filter Preserve Enable This bit will prevent the FLL filter values from resetting allowing the FLL output frequency to remain same during clock mode changes where the FLL/DCO output is still valid. (Note: This requires that if FLL reference frequency to remain the same as what it was prior to the new clock mode switch. Oth FLL filter and frequency values will change.)	
ATMF Fail flag for the Automatic Trim Machine (ATM). This bit asserts when the Automatic Trim Machine i enabled, ATME=1, and a write to the C1, C3, C4, and SC registers is detected or the MCG enters in Stop mode. A write to ATMF clears the flag. 0 Automatic Trim Machine completed normally. 1 Automatic Trim Machine failed. FLTPRSRV FLL Filter Preserve Enable This bit will prevent the FLL filter values from resetting allowing the FLL output frequency to remain same during clock mode changes where the FLL/DCO output is still valid. (Note: This requires that if FLL reference frequency to remain the same as what it was prior to the new clock mode switch. Oth FLL filter and frequency values will change.)	
enabled, ATME=1, and a write to the C1, C3, C4, and SC registers is detected or the MCG enters in Stop mode. A write to ATMF clears the flag. 0 Automatic Trim Machine completed normally. 1 Automatic Trim Machine failed. FLTPRSRV FLL Filter Preserve Enable This bit will prevent the FLL filter values from resetting allowing the FLL output frequency to remain same during clock mode changes where the FLL/DCO output is still valid. (Note: This requires that if FLL reference frequency to remain the same as what it was prior to the new clock mode switch. Oth FLL filter and frequency values will change.)	
1 Automatic Trim Machine failed. 4 FLL Filter Preserve Enable FLTPRSRV FLL Filter Preserve Enable This bit will prevent the FLL filter values from resetting allowing the FLL output frequency to remain same during clock mode changes where the FLL/DCO output is still valid. (Note: This requires that fLL reference frequency to remain the same as what it was prior to the new clock mode switch. Oth FLL filter and frequency values will change.)	
4 FLTPRSRV FLTPRSRV This bit will prevent the FLL filter values from resetting allowing the FLL output frequency to remain same during clock mode changes where the FLL/DCO output is still valid. (Note: This requires that is FLL reference frequency to remain the same as what it was prior to the new clock mode switch. Other FLL filter and frequency values will change.)	
FLTPRSRV This bit will prevent the FLL filter values from resetting allowing the FLL output frequency to remain same during clock mode changes where the FLL/DCO output is still valid. (Note: This requires that FLL reference frequency to remain the same as what it was prior to the new clock mode switch. Oth FLL filter and frequency values will change.)	
This bit will prevent the FLL filter values from resetting allowing the FLL output frequency to remain same during clock mode changes where the FLL/DCO output is still valid. (Note: This requires that FLL reference frequency to remain the same as what it was prior to the new clock mode switch. Oth FLL filter and frequency values will change.)	
0 FLL filter and FLL frequency will reset on changes to currect clock mode	ne
1 Fil filter and FLL frequency retain their previous values during new clock mode change.	
3–1 Fast Clock Internal Reference Divider	
FCRDIV Selects the amount to divide down the fast internal reference clock. The resulting frequency will be range 31.25 kHz to 4 MHz (Note: Changing the divider when the Fast IRC is enabled is not support	
000 Divide Factor is 1	
001 Divide Factor is 2.	
010 Divide Factor is 4.	
011 Divide Factor is 8.	
100 Divide Factor is 16	
101 Divide Factor is 32	
110 Divide Factor is 64	
111 Divide Factor is 128.	
0 OSC0 Loss of Clock Status LOCS0	
The LOCS0 indicates when a loss of OSC0 reference clock has occurred. The LOCS0 bit only has a effect when CME0 is set. This bit is cleared by writing a logic 1 to it when set.	n
0 Loss of OSC0 has not occurred.	
1 Loss of OSC0 has occurred.	

27.3.8 MCG Auto Trim Compare Value High Register (MCG_ATCVH)

Address: 4006_4000h base + Ah offset = 4006_400Ah

MCG_ATCVH field descriptions

Field	Description
7–0 ATCV	ATM Compare Value High Values are used by Auto Trim Machine to compare and adjust Internal Reference trim values during ATM SAR conversion.

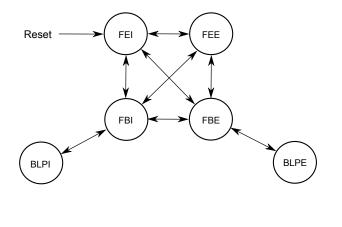
27.3.9 MCG Auto Trim Compare Value Low Register (MCG_ATCVL)

Address: 4006_4000h base + Bh offset = 4006_400Bh

Bit	7	6	5	4	3	2	1	0
Read Write	ATCVL							
Reset	0	0	0	0	0	0	0	0

MCG_ATCVL field descriptions

Field	Description
7–0 ATCVL	ATM Compare Value Low
	Values are used by Auto Trim Machine to compare and adjust Internal Reference trim values during ATM SAR conversion.


27.4 Functional description

27.4.1 MCG mode state diagram

The seven states of the MCG are shown in the following figure and are described in Table 27-11. The arrows indicate the permitted MCG mode transitions.

Chapter 27 Multipurpose Clock Generator (MCG)

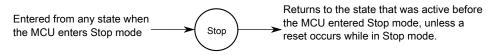


Figure 27-11. MCG mode state diagram

27.4.1.1 MCG modes of operation

The MCG operates in one of the following modes.

Note

The MCG restricts transitions between modes. For the permitted transitions, see Figure 27-11.

Table 27-11.	MCG modes of	of operation
--------------	--------------	--------------

Mode	Description
FLL Engaged Internal (FEI)	FLL engaged internal (FEI) is the default mode of operation and is entered when all the following condtions occur:
	00 is written to C1[CLKS].
	 1 is written to C1[IREFS].
	In FEI mode, MCGOUTCLK is derived from the FLL clock (DCOCLK) that is controlled by the 32 kHz Internal Reference Clock (IRC). The FLL loop will lock the DCO frequency to the FLL factor, as selected by C4[DRST_DRS] and C4[DMX32] bits, times the internal reference frequency. See the C4[DMX32] bit description for more details.

Table continues on the next page ...

runctional description

Mode	Description				
FLL Engaged External	FLL engaged external (FEE) mode is entered when all the following conditions occur:				
(FEE)	00 is written to C1[CLKS].				
	0 is written to C1[IREFS].				
	 C1[FRDIV] must be written to divide external reference clock to be within the range of 31.25 kHz to 39.0625 kHz 				
	In FEE mode, MCGOUTCLK is derived from the FLL clock (DCOCLK) that is controlled by the external reference clock. The FLL loop will lock the DCO frequency to the FLL factor, as selected by C4[DRST_DRS] and C4[DMX32] bits, times the external reference frequency, as specified by C1[FRDIV] and C2[RANGE]. See the C4[DMX32] bit description for more details.				
FLL Bypassed Internal	FLL bypassed internal (FBI) mode is entered when all the following conditions occur:				
(FBI)	01 is written to C1[CLKS].				
	1 is written to C1[IREFS].				
	0 is written to C2[LP].				
	In FBI mode, the MCGOUTCLK is derived either from the slow (32 kHz IRC) or fast (4 MHz IRC) internal reference clock, as selected by the C2[IRCS] bit. The FLL is operational but its output is not used. This mode is useful to allow the FLL to acquire its target frequency while the MCGOUTCLK is driven from the C2[IRCS] selected internal reference clock. The FLL clock (DCOCLK) is controlled by the slow internal reference clock, and the DCO clock frequency locks to a multiplication factor, as selected by C4[DRST_DRS] and C4[DMX32] bits, times the internal reference frequency. See the C4[DMX32] bit description for more details.				
FLL Bypassed External	FLL bypassed external (FBE) mode is entered when all the following conditions occur:				
(FBE)	10 is written to C1[CLKS].				
	0 is written to C1[IREFS].				
	 C1[FRDIV] must be written to divide external reference clock to be within the range of 31.25 kHz to 39.0625 kHz. 				
	0 is written to C2[LP].				
	In FBE mode, the MCGOUTCLK is derived from the external reference clock. The FLL is operational but its output is not used. This mode is useful to allow the FLL to acquire its target frequency while the MCGOUTCLK is driven from the external reference clock. The FLL clock (DCOCLK) is controlled by the external reference clock, and the DCO clock frequency locks to a multiplication factor, as selected by C4[DRST_DRS] and C4[DMX32] bits, times the divided external reference frequency. See the C4[DMX32] bit description for more details.				
Bypassed Low Power	Bypassed Low Power Internal (BLPI) mode is entered when all the following conditions occur:				
Internal (BLPI)1	01 is written to C1[CLKS].				
	1 is written to C1[IREFS].				
	1 is written to C2[LP].				
	In BLPI mode, MCGOUTCLK is derived from the internal reference clock. The FLL is disabled				

 Table 27-11.
 MCG modes of operation (continued)

Table continues on the next page...

Mode	Description			
Bypassed Low Power	Bypassed Low Power External (BLPE) mode is entered when all the following conditions occur:			
External (BLPE)	10 is written to C1[CLKS].			
	0 is written to C1[IREFS].			
	1 is written to C2[LP].			
	In BLPE mode, MCGOUTCLK is derived from the external reference clock. The FLL is disabled			
Stop	Entered whenever the MCU enters a Stop state. The power modes are chip specific. For power mode assignments, see the chapter that describes how modules are configured and MCG behavior during Stop recovery. Entering Stop mode, the FLL is disabled, and all MCG clock signals are static except in the following case:			
	MCGIRCLK is active in Normal Stop mode when all the following conditions become true:			
	• C1[IRCLKEN] = 1			
	• C1[IREFSTEN] = 1			
	 NOTE: In VLPS Stop Mode, the MCGIRCLK can be programmed to stay enabled and continue running if C1[IRCLKEN] = 1, C1[IREFSTEN]=1, and Fast IRC clock is selected (C2[IRCS] = 1) 			

Table 27-11. MCG modes of operation (continued)

1. If entering VLPR mode, MCG has to be configured and enter BLPE mode or BLPI mode with the Fast IRC clock selected (C2[IRCS]=1). After it enters VLPR mode, writes to any of the MCG control registers that can cause an MCG clock mode switch to a non low power clock mode must be avoided.

NOTE

For the chip-specific modes of operation, see the power management chapter of this MCU.

27.4.1.2 MCG mode switching

C1[IREFS] can be changed at any time, but the actual switch to the newly selected reference clocks is shown by S[IREFST]. When switching between engaged internal and engaged external modes, the FLL will begin locking again after the switch is completed.

C1[CLKS] can also be changed at any time, but the actual switch to the newly selected clock is shown by S[CLKST]. If the newly selected clock is not available, the previous clock will remain selected.

The C4[DRST_DRS] write bits can be changed at any time except when C2[LP] bit is 1. If C4[DRST_DRS] write bits are changed while in FLL engaged internal (FEI) or FLL engaged external (FEE) mode, the MCGOUTCLK switches to the new selected DCO range within three clocks of the selected DCO clock. After switching to the new DCO

runctional description

(indicated by the updated C4[DRST_DRS] read bits), the FLL remains unlocked for several reference cycles. The FLL lock time is provided in the device data sheet as $t_{fll_acquire}$.

27.4.2 Low-power bit usage

C2[LP] is provided to allow the FLL to be disabled and thus conserve power when these systems are not being used. C4[DRST_DRS] can not be written while C2[LP] is 1. However, in some applications, it may be desirable to enable the FLL and allow it to lock for maximum accuracy before switching to an engaged mode. Do this by writing 0 to C2[LP].

27.4.3 MCG Internal Reference Clocks

This module supports two internal reference clocks with nominal frequencies of 32 kHz (slow IRC) and 4 MHz (fast IRC). The fast IRC frequency can be divided down by programming of the FCRDIV to produce a frequency range of 32 kHz to 4 MHz.

27.4.3.1 MCG Internal Reference Clock

The MCG Internal Reference Clock (MCGIRCLK) provides a clock source for other onchip peripherals and is enabled when C1[IRCLKEN]=1. When enabled, MCGIRCLK is driven by either the fast internal reference clock (4 MHz IRC which can be divided down by the FRDIV factors) or the slow internal reference clock (32 kHz IRC). The IRCS clock frequency can be re-targeted by trimming the period of its IRCS selected internal reference clock. This can be done by writing a new trim value to the C3[SCTRIM]:C4[SCFTRIM] bits when the slow IRC clock is selected or by writing a new trim value to C4[FCTRIM]:C2[FCFTRIM] when the fast IRC clock is selected. The internal reference clock period is proportional to the trim value written. C3[SCTRIM]:C4[SCFTRIM] (if C2[IRCS]=0) and C4[FCTRIM]:C2[FCFTRIM] (if C2[IRCS]=1) bits affect the MCGOUTCLK frequency if the MCG is in FBI or BLPI modes. C3[SCTRIM]:C4[SCFTRIM] (if C2[IRCS]=0) bits also affect the MCGOUTCLK frequency if the MCG is in FEI mode.

Additionally, this clock can be enabled in Stop mode by setting C1[IRCLKEN] and C1[IREFSTEN], otherwise this clock is disabled in Stop mode.

27.4.4 External Reference Clock

The MCG module can support an external reference clock in all modes. See the device datasheet for external reference frequency range. When C1[IREFS] is set, the external reference clock will not be used by the FLL. In these mode, the frequency can be equal to the maximum frequency the chip-level timing specifications will support.

If any of the CME bits are asserted the slow internal reference clock is enabled along with the enabled external clock monitor. For the case when C6[CME0]=1, a loss of clock is detected if the OSC0 external reference falls below a minimum frequency (f_{loc_high} or f_{loc_low} depending on C2[RANGE0]).

NOTE

All clock monitors must be disabled before entering these lowpower modes: Stop, VLPS, VLPR, VLPW, and VLLSx.

On detecting a loss-of-clock event, the MCU generates a system reset if the respective LOCRE bit is set. Otherwise the MCG sets the respective LOCS bit and the MCG generates a LOCS interrupt request.

27.4.5 MCG Fixed Frequency Clock

The MCG Fixed Frequency Clock (MCGFFCLK) provides a fixed frequency clock source for other on-chip peripherals; see the block diagram. This clock is driven by either the slow clock from the internal reference clock generator or the external reference clock from the Crystal Oscillator, divided by the FLL reference clock divider. The source of MCGFFCLK is selected by C1[IREFS].

This clock is synchronized to the peripheral bus clock and is valid only when its frequency is not more than 1/8 of the MCGOUTCLK frequency. When it is not valid, it is disabled and held high. The MCGFFCLK is not available when the MCG is in BLPI mode. This clock is also disabled in Stop mode. The FLL reference clock must be set within the valid frequency range for the MCGFFCLK.

27.4.6 MCG Auto TRIM (ATM)

The MCG Auto Trim (ATM) is a MCG feature that when enabled, it configures the MCG hardware to automatically trim the MCG Internal Reference Clocks using an external clock as a reference. The selection between which MCG IRC clock gets tested and enabled is controlled by the ATC[ATMS] control bit (ATC[ATMS]=0 selects the 32 kHz IRC and ATC[ATMS]=1 selects the 4 MHz IRC). If 4 MHz IRC is selected for the ATM, a divide by 128 is enabled to divide down the 4 MHz IRC to a range of 31.250 kHz.

mualization / Application information

When MCG ATM is enabled by writing ATC[ATME] bit to 1, The ATM machine will start auto trimming the selected IRC clock. During the autotrim process, ATC[ATME] will remain asserted and will deassert after ATM is completed or an abort occurs. The MCG ATM is aborted if a write to any of the following control registers is detected : C1, C3, C4, or ATC or if Stop mode is entered. If an abort occurs, ATC[ATMF] fail flag is asserted.

The ATM machine uses the bus clock as the external reference clock to perform the IRC auto-trim. Therefore, it is required that the MCG is configured in a clock mode where the reference clock used to generate the system clock is the external reference clock such as FBE clock mode. The MCG must not be configured in a clock mode where selected IRC ATM clock is used to generate the system clock. The bus clock is also required to be running with in the range of 8–16 MHz.

To perform the ATM on the selected IRC, the ATM machine uses the successive approximation technique to adjust the IRC trim bits to generate the desired IRC trimmed frequency. The ATM SARs each of the ATM IRC trim bits starting with the MSB. For each trim bit test, the ATM uses a pulse that is generated by the ATM selected IRC clock to enable a counter that counts number of ATM external clocks. At end of each trim bit, the ATM external counter value is compared to the ATCV[15:0] register value. Based on the comparison result, the ATM trim bit under test will get cleared or stay asserted. This is done until all trim bits have been tested by ATM SAR machine.

Before the ATM can be enabled, the ATM expected count needs to be derived and stored into the ATCV register. The ATCV expected count is derived based on the required target Internal Reference Clock (IRC) frequency, and the frequency of the external reference clock using the following formula:

ATCV Expected Count Value = 21*(Fe/Fr)

- Fr = Target Internal Reference Clock (IRC) Trimmed Frequency
- Fe = External Clock Frequency

If the auto trim is being performed on the 4 MHz IRC, the calculated expected count value must be multiplied by 128 before storing it in the ATCV register. Therefore, the ATCV Expected Count Value for trimming the 4 MHz IRC is calculated using the following formula.

Expected Count Value = (Fe/Fr) * 21*(128)

27.5 Initialization / Application information

This section describes how to initialize and configure the MCG module in an application.

The following sections include examples on how to initialize the MCG and properly switch between the various available modes.

27.5.1 MCG module initialization sequence

The MCG comes out of reset configured for FEI mode.

The internal reference will stabilize in $t_{irefsts}$ microseconds before the FLL can acquire lock. As soon as the internal reference is stable, the FLL will acquire lock in $t_{fll_acquire}$ milliseconds.

27.5.1.1 Initializing the MCG

Because the MCG comes out of reset in FEI mode, the only MCG modes that can be directly switched to upon reset are FEE, FBE, and FBI modes (see Figure 27-11). Reaching any of the other modes requires first configuring the MCG for one of these three intermediate modes. Care must be taken to check relevant status bits in the MCG status register reflecting all configuration changes within each mode.

To change from FEI mode to FEE or FBE modes, follow this procedure:

- 1. Enable the external clock source by setting the appropriate bits in C2 register.
- 2. Write to C1 register to select the clock mode.
 - If entering FEE mode, set C1[FRDIV] appropriately, clear C1[IREFS] bit to switch to the external reference, and leave C1[CLKS] at 2'b00 so that the output of the FLL is selected as the system clock source.
 - If entering FBE, clear C1[IREFS] to switch to the external reference and change C1[CLKS] to 2'b10 so that the external reference clock is selected as the system clock source. The C1[FRDIV] bits should also be set appropriately here according to the external reference frequency to keep the FLL reference clock in the range of 31.25 kHz to 39.0625 kHz. Although the FLL is bypassed, it is still on in FBE mode.
 - The internal reference can optionally be kept running by setting C1[IRCLKEN]. This is useful if the application will switch back and forth between internal and external modes. For minimum power consumption, leave the internal reference disabled while in an external clock mode.

mualization / Application information

- 3. Once the proper configuration bits have been set, wait for the affected bits in the MCG status register to be changed appropriately, reflecting that the MCG has moved into the proper mode.
 - If the MCG is in FEE, FBE, or BLPE mode, and C2[EREFS] was also set in step 1, wait here for S[OSCINIT0] bit to become set indicating that the external clock source has finished its initialization cycles and stabilized.
 - If in FEE mode, check to make sure S[IREFST] is cleared before moving on.
 - If in FBE mode, check to make sure S[IREFST] is cleared and S[CLKST] bits have changed to 2'b10 indicating the external reference clock has been appropriately selected. Although the FLL is bypassed, it is still on in FBE mode.
- 4. Write to the C4 register to determine the DCO output (MCGFLLCLK) frequency range.
 - By default, with C4[DMX32] cleared to 0, the FLL multiplier for the DCO output is 640. For greater flexibility, if a mid-low-range FLL multiplier of 1280 is desired instead, set C4[DRST_DRS] bits to 2'b01 for a DCO output frequency of 40 MHz. If a mid high-range FLL multiplier of 1920 is desired instead, set the C4[DRST_DRS] bits to 2'b10 for a DCO output frequency of 60 MHz. If a high-range FLL multiplier of 2560 is desired instead, set the C4[DRST_DRS] bits to 2'b11 for a DCO output frequency of 80 MHz.
 - When using a 32.768 kHz external reference, if the maximum low-range DCO frequency that can be achieved with a 32.768 kHz reference is desired, set C4[DRST_DRS] bits to 2'b00 and set C4[DMX32] bit to 1. The resulting DCO output (MCGOUTCLK) frequency with the new multiplier of 732 will be 24 MHz.
 - When using a 32.768 kHz external reference, if the maximum mid-range DCO frequency that can be achieved with a 32.768 kHz reference is desired, set C4[DRST_DRS] bits to 2'b01 and set C4[DMX32] bit to 1. The resulting DCO output (MCGOUTCLK) frequency with the new multiplier of 1464 will be 48 MHz.

- When using a 32.768 kHz external reference, if the maximum mid high-range DCO frequency that can be achieved with a 32.768 kHz reference is desired, set C4[DRST_DRS] bits to 2'b10 and set C4[DMX32] bit to 1. The resulting DCO output (MCGOUTCLK) frequency with the new multiplier of 2197 will be 72 MHz.
- When using a 32.768 kHz external reference, if the maximum high-range DCO frequency that can be achieved with a 32.768 kHz reference is desired, set C4[DRST_DRS] bits to 2'b11 and set C4[DMX32] bit to 1. The resulting DCO output (MCGOUTCLK) frequency with the new multiplier of 2929 will be 96 MHz.
- 5. Wait for the FLL lock time to guarantee FLL is running at new C4[DRST_DRS] and C4[DMX32] programmed frequency.

To change from FEI clock mode to FBI clock mode, follow this procedure:

- 1. Change C1[CLKS] bits in C1 register to 2'b01 so that the internal reference clock is selected as the system clock source.
- 2. Wait for S[CLKST] bits in the MCG status register to change to 2'b01, indicating that the internal reference clock has been appropriately selected.
- 3. Write to the C2 register to determine the IRCS output (IRCSCLK) frequency range.
 - By default, with C2[IRCS] cleared to 0, the IRCS selected output clock is the slow internal reference clock (32 kHz IRC). If the faster IRC is desired, set C2[IRCS] to 1 for a IRCS clock derived from the 4 MHz IRC source.

27.5.2 Using a 32.768 kHz reference

In FEE and FBE modes, if using a 32.768 kHz external reference, at the default FLL multiplication factor of 640, the DCO output (MCGFLLCLK) frequency is 20.97 MHz at low-range.

If C4[DRST_DRS] bits are set to 2'b01, the multiplication factor is doubled to 1280, and the resulting DCO output frequency is 41.94 MHz at mid-low-range. If C4[DRST_DRS] bits are set to 2'b10, the multiplication factor is set to 1920, and the resulting DCO output frequency is 62.91 MHz at mid high-range. If C4[DRST_DRS] bits are set to 2'b11, the multiplication factor is set to 2560, and the resulting DCO output frequency is 83.89 MHz at high-range.

mualization / Application information

In FBI and FEI modes, setting C4[DMX32] bit is not recommended. If the internal reference is trimmed to a frequency above 32.768 kHz, the greater FLL multiplication factor could potentially push the microcontroller system clock out of specification and damage the part.

27.5.3 MCG mode switching

When switching between operational modes of the MCG, certain configuration bits must be changed in order to properly move from one mode to another.

Each time any of these bits are changed (C1[IREFS], C1[CLKS], C2[IRCS], or C2[EREFS], the corresponding bits in the MCG status register (IREFST, CLKST, IRCST, or OSCINIT) must be checked before moving on in the application software.

Additionally, care must be taken to ensure that the reference clock divider (C1[FRDIV]) is set properly for the mode being switched to. For instance, in FEE mode, if using a 4MHz crystal, C1[FRDIV] must be set to 3'b010 (divide-by-128) to devide the external frequency down to the required frequency between 31.25 and 39.0625 kHz.

In FBE, FEE, FBI, and FEI modes, at any time, the application can switch the FLL multiplication factor between 640, 1280, 1920, and 2560 with C4[DRST_DRS] bits. Writes to C4[DRST_DRS] bits will be ignored if C2[LP]=1.

The table below shows MCGOUTCLK frequency calculations using C1[FRDIV]settings for each clock mode.

Clock Mode	fmcgoutclk ¹	Note
FEI (FLL engaged internal)	f _{int} × F	Typical $f_{MCGOUTCLK} = 21 \text{ MHz}$ immediately after reset.
FEE (FLL engaged external)	$(f_{ext} / FLL_R) \times F$	f _{ext} / FLL_R must be in the range of 31.25 kHz to 39.0625 kHz
FBE (FLL bypassed external)	OSCCLK	OSCCLK / FLL_R must be in the range of 31.25 kHz to 39.0625 kHz
FBI (FLL bypassed internal)	MCGIRCLK	Selectable between slow and fast IRC
BLPI (Bypassed low power internal)	MCGIRCLK	Selectable between slow and fast IRC
BLPE (Bypassed low power external)	OSCCLK	

Table 27-12. MCGOUTCLK Frequency Calculation Options

1. FLL_R is the reference divider selected by the C1[FRDIV] bits, F is the FLL factor selected by C4[DRST_DRS] and C4[DMX32] bits .

This section will include several mode switching examples, using an MHz external crystal..

Chapter 28 Oscillator (OSC)

28.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The OSC module is a crystal oscillator. The module, in conjunction with an external crystal or resonator, generates a reference clock for the MCU.

28.2 Features and Modes

Key features of the module are listed here.

- Supports 32 kHz crystals (Low Range mode)
- Supports 3–8 MHz, 8–32 MHz crystals and resonators (High Range mode)
- Automatic Gain Control (AGC) to optimize power consumption in high frequency ranges 3–8 MHz, 8–32 MHz using low-power mode
- High gain option in frequency ranges: 32 kHz, 3-8 MHz, and 8-32 MHz
- Voltage and frequency filtering to guarantee clock frequency and stability
- Optionally external input bypass clock from EXTAL signal directly
- One clock for MCU clock system
- Two clocks for on-chip peripherals that can work in Stop modes

Functional Description describes the module's operation in more detail.

28.3 Block Diagram

The OSC module uses a crystal or resonator to generate three filtered oscillator clock signals. Three clocks are output from OSC module: OSCCLK for MCU system, OSCERCLK for on-chip peripherals, and . The OSCCLK can only work in run mode. OSCERCLK and can work in low power modes. For the clock source assignments, refer to the clock distribution information of this MCU.

Refer to the chip configuration details for the external reference clock source in this MCU.

The figure found here shows the block diagram of the OSC module.

Figure 28-1. OSC Module Block Diagram

28.4 OSC Signal Descriptions

The table found here shows the user-accessible signals available for the OSC module.

Refer to signal multiplexing information for this MCU for more details.

 Table 28-1.
 OSC Signal Descriptions

Signal	Description	I/O
EXTAL	External clock/Oscillator input	I
XTAL	Oscillator output	0

28.5 External Crystal / Resonator Connections

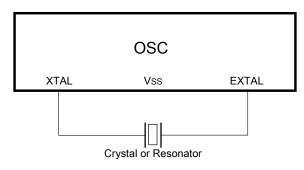
The connections for a crystal/resonator frequency reference are shown in the figures found here.

When using low-frequency, low-power mode, the only external component is the crystal or ceramic resonator itself. In the other oscillator modes, load capacitors (C_x, C_y) and feedback resistor (R_F) are required. The following table shows all possible connections.

 Table 28-2.
 External Caystal/Resonator Connections

Oscillator Mode	Connections
Low-frequency (32 kHz), low-power	Connection 1 ¹

Table continues on the next page ...



Chapter 28 Oscillator (OSC)

Oscillator Mode	Connections
Low-frequency (32 kHz), high-gain	Connection 2/Connection 3 ²
High-frequency (3~32 MHz), low-power	Connection 3 ¹
High-frequency (3~32 MHz), high-gain	Connection 3

Table 28-2. External Caystal/Resonator Connections (continued)

- 1. With the low-power mode, the oscillator has the internal feedback resistor R_F. Therefore, the feedback resistor must not be externally with the Connection 3.
- 2. When the load capacitors (Cx, Cy) are greater than 30 pF, use Connection 3.

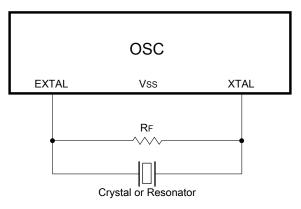


Figure 28-3. Crystal/Ceramic Resonator Connections - Connection 2

NOTE

Connection 1 and Connection 2 should use internal capacitors as the load of the oscillator by configuring the CR[SCxP] bits.

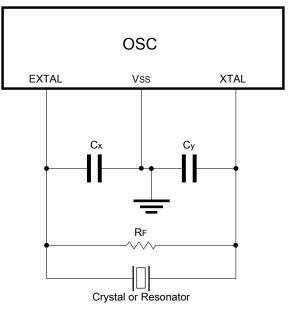


Figure 28-4. Crystal/Ceramic Resonator Connections - Connection 3

28.6 External Clock Connections

In external clock mode, the pins can be connected as shown in the figure found here.

NOTE XTAL can be used as a GPIO when the GPIO alternate function is configured for it.

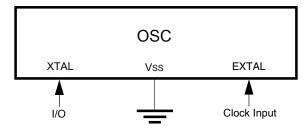


Figure 28-5. External Clock Connections

28.7 Memory Map/Register Definitions

Some oscillator module register bits are typically incorporated into other peripherals such as MCG or SIM.

28.7.1 OSC Memory Map/Register Definition

Absolute address (hex)	Register name		Access	Reset value	Section/ page
4006_5000	OSC Control Register (OSC_CR)	8	R/W	00h	28.71.1/499

OSC memory map

28.71.1 OSC Control Register (OSC_CR)

NOTE

After OSC is enabled and starts generating the clocks, the configurations such as low power and frequency range, must not be changed.

Address: 4006_5000h base + 0h offset = 4006_5000h

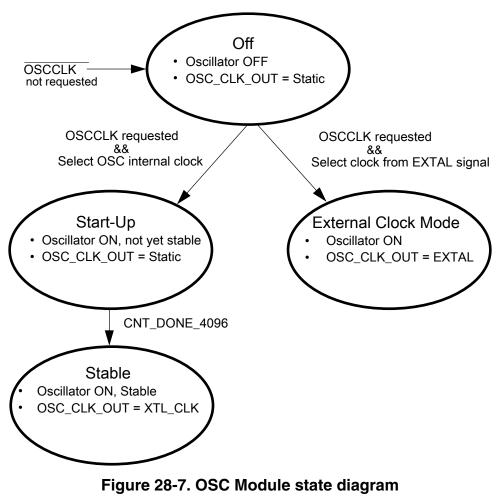
Bit	7	6	5	4	3	2	1	0
Read Write	ERCLKEN	0	EREFSTEN	0	SC2P	SC4P	SC8P	SC16P
Reset	0	0	0	0	0	0	0	0

OSC_CR field descriptions

Field	Description			
7	External Reference Enable			
ERCLKEN	Enables external reference clock (OSCERCLK).			
	0 External reference clock is inactive.			
	1 External reference clock is enabled.			
6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.			
5 EREFSTEN	External Reference Stop Enable Controls whether or not the external reference clock (OSCERCLK) remains enabled when MCU enters Stop mode.			
	0 External reference clock is disabled in Stop mode.			
	1 External reference clock stays enabled in Stop mode if ERCLKEN is set before entering Stop mode.			
4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.			
3 SC2P	Oscillator 2 pF Capacitor Load Configure			
	Configures the oscillator load.			

Table continues on the next page ...

Field Description 0 Disable the selection. 1 Add 2 pF capacitor to the oscillator load. 2 Oscillator 4 pF Capacitor Load Configure SC4P Configures the oscillator load. 0 Disable the selection. 1 Add 4 pF capacitor to the oscillator load. Oscillator 8 pF Capacitor Load Configure 1 SC8P Configures the oscillator load. 0 Disable the selection. 1 Add 8 pF capacitor to the oscillator load. 0 Oscillator 16 pF Capacitor Load Configure SC16P Configures the oscillator load. Disable the selection. 0 1 Add 16 pF capacitor to the oscillator load.


OSC_CR field descriptions (continued)

28.8 Functional Description

Functional details of the module can be found here.

OSC module states 28.8.1

The states of the OSC module are shown in the following figure. The states and their transitions between each other are described in this section.

NOTE

XTL_CLK is the clock generated internally from OSC circuits.

28.8.1.1 Off

The OSC enters the Off state when the system does not require OSC clocks. Upon entering this state, XTL_CLK is static unless OSC is configured to select the clock from the EXTAL pad by clearing the external reference clock selection bit. For details regarding the external reference clock source in this MCU, refer to the chip configuration details. The EXTAL and XTAL pins are also decoupled from all other oscillator circuitry in this state. The OSC module circuitry is configured to draw minimal current.

runctional Description

28.8.1.2 Oscillator startup

The OSC enters startup state when it is configured to generate clocks (internally the OSC_EN transitions high) using the internal oscillator circuits by setting the external reference clock selection bit. In this state, the OSC module is enabled and oscillations are starting up, but have not yet stabilized. When the oscillation amplitude becomes large enough to pass through the input buffer, XTL_CLK begins clocking the counter. When the counter reaches 4096 cycles of XTL_CLK, the oscillator is considered stable and XTL_CLK is passed to the output clock OSC_CLK_OUT.

28.8.1.3 Oscillator Stable

The OSC enters stable state when it is configured to generate clocks (internally the OSC_EN transitions high) using the internal oscillator circuits by setting the external reference clock selection bit and the counter reaches 4096 cycles of XTL_CLK (when CNT_DONE_4096 is high). In this state, the OSC module is producing a stable output clock on OSC_CLK_OUT. Its frequency is determined by the external components being used.

28.8.1.4 External Clock mode

The OSC enters external clock state when it is enabled and external reference clock selection bit is cleared. For details regarding external reference clock source in this MCU, see the chip configuration details. In this state, the OSC module is set to buffer (with hysteresis) a clock from EXTAL onto the OSC_CLK_OUT. Its frequency is determined by the external clock being supplied.

28.8.2 OSC module modes

The OSC is a pierce-type oscillator that supports external crystals or resonators operating over the frequency ranges shown in Table 28-5. These modes assume the following conditions: OSC is enabled to generate clocks (OSC_EN=1), configured to generate clocks internally (MCG_C2[EREFS] = 1), and some or one of the other peripherals (MCG, Timer, and so on) is configured to use the oscillator output clock (OSC_CLK_OUT).

Mode	Frequency Range		
Low-frequency, high-gain	$\rm f_{osc_lo}$ (32.768 kHz) up to $\rm f_{osc_lo}$ (39.0625 kHz)		

Table continues on the next page ...

Chapter 28 Oscillator (OSC)

Mode	Frequency Range
High-frequency mode1, high-gain	f _{osc hi 1} (3 MHz) up to f _{osc hi 1} (8 MHz)
High-frequency mode1, low-power	-1_{osc} h_{1} (3 win 2) up to 1_{osc} h_{1} (6 win 2)
High-frequency mode2, high-gain	f (0 MHz) up to f (20 MHz)
High-frequency mode2, low-power	f _{osc_hi_2} (8 MHz) up to f _{osc_hi_2} (32 MHz)

Table 28-5. Oscillator modes (continued)

NOTE

For information about low power modes of operation used in this chip and their alignment with some OSC modes, see the chip's Power Management details.

28.8.2.1 Low-Frequency, High-Gain Mode

In Low-frequency, high-gain mode, the oscillator uses a simple inverter-style amplifier. The gain is set to achieve rail-to-rail oscillation amplitudes.

The oscillator input buffer in this mode is single-ended. It provides low pass frequency filtering as well as hysteresis for voltage filtering and converts the output to logic levels. In this mode, the internal capacitors could be used.

28.8.2.2 Low-Frequency, Low-Power Mode

In low-frequency, low-power mode, the oscillator uses a gain control loop to minimize power consumption. As the oscillation amplitude increases, the amplifier current is reduced. This continues until a desired amplitude is achieved at steady-state. This mode provides low pass frequency filtering as well as hysteresis for voltage filtering and converts the output to logic levels. In this mode, the internal capacitors could be used, the internal feedback resistor is connected, and no external resistor should be used.

In this mode, the amplifier inputs, gain-control input, and input buffer input are all capacitively coupled for leakage tolerance (not sensitive to the DC level of EXTAL).

Also in this mode, all external components except for the resonator itself are integrated, which includes the load capacitors and feeback resistor that biases EXTAL.

neset

28.8.2.3 High-Frequency, High-Gain Mode

In high-frequency, high-gain mode, the oscillator uses a simple inverter-style amplifier. The gain is set to achieve rail-to-rail oscillation amplitudes. This mode provides low pass frequency filtering as well as hysteresis for voltage filtering and converts the output to logic levels.

28.8.2.4 High-Frequency, Low-Power Mode

In high-frequency, low-power mode, the oscillator uses a gain control loop to minimize power consumption. As the oscillation amplitude increases, the amplifier current is reduced. This continues until a desired amplitude is achieved at steady-state. In this mode, no external resistor should be used.

The oscillator input buffer in this mode is differential. It provides low pass frequency filtering as well as hysteresis for voltage filtering and converts the output to logic levels.

28.8.3 Counter

The oscillator output clock (OSC_CLK_OUT) is gated off until the counter has detected 4096 cycles of its input clock (XTL_CLK). After 4096 cycles are completed, the counter passes XTL_CLK onto OSC_CLK_OUT. This counting timeout is used to guarantee output clock stability.

28.8.4 Reference clock pin requirements

The OSC module requires use of both the EXTAL and XTAL pins to generate an output clock in Oscillator mode, but requires only the EXTAL pin in External clock mode. The EXTAL and XTAL pins are available for I/O. For the implementation of these pins on this device, refer to the Signal Multiplexing chapter.

28.9 Reset

There is no reset state associated with the OSC module. The counter logic is reset when the OSC is not configured to generate clocks.

There are no sources of reset requests for the OSC module.

28.10 Low power modes operation

When the MCU enters Stop modes, the OSC is functional depending on CR[ERCLKEN] and CR[EREFSETN] bit settings. If both these bits are set, the OSC is in operation.

After waking up from Very Low Leakage Stop (VLLSx) modes, all OSC register bits are reset and initialization is required through software.

28.11 Interrupts

The OSC module does not generate any interrupts.

Chapter 29 Flash Memory Controller (FMC)

29.1 Introduction

The Flash Memory Controller (FMC) is a memory acceleration unit. A list of features provided by the FMC can be found here.

- an interface between bus masters and the 32-bit program flash memory.
- a buffer and a cache that can accelerate program flash memory data transfers.

29.1.1 Overview

The Flash Memory Controller manages the interface between bus masters and the 32-bit program flash memory. The FMC receives status information detailing the configuration of the flash memory and uses this information to ensure a proper interface. The FMC supports 8-bit, 16-bit, and 32-bit read operations from the program flash memory. A write operation to program flash memory results in a bus error.

In addition, the FMC provides two separate mechanisms for accelerating the interface between bus masters and program flash memory. A 32-bit speculation buffer can prefetch the next 32-bit flash memory location, and a 4-way, 4-set program flash memory cache can store previously accessed program flash memory data for quick access times.

29.1.2 Features

The features of FMC module include:

- Interface between bus masters and the 32-bit program flash memory:
 - 8-bit, 16-bit, and 32-bit read operations to nonvolatile flash memory.
- Acceleration of data transfer from the program flash memory to the device:

would of operation

- 32-bit prefetch speculation buffer for program flash accesses with controls for instruction/data access
- 4-way, 4-set, 32-bit line size program flash memory cache for a total of sixteen 32-bit entries with invalidation control

29.2 Modes of operation

The FMC operates only when a bus master accesses the program flash memory.

In terms of chip power modes:

- The FMC operates only in Run and Wait modes, including VLPR and VLPW modes.
- For any power mode where the program flash memory cannot be accessed, the FMC is disabled.

29.3 External signal description

The FMC has no external (off-chip) signals.

29.4 Memory map and register descriptions

The MCM's programming model provides control and configuration of the FMC's features.

For details, see the description of the MCM's Platform Control Register (PLACR).

29.5 Functional description

The FMC is a flash acceleration unit with flexible buffers for user configuration.

Besides managing the interface between bus masters and the program flash memory, the FMC can be used to customize the program flash memory cache and buffer to provide single-cycle system clock data access times. Whenever a hit occurs for the prefetch speculation buffer or the cache (when enabled), the requested data is transferred within a single system clock.

Upon system reset, the FMC is configured as follows:

- Flash cache is enabled.
- Instruction speculation and caching are enabled.

- Data speculation is disabled.
- Data caching is enabled.

Though the default configuration provides flash acceleration, advanced users may desire to customize the FMC buffer configurations to maximize throughput for their use cases. For example, the user may adjust the controls to enable buffering per access type (data or instruction).

NOTE

When reconfiguring the FMC, do not program the control and configuration inputs to the FMC while the program flash memory is being accessed. Instead, change them with a routine executing from RAM in supervisor mode.

Chapter 30 Flash Memory Module (FTFA)

30.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The flash memory module includes the following accessible memory regions:

• Program flash memory for vector space and code store

Flash memory is ideal for single-supply applications, permitting in-the-field erase and reprogramming operations without the need for any external high voltage power sources.

The flash memory module includes a memory controller that executes commands to modify flash memory contents. An erased bit reads '1' and a programmed bit reads '0'. The programming operation is unidirectional; it can only move bits from the '1' state (erased) to the '0' state (programmed). Only the erase operation restores bits from '0' to '1'; bits cannot be programmed from a '0' to a '1'.

CAUTION

A flash memory location must be in the erased state before being programmed. Cumulative programming of bits (back-toback program operations without an intervening erase) within a flash memory location is not allowed. Re-programming of existing 0s to 0 is not allowed as this overstresses the device.

The standard shipping condition for flash memory is erased with security disabled. Data loss over time may occur due to degradation of the erased ('1') states and/or programmed ('0') states. Therefore, it is recommended that each flash block or sector be re-erased immediately prior to factory programming to ensure that the full data retention capability is achieved.

30.1.1 Features

The flash memory module includes the following features.

NOTE

See the device's Chip Configuration details for the exact amount of flash memory available on your device.

30.1.1.1 Program Flash Memory Features

- Sector size of 1 KB
- Program flash protection scheme prevents accidental program or erase of stored data
- Automated, built-in, program and erase algorithms with verify

30.1.1.2 Other Flash Memory Module Features

- Internal high-voltage supply generator for flash memory program and erase operations
- Optional interrupt generation upon flash command completion
- Supports MCU security mechanisms which prevent unauthorized access to the flash memory contents

30.1.2 Block Diagram

The block diagram of the flash memory module is shown in the following figure.

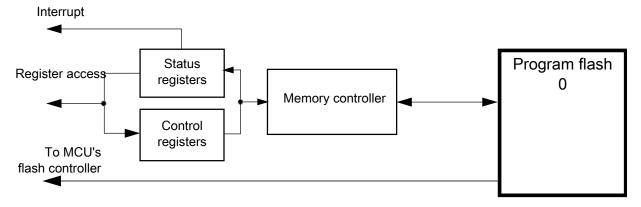


Figure 30-1. Flash Block Diagram

30.1.3 Glossary

Command write sequence — A series of MCU writes to the flash FCCOB register group that initiates and controls the execution of flash algorithms that are built into the flash memory module.

Endurance — The number of times that a flash memory location can be erased and reprogrammed.

FCCOB (Flash Common Command Object) — A group of flash registers that are used to pass command, address, data, and any associated parameters to the memory controller in the flash memory module.

Flash block — A macro within the flash memory module which provides the nonvolatile memory storage.

Flash Memory Module — All flash blocks plus a flash management unit providing high-level control and an interface to MCU buses.

IFR — Nonvolatile information register found in each flash block, separate from the main memory array.

Longword — 32 bits of data with an aligned longword having byte-address[1:0] = 00.

NVM — Nonvolatile memory. A memory technology that maintains stored data during power-off. The flash array is an NVM using NOR-type flash memory technology.

NVM Normal Mode — An NVM mode that provides basic user access to flash memory module resources. The CPU or other bus masters initiate flash program and erase operations (or other flash commands) using writes to the FCCOB register group in the flash memory module.

External Signal Description

NVM Special Mode — An NVM mode enabling external, off-chip access to the memory resources in the flash memory module. A reduced flash command set is available when the MCU is secured. See the Chip Configuration details for information on when this mode is used.

Program flash — The program flash memory provides nonvolatile storage for vectors and code store.

Program flash Sector — The smallest portion of the program flash memory (consecutive addresses) that can be erased.

Retention — The length of time that data can be kept in the NVM without experiencing errors upon readout. Since erased (1) states are subject to degradation just like programmed (0) states, the data retention limit may be reached from the last erase operation (not from the programming time).

RWW— Read-While-Write. The ability to simultaneously read from one memory resource while commanded operations are active in another memory resource.

Secure — An MCU state conveyed to the flash memory module as described in the Chip Configuration details for this device. In the secure state, reading and changing NVM contents is restricted.

Word — 16 bits of data with an aligned word having byte-address[0] = 0.

30.2 External Signal Description

The flash memory module contains no signals that connect off-chip.

30.3 Memory Map and Registers

This section describes the memory map and registers for the flash memory module.

Data read from unimplemented memory space in the flash memory module is undefined. Writes to unimplemented or reserved memory space (registers) in the flash memory module are ignored.

30.3.1 Flash Configuration Field Description

The program flash memory contains a 16-byte flash configuration field that stores default protection settings (loaded on reset) and security information that allows the MCU to restrict access to the flash memory module.

Flash Configuration Field Byte Address	Size (Bytes)	Field Description
0x0_0400-0x0_0407	8	Backdoor Comparison Key. Refer to Verify Backdoor Access Key Command and Unsecuring the Chip Using Backdoor Key Access.
0x0_0408-0x0_040B	4	Program flash protection bytes. Refer to the description of the Program Flash Protection Registers (FPROT0-3).
0x0_040F	1	Reserved
0x0_040E	1	Reserved
0x0_040D	1	Flash nonvolatile option byte. Refer to the description of the Flash Option Register (FOPT).
0x0_040C	1	Flash security byte. Refer to the description of the Flash Security Register (FSEC).

30.3.2 Program Flash IFR Map

The program flash IFR is nonvolatile information memory that can be read freely, but the user has no erase and limited program capabilities (see the Read Once, Program Once, and Read Resource commands in Read Once Command, Program Once Command and Read Resource Command).

The contents of the program flash IFR are summarized in the table found here and further described in the subsequent paragraphs.

The program flash IFR is located within the program flash 0 memory block.

Address Range	Size (Bytes)	Field Description
0x00 – 0xBF	192	Reserved
0xC0 – 0xFF	64	Program Once Field

wemory Map and Registers

30.3.2.1 Program Once Field

The Program Once Field in the program flash IFR provides 64 bytes of user data storage separate from the program flash main array. The user can program the Program Once Field one time only as there is no program flash IFR erase mechanism available to the user. The Program Once Field can be read any number of times. This section of the program flash IFR is accessed in 4-byte records using the Read Once and Program Once commands (see Read Once Command and Program Once Command).

30.3.3 Register Descriptions

The flash memory module contains a set of memory-mapped control and status registers.

NOTE

While a command is running (FSTAT[CCIF]=0), register writes are not accepted to any register except FCNFG and FSTAT. The no-write rule is relaxed during the start-up reset sequence, prior to the initial rise of CCIF. During this initialization period the user may write any register. All register writes are also disabled (except for registers FCNFG and FSTAT) whenever an erase suspend request is active (FCNFG[ERSSUSP]=1).

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4002_0000	Flash Status Register (FTFA_FSTAT)	8	R/W	00h	30.33.1/ 517
4002_0001	Flash Configuration Register (FTFA_FCNFG)	8	R/W	00h	30.33.2/ 519
4002_0002	Flash Security Register (FTFA_FSEC)		R	Undefined	30.33.3/ 520
4002_0003	Flash Option Register (FTFA_FOPT)		R	Undefined	30.33.4/ 521
4002_0004	Flash Common Command Object Registers (FTFA_FCCOB3)		R/W	00h	30.33.5/ 522
4002_0005	Flash Common Command Object Registers (FTFA_FCCOB2)		R/W	00h	30.33.5/ 522
4002_0006	Flash Common Command Object Registers (FTFA_FCCOB1)		R/W	00h	30.33.5/ 522
4002_0007	Flash Common Command Object Registers (FTFA_FCCOB0)	8	R/W	00h	30.33.5/ 522

FTFA memory map

Table continues on the next page ...

Absolute address (hex)	Register name		Access	Reset value	Section/ page
4002_0008	Flash Common Command Object Registers (FTFA_FCCOB7)	8	R/W	00h	30.33.5/ 522
4002_0009	Flash Common Command Object Registers (FTFA_FCCOB6)	8	R/W	00h	30.33.5/ 522
4002_000A	Flash Common Command Object Registers (FTFA_FCCOB5)	8	R/W	00h	30.33.5/ 522
4002_000B	Flash Common Command Object Registers (FTFA_FCCOB4)	8	R/W	00h	30.33.5/ 522
4002_000C	Flash Common Command Object Registers (FTFA_FCCOBB)	8	R/W	00h	30.33.5/ 522
4002_000D	Flash Common Command Object Registers (FTFA_FCCOBA)	8	R/W	00h	30.33.5/ 522
4002_000E	Flash Common Command Object Registers (FTFA_FCCOB9)	8	R/W	00h	30.33.5/ 522
4002_000F	Flash Common Command Object Registers (FTFA_FCCOB8)	8	R/W	00h	30.33.5/ 522
4002_0010	Program Flash Protection Registers (FTFA_FPROT3)	8	R/W	Undefined	30.33.6/ 523
4002_0011	Program Flash Protection Registers (FTFA_FPROT2)	8	R/W	Undefined	30.33.6/ 523
4002_0012	Program Flash Protection Registers (FTFA_FPROT1)	8	R/W	Undefined	30.33.6/ 523
4002_0013	Program Flash Protection Registers (FTFA_FPROT0)	8	R/W	Undefined	30.33.6/ 523

FTFA memory map (continued)

30.33.1 Flash Status Register (FTFA_FSTAT)

The FSTAT register reports the operational status of the flash memory module.

The CCIF, RDCOLERR, ACCERR, and FPVIOL bits are readable and writable. The MGSTAT0 bit is read only. The unassigned bits read 0 and are not writable.

NOTE

When set, the Access Error (ACCERR) and Flash Protection Violation (FPVIOL) bits in this register prevent the launch of any more commands until the flag is cleared (by writing a one to it).

memory Map and Registers

Address: 4002_0000h base + 0h offset = 4002_0000h

Bit	7	6	5	4	3	2	1	0
Read	CCIF	RDCOLERR	ACCERR	FPVIOL		0		MGSTAT0
Write	w1c	w1c	w1c	w1c				
Reset	0	0	0	0	0	0	0	0

FTFA_FSTAT field descriptions

Field	Description
7	Command Complete Interrupt Flag
CCIF	Indicates that a flash command has completed. The CCIF flag is cleared by writing a 1 to CCIF to launch a command, and CCIF stays low until command completion or command violation.
	CCIF is reset to 0 but is set to 1 by the memory controller at the end of the reset initialization sequence. Depending on how quickly the read occurs after reset release, the user may or may not see the 0 hardware reset value.
	0 Flash command in progress1 Flash command has completed
6	Flash Read Collision Error Flag
RDCOLERR	Indicates that the MCU attempted a read from a flash memory resource that was being manipulated by a flash command (CCIF=0). Any simultaneous access is detected as a collision error by the block arbitration logic. The read data in this case cannot be guaranteed. The RDCOLERR bit is cleared by writing a 1 to it. Writing a 0 to RDCOLERR has no effect.
	0 No collision error detected
	1 Collision error detected
5 ACCERR	Flash Access Error Flag Indicates an illegal access has occurred to a flash memory resource caused by a violation of the command write sequence or issuing an illegal flash command. While ACCERR is set, the CCIF flag cannot be cleared to launch a command. The ACCERR bit is cleared by writing a 1 to ACCERR while CCIF is set. Writing a 0 to the ACCERR bit has no effect.
	0 No access error detected
	1 Access error detected
4 FPVIOL	Flash Protection Violation Flag
	Indicates an attempt was made to program or erase an address in a protected area of program flash memory during a command write sequence . While FPVIOL is set, the CCIF flag cannot be cleared to launch a command. The FPVIOL bit is cleared by writing a 1 to FPVIOL while CCIF is set. Writing a 0 to the FPVIOL bit has no effect.
	0 No protection violation detected
	1 Protection violation detected
3–1 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
0	Memory Controller Command Completion Status Flag
MGSTAT0	The MGSTAT0 status flag is set if an error is detected during execution of a flash command or during the flash reset sequence. As a status flag, this field cannot (and need not) be cleared by the user like the other error flags in this register.

Table continues on the next page...

FTFA_FSTAT field descriptions (continued)

Field	Description
	The value of the MGSTAT0 bit for "command-N" is valid only at the end of the "command-N" execution when CCIF=1 and before the next command has been launched. At some point during the execution of "command-N+1," the previous result is discarded and any previous error is cleared.

30.33.2 Flash Configuration Register (FTFA_FCNFG)

This register provides information on the current functional state of the flash memory module.

The erase control bits (ERSAREQ and ERSSUSP) have write restrictions. The unassigned bits read as noted and are not writable.

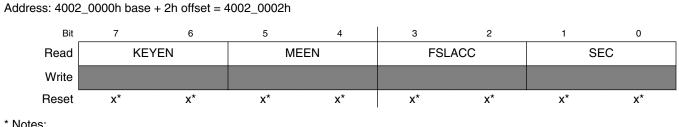
Address: 4002_0000h base + 1h offset = 4002_0001h

Bit	7	6	5	4	3	2	1	0
Read	CCIE	RDCOLLIE	ERSAREQ	ERSSUSP	0	0	0	0
Write	OOIL	TIDOOLEIE		Enocool				
Reset	0	0	0	0	0	0	0	0

FTFA_FCNFG field descriptions

Field	Description
7	Command Complete Interrupt Enable
CCIE	Controls interrupt generation when a flash command completes.
	0 Command complete interrupt disabled
	1 Command complete interrupt enabled. An interrupt request is generated whenever the FSTAT[CCIF] flag is set.
6	Read Collision Error Interrupt Enable
RDCOLLIE	Controls interrupt generation when a flash memory read collision error occurs.
	0 Read collision error interrupt disabled
	1 Read collision error interrupt enabled. An interrupt request is generated whenever a flash memory read collision error is detected (see the description of FSTAT[RDCOLERR]).
5	Erase All Request
ERSAREQ	Issues a request to the memory controller to execute the Erase All Blocks command and release security. ERSAREQ is not directly writable but is under indirect user control. Refer to the device's Chip Configuration details on how to request this command.
	ERSAREQ sets when an erase all request is triggered external to the flash memory module and CCIF is set (no command is currently being executed). ERSAREQ is cleared by the flash memory module when the operation completes.
	0 No request or request complete
	1 Request to:

Table continues on the next page...


Field	Description
	 run the Erase All Blocks command, verify the erased state, program the security byte in the Flash Configuration Field to the unsecure state, and release MCU security by setting the FSEC[SEC] field to the unsecure state.
4 ERSSUSP	 Erase Suspend Allows the user to suspend (interrupt) the Erase Flash Sector command while it is executing. No suspend requested Suspend the current Erase Flash Sector command execution.
3	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
2	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
1	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
0	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

FTFA_FCNFG field descriptions (continued)

30.33.3 Flash Security Register (FTFA_FSEC)

This read-only register holds all bits associated with the security of the MCU and flash memory module.

During the reset sequence, the register is loaded with the contents of the flash security byte in the Flash Configuration Field located in program flash memory. The flash basis for the values is signified by X in the reset value.

* Notes:

x = Undefined at reset.

FTFA_FSEC field descriptions

Field	Description
	Backdoor Key Security Enable
KEYEN	Enables or disables backdoor key access to the flash memory module.
	00 Backdoor key access disabled

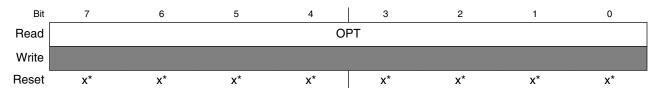
Table continues on the next page ...

FTFA_FSEC field descriptions (continued)

Field	Description					
	01 Backdoor key access disabled (preferred KEYEN state to disable backdoor key access)					
	10 Backdoor key access enabled					
	11 Backdoor key access disabled					
5–4 MEEN	Mass Erase Enable Bits					
	Enables and disables mass erase capability of the flash memory module. The state of this field is relevant only when SEC is set to secure outside of NVM Normal Mode. When SEC is set to unsecure, the MEEN setting does not matter.					
	00 Mass erase is enabled					
	01 Mass erase is enabled					
	10 Mass erase is disabled					
	11 Mass erase is enabled					
3–2 FSLACC	Freescale Failure Analysis Access Code					
	Enables or disables access to the flash memory contents during returned part failure analysis at Freescale. When SEC is secure and FSLACC is denied, access to the program flash contents is denied and any failure analysis performed by Freescale factory test must begin with a full erase to unsecure the part.					
	When access is granted (SEC is unsecure, or SEC is secure and FSLACC is granted), Freescale factory testing has visibility of the current flash contents. The state of the FSLACC bits is only relevant when SEC is set to secure. When SEC is set to unsecure, the FSLACC setting does not matter.					
	00 Freescale factory access granted					
	01 Freescale factory access denied					
	10 Freescale factory access denied					
	11 Freescale factory access granted					
1–0	Flash Security					
SEC	Defines the security state of the MCU. In the secure state, the MCU limits access to flash memory modu resources. The limitations are defined per device and are detailed in the Chip Configuration details. If the flash memory module is unsecured using backdoor key access, SEC is forced to 10b.					
	00 MCU security status is secure.					
	01 MCU security status is secure.					
	10 MCU security status is unsecure. (The standard shipping condition of the flash memory module is unsecure.)					
	11 MCU security status is secure.					

30.33.4 Flash Option Register (FTFA_FOPT)

The flash option register allows the MCU to customize its operations by examining the state of these read-only bits, which are loaded from NVM at reset. The function of the bits is defined in the device's Chip Configuration details.


All bits in the register are read-only.

wemory Map and Registers

During the reset sequence, the register is loaded from the flash nonvolatile option byte in the Flash Configuration Field located in program flash memory. The flash basis for the values is signified by X in the reset value.

Address: 4002_0000h base + 3h offset = 4002_0003h

* Notes:

• x = Undefined at reset.

FTFA_FOPT field descriptions

Field	Description
OPT	Nonvolatile Option These bits are loaded from flash to this register at reset. Refer to the device's Chip Configuration details for the definition and use of these bits.

30.33.5 Flash Common Command Object Registers (FTFA_FCCOB*n*)

The FCCOB register group provides 12 bytes for command codes and parameters. The individual bytes within the set append a 0-B hex identifier to the FCCOB register name: FCCOB0, FCCOB1, ..., FCCOBB.

Address: 4002_0000h base + 4h offset + (1d × i), where i=0d to 11d Bit 7 6 5 4 3 2 1 0 Read CCOBn Write 0 0 0 0 0 0 0 0 Reset

Field	Description
7–0 CCOBn	The FCCOB register provides a command code and relevant parameters to the memory controller. The individual registers that compose the FCCOB data set can be written in any order, but you must provide all needed values, which vary from command to command. First, set up all required FCCOB fields and then initiate the command's execution by writing a 1 to the FSTAT[CCIF] bit. This clears the CCIF bit, which locks all FCCOB parameter fields and they cannot be changed by the user until the command completes (CCIF returns to 1). No command buffering or queueing is provided; the next command can be loaded only after the current command completes.
	Some commands return information to the FCCOB registers. Any values returned to FCCOB are available for reading after the FSTAT[CCIF] flag returns to 1 by the memory controller.

FTFA_FCCOBn field descriptions (continued)

Field	Field Description					
	The following table shows a generic flash command format. The first FCCOB register, FCCOB0, always contains the command code. This 8-bit value defines the command to be executed. The command code is followed by the parameters required for this specific flash command, typically an address and/or data values.					
	NOTE: The command parameter table is written in terms of FCCOB Number (which is equivalent to the byte number). This number is a reference to the FCCOB register name and is not the register address.					
	FCCOB Number	Typical Command Parameter Contents [7:0]				
	0	FCMD (a code that defines the flash command)				
	1	Flash address [23:16]				
	2 Flash address [15:8]					
	3 Flash address [7:0]					
	4	Data Byte 0				
	5	Data Byte 1				
	6	Data Byte 2				
	7	Data Byte 3				
	8	Data Byte 4				
	9	Data Byte 5				
	А	Data Byte 6				
	В	Data Byte 7				
	FCCOB Endianness and	Multi-Byte Access :				
	larger than 1 byte, the mo	p uses a big endian addressing convention. For all command parameter fields st significant data resides in the lowest FCCOB register number. The FCCOB d and written as individual bytes, aligned words (2 bytes) or aligned longwords				

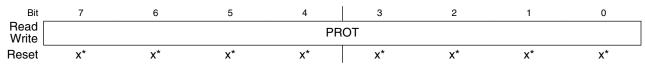
30.33.6 Program Flash Protection Registers (FTFA_FPROTn)

The FPROT registers define which program flash regions are protected from program and erase operations. Protected flash regions cannot have their content changed; that is, these regions cannot be programmed and cannot be erased by any flash command. Unprotected regions can be changed by program and erase operations.

The four FPROT registers allow up to 32 protectable regions. Each bit protects a 1/32 region of the program flash memory except for memory configurations with less than 32 KB of program flash where each assigned bit protects 1 KB. For configurations with 24 KB of program flash memory or less, FPROT0 is not used. For configurations with 16

memory Map and Registers

KB of program flash memory or less, FPROT1 is not used. For configurations with 8 KB of program flash memory, FPROT2 is not used. The bitfields are defined in each register as follows:


Program flash protection register	Program flash protection bits
FPROT0	PROT[31:24]
FPROT1	PROT[23:16]
FPROT2	PROT[15:8]
FPROT3	PROT[7:0]

During the reset sequence, the FPROT registers are loaded with the contents of the program flash protection bytes in the Flash Configuration Field as indicated in the following table.

Program flash protection register	Flash Configuration Field offset address
FPROT0	0x000B
FPROT1	0x000A
FPROT2	0x0009
FPROT3	0x0008

To change the program flash protection that is loaded during the reset sequence, unprotect the sector of program flash memory that contains the Flash Configuration Field. Then, reprogram the program flash protection byte.

Address: 4002_0000h base + 10h offset + (1d × i), where i=0d to 3d

* Notes:

• x = Undefined at reset.

FTFA_FPROTn field descriptions

Field	Description
7–0 PROT	Program Flash Region Protect Each program flash region can be protected from program and erase operations by setting the associated PROT bit.
	In NVM Normal mode: The protection can only be increased, meaning that currently unprotected memory can be protected, but currently protected memory cannot be unprotected. Since unprotected regions are marked with a 1 and protected regions use a 0, only writes changing 1s to 0s are accepted. This 1-to-0 transition check is performed on a bit-by-bit basis. Those FPROT bits with 1-to-0 transitions are accepted while all bits with 0-to-1 transitions are ignored.

FTFA_FPROTn field descriptions (continued)

Field	Description				
	In NVM Special mode: All bits of FPROT are writable without restriction. Unprotected areas can be protected and protected areas can be unprotected.				
	Restriction: The user must never write to any FPROT register while a command is running (CCIF=0).				
	Trying to alter data in any protected area in the program flash memory results in a protection violation error and sets the FSTAT[FPVIOL] bit. A full block erase of a program flash block is not possible if it contains any protected region.				
	Each bit in the 32-bit protection register represents 1/32 of the total program flash except for configurations where program flash memory is less than 32 KB. For configurations with less than 32 KB of program flash memory, each assigned bit represents 1 KB.				
	0 Program flash region is protected.				
	1 Program flash region is not protected				

30.4 Functional Description

The information found here describes functional details of the flash memory module.

30.4.1 Flash Protection

Individual regions within the flash memory can be protected from program and erase operations.

Protection is controlled by the following registers:

- FPROT*n*
 - For 2ⁿ program flash sizes, four registers typically protect 32 regions of the program flash memory as shown in the following figure

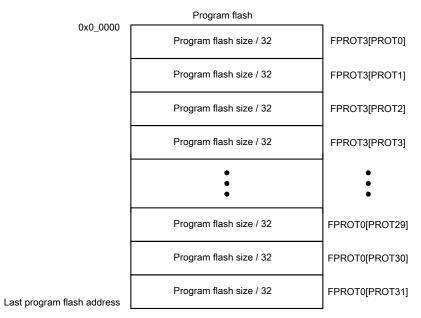


Figure 30-24. Program flash protection

NOTE

Flash protection features are discussed further in AN4507: Using the Kinetis Security and Flash Protection Features . Not all features described in the application note are available on this device.

30.4.2 Interrupts

The flash memory module can generate interrupt requests to the MCU upon the occurrence of various flash events.

These interrupt events and their associated status and control bits are shown in the following table.

Flash Event	Readable Status Bit	Interrupt Enable Bit	
Flash Command Complete	FSTAT[CCIF]	FCNFG[CCIE]	
Flash Read Collision Error	FSTAT[RDCOLERR]	FCNFG[RDCOLLIE]	

Table 30-24. Flash Interrupt Sources

Note

Vector addresses and their relative interrupt priority are determined at the MCU level.

Some devices also generate a bus error response as a result of a Read Collision Error event. See the chip configuration information to determine if a bus error response is also supported.

30.4.3 Flash Operation in Low-Power Modes

30.4.3.1 Wait Mode

When the MCU enters wait mode, the flash memory module is not affected. The flash memory module can recover the MCU from wait via the command complete interrupt (see Interrupts).

30.4.3.2 Stop Mode

When the MCU requests stop mode, if a flash command is active (CCIF = 0) the command execution completes before the MCU is allowed to enter stop mode.

CAUTION

The MCU should never enter stop mode while any flash command is running (CCIF = 0).

NOTE

While the MCU is in very-low-power modes (VLPR, VLPW, VLPS), the flash memory module does not accept flash commands.

30.4.4 Functional Modes of Operation

The flash memory module has two operating modes: NVM Normal and NVM Special.

The operating mode affects the command set availability (see Table 30-25). Refer to the Chip Configuration details of this device for how to activate each mode.

30.4.5 Flash Reads and Ignored Writes

The flash memory module requires only the flash address to execute a flash memory read.

runctional Description

The MCU must not read from the flash memory while commands are running (as evidenced by CCIF=0) on that block. Read data cannot be guaranteed from a flash block while any command is processing within that block. The block arbitration logic detects any simultaneous access and reports this as a read collision error (see the FSTAT[RDCOLERR] bit).

30.4.6 Read While Write (RWW)

The following simultaneous accesses are not allowed:

• Reading from program flash memory space while a flash command is active (CCIF=0).

30.4.7 Flash Program and Erase

All flash functions except read require the user to setup and launch a flash command through a series of peripheral bus writes.

The user cannot initiate any further flash commands until notified that the current command has completed. The flash command structure and operation are detailed in Flash Command Operations.

30.4.8 Flash Command Operations

Flash command operations are typically used to modify flash memory contents.

The next sections describe:

- The command write sequence used to set flash command parameters and launch execution
- A description of all flash commands available

30.4.8.1 Command Write Sequence

Flash commands are specified using a command write sequence illustrated in Figure 30-25. The flash memory module performs various checks on the command (FCCOB) content and continues with command execution if all requirements are fulfilled.

Before launching a command, the ACCERR and FPVIOL bits in the FSTAT register must be zero and the CCIF flag must read 1 to verify that any previous command has completed. If CCIF is zero, the previous command execution is still active, a new command write sequence cannot be started, and all writes to the FCCOB registers are ignored.

Attempts to launch a flash command in VLP mode will be ignored.

30.4.8.1.1 Load the FCCOB Registers

The user must load the FCCOB registers with all parameters required by the desired flash command. The individual registers that make up the FCCOB data set can be written in any order.

30.4.8.1.2 Launch the Command by Clearing CCIF

Once all relevant command parameters have been loaded, the user launches the command by clearing FSTAT[CCIF] by writing a '1' to it. FSTAT[CCIF] remains 0 until the flash command completes.

The FSTAT register contains a blocking mechanism that prevents a new command from launching (can't clear FSTAT[CCIF]) if the previous command resulted in an access error (FSTAT[ACCERR]=1) or a protection violation (FSTAT[FPVIOL]=1). In error scenarios, two writes to FSTAT are required to initiate the next command: the first write clears the error flags, the second write clears CCIF.

30.4.8.1.3 Command Execution and Error Reporting

The command processing has several steps:

1. The flash memory module reads the command code and performs a series of parameter checks and protection checks, if applicable, which are unique to each command.

If the parameter check fails, the FSTAT[ACCERR] (access error) flag is set. FSTAT[ACCERR] reports invalid instruction codes and out-of bounds addresses. Usually, access errors suggest that the command was not set-up with valid parameters in the FCCOB register group.

Program and erase commands also check the address to determine if the operation is requested to execute on protected areas. If the protection check fails, FSTAT[FPVIOL] (protection error) flag is set.

unctional Description

Command processing never proceeds to execution when the parameter or protection step fails. Instead, command processing is terminated after setting FSTAT[CCIF].

- 2. If the parameter and protection checks pass, the command proceeds to execution. Run-time errors, such as failure to erase verify, may occur during the execution phase. Run-time errors are reported in FSTAT[MGSTAT0]. A command may have access errors, protection errors, and run-time errors, but the run-time errors are not seen until all access and protection errors have been corrected.
- 3. Command execution results, if applicable, are reported back to the user via the FCCOB and FSTAT registers.
- 4. The flash memory module sets FSTAT[CCIF] signifying that the command has completed.

The flow for a generic command write sequence is illustrated in the following figure.

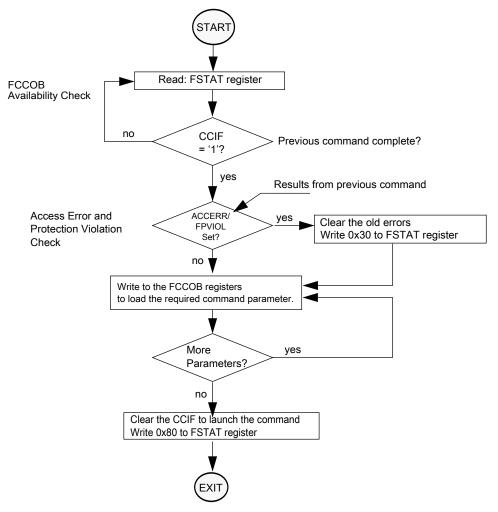


Figure 30-25. Generic flash command write sequence flowchart

30.4.8.2 Flash Commands

The following table summarizes the function of all flash commands.

FCMD	Command	Program flash	Function	
0x01	Read 1s Section	×	Verify that a given number of program flash locations from a starting address are erased.	
0x02	Program Check	×	Tests previously-programmed locations at margin read levels.	
0x03	Read Resource	IFR, ID	Read 4 bytes from program flash IFR or version ID.	
0x06	Program Longword	×	Program 4 bytes in a program flash block.	
0x09	Erase Flash Sector	×	Erase all bytes in a program flash sector.	
0x40	Read 1s All Blocks	×	Verify that the program flash block is erased then release MCU security.	
0x41	Read Once	IFR	Read 4 bytes of a dedicated 64 byte field in the program flash 0 IFR.	
0x43	Program Once	IFR	One-time program of 4 bytes of a dedicated 64-byte field in the program flash 0 IFR.	
0x44	Erase All Blocks	×	Erase the program flash block, verify-erase and release MCU security.	
			NOTE: An erase is only possible when all memory locations are unprotected.	
0x45	Verify Backdoor Access Key	×	Release MCU security after comparing a set of user- supplied security keys to those stored in the program flash.	

30.4.8.3 Flash Commands by Mode

The following table shows the flash commands that can be executed in each flash operating mode.

FCMD	Command	NVM Normal			NVM Special		
FCMD		Unsecure	Secure	MEEN=10	Unsecure	Secure	MEEN=10
0x01	Read 1s Section	×	×	×	×	_	
0x02	Program Check	×	×	×	×	—	_
0x03	Read Resource	×	×	×	×	—	
0x06	Program Longword	×	×	×	×	—	—
0x09	Erase Flash Sector	×	×	×	×	—	_
0x40	Read 1s All Blocks	×	×	×	×	×	—
0x41	Read Once	×	×	×	×	—	_
0x43	Program Once	×	×	×	×	—	_
0x44	Erase All Blocks	×	×	×	×	×	—
0x45	Verify Backdoor Access Key	×	×	×	×	_	_

 Table 30-25.
 Flash Commands by Mode

30.4.9 Margin Read Commands

The Read-1s commands (Read 1s All Blocks and Read 1s Section) and the Program Check command have a margin choice parameter that allows the user to apply nonstandard read reference levels to the program flash array reads performed by these commands. Using the preset 'user' and 'factory' margin levels, these commands perform their associated read operations at tighter tolerances than a 'normal' read. These nonstandard read levels are applied only during the command execution. All simple (uncommanded) flash array reads to the MCU always use the standard, un-margined, read reference level.

Only the 'normal' read level should be employed during normal flash usage. The nonstandard, 'user' and 'factory' margin levels should be employed only in special cases. They can be used during special diagnostic routines to gain confidence that the device is not suffering from the end-of-life data loss customary of flash memory devices.

Erased ('1') and programmed ('0') bit states can degrade due to elapsed time and data cycling (number of times a bit is erased and re-programmed). The lifetime of the erased states is relative to the last erase operation. The lifetime of the programmed states is measured from the last program time.

The 'user' and 'factory' levels become, in effect, a minimum safety margin; i.e. if the reads pass at the tighter tolerances of the 'user' and 'factory' margins, then the 'normal' reads have at least this much safety margin before they experience data loss.

The 'user' margin is a small delta to the normal read reference level. 'User' margin levels can be employed to check that flash memory contents have adequate margin for normal level read operations. If unexpected read results are encountered when checking flash memory contents at the 'user' margin levels, loss of information might soon occur during 'normal' readout.

The 'factory' margin is a bigger deviation from the norm, a more stringent read criteria that should only be attempted immediately (or very soon) after completion of an erase or program command, early in the cycling life. 'Factory' margin levels can be used to check that flash memory contents have adequate margin for long-term data retention at the normal level setting. If unexpected results are encountered when checking flash memory contents at 'factory' margin levels, the flash memory contents should be erased and reprogrammed.

CAUTION

Factory margin levels must only be used during verify of the initial factory programming.

30.4.10 Flash Command Description

This section describes all flash commands that can be launched by a command write sequence.

The flash memory module sets the FSTAT[ACCERR] bit and aborts the command execution if any of the following illegal conditions occur:

- There is an unrecognized command code in the FCCOB FCMD field.
- There is an error in a FCCOB field for the specific commands. Refer to the error handling table provided for each command.

Ensure that FSTAT[ACCERR] and FSTAT[FPVIOL] are cleared prior to starting the command write sequence. As described in Launch the Command by Clearing CCIF, a new command cannot be launched while these error flags are set.

Do not attempt to read a flash block while the flash memory module is running a command (FSTAT[CCIF] = 0) on that same block. The flash memory module may return invalid data to the MCU with the collision error flag (FSTAT[RDCOLERR]) set.

CAUTION

Flash data must be in the erased state before being programmed. Cumulative programming of bits (adding more zeros) is not allowed.

30.4.10.1 Read 1s Section Command

The Read 1s Section command checks if a section of program flash memory is erased to the specified read margin level. The Read 1s Section command defines the starting address and the number of longwords to be verified.

FCCOB Number	FCCOB Contents [7:0]
0	0x01 (RD1SEC)
1	Flash address [23:16] of the first longword to be verified
2	Flash address [15:8] of the first longword to be verified
3	Flash address [7:0] ¹ of the first longword to be verified
4	Number of longwords to be verified [15:8]
5	Number of longwords to be verified [7:0]
6	Read-1 Margin Choice

Table 30-26. Read 1s Section Command FCCOB Requirements

1. Must be longword aligned (Flash address [1:0] = 00).

Upon clearing CCIF to launch the Read 1s Section command, the flash memory module sets the read margin for 1s according to Table 30-27 and then reads all locations within the specified section of flash memory. If the flash memory module fails to read all 1s (that is, the flash section is not erased), FSTAT[MGSTAT0] is set. FSTAT[CCIF] sets after the Read 1s Section operation completes.

 Table 30-27.
 Margin Level Choices for Read 1s Section

Read Margin Choice	Margin Level Description
0x00	Use the 'normal' read level for 1s
0x01	Apply the 'User' margin to the normal read-1 level
0x02	Apply the 'Factory' margin to the normal read-1 level

Table 30-28. Read 1s Section Command Error Handling

Error condition	Error bit
Command not available in current mode/security	FSTAT[ACCERR]
An invalid margin code is supplied.	FSTAT[ACCERR]
An invalid flash address is supplied.	FSTAT[ACCERR]
Flash address is not longword aligned.	FSTAT[ACCERR]
The requested section crosses a Flash block boundary.	FSTAT[ACCERR]
The requested number of longwords is 0.	FSTAT[ACCERR]
Read-1s fails.	FSTAT[MGSTAT0]

30.4.10.2 Program Check Command

The Program Check command tests a previously programmed program flash longword to see if it reads correctly at the specified margin level.

FCCOB Number	FCCOB Contents [7:0]	
0	0x02 (PGMCHK)	
1	Flash address [23:16]	
2	Flash address [15:8]	
3	Flash address [7:0] ¹	
4	Margin Choice	
8	Byte 0 expected data	
9	Byte 1 expected data	
A	Byte 2 expected data	
В	Byte 3 expected data	

Table 30-29. Program Check Command FCCOB Requirements

1. Must be longword aligned (Flash address [1:0] = 00).

Upon clearing CCIF to launch the Program Check command, the flash memory module sets the read margin for 1s according to Table 30-30, reads the specified longword, and compares the actual read data to the expected data provided by the FCCOB. If the comparison at margin-1 fails, FSTAT[MGSTAT0] is set.

The flash memory module then sets the read margin for 0s, re-reads, and compares again. If the comparison at margin-0 fails, FSTAT[MGSTAT0] is set. FSTAT[CCIF] is set after the Program Check operation completes.

The supplied address must be longword aligned (the lowest two bits of the byte address must be 00):

- Byte 3 data is written to the supplied byte address ('start'),
- Byte 2 data is programmed to byte address start+0b01,
- Byte 1 data is programmed to byte address start+0b10,
- Byte 0 data is programmed to byte address start+0b11.

NOTE

See the description of margin reads, Margin Read Commands

Table 30-30. Margin Level Choices for Program Check

Read Margin Choice	Margin Level Description	
0x01	Read at 'User' margin-1 and 'User' margin-0	
0x02	Read at 'Factory' margin-1 and 'Factory' margin-0	

Error Condition	Error Bit
Command not available in current mode/security	FSTAT[ACCERR]
An invalid flash address is supplied	FSTAT[ACCERR]
Flash address is not longword aligned	FSTAT[ACCERR]
An invalid margin choice is supplied	FSTAT[ACCERR]
Either of the margin reads does not match the expected data	FSTAT[MGSTAT0]

 Table 30-31.
 Program Check Command Error Handling

30.4.10.3 Read Resource Command

The Read Resource command allows the user to read data from special-purpose memory resources located within the flash memory module. The special-purpose memory resources available include program flash IFR space and the Version ID field. Each resource is assigned a select code as shown in Table 30-33.

FCCOB Number	FCCOB Contents [7:0]	
0	0x03 (RDRSRC)	
1	Flash address [23:16]	
2	Flash address [15:8]	
3	3 Flash address [7:0] ¹	
Returned Values		
4	Read Data [31:24]	
5	Read Data [23:16]	
6	Read Data [15:8]	
7 Read Data [7:0]		
	User-provided values	
8	Resource Select Code (see Table 30-33)	

Table 30-32. Read Resource Command FCCOB Requirements

1. Must be longword aligned (Flash address [1:0] = 00).

Table 30-33. Read Resource Select	Codes
-----------------------------------	-------

Resource Select Code	Description	Resource Size	Local Address Range
0x00	Program Flash 0 IFR	256 Bytes	0x00_0000-0x00_00FF
0x01 ¹	Version ID	8 Bytes	0x00_0000-0x00_0007

1. Located in program flash 0 reserved space.

After clearing CCIF to launch the Read Resource command, four consecutive bytes are read from the selected resource at the provided relative address and stored in the FCCOB register. The CCIF flag sets after the Read Resource operation completes. The Read Resource command exits with an access error if an invalid resource code is provided or if the address for the applicable area is out-of-range.

Error Condition	Error Bit
Command not available in current mode/security	FSTAT[ACCERR]
An invalid resource code is entered	FSTAT[ACCERR]
Flash address is out-of-range for the targeted resource.	FSTAT[ACCERR]
Flash address is not longword aligned	FSTAT[ACCERR]

30.4.10.4 Program Longword Command

The Program Longword command programs four previously-erased bytes in the program flash memory using an embedded algorithm.

CAUTION

A flash memory location must be in the erased state before being programmed. Cumulative programming of bits (back-toback program operations without an intervening erase) within a flash memory location is not allowed. Re-programming of existing 0s to 0 is not allowed as this overstresses the device.

Table 30-35.	Program Longword Command FCCOB Requirements
--------------	---

FCCOB Number	FCCOB Contents [7:0]	
0	0x06 (PGM4)	
1	Flash address [23:16]	
2	Flash address [15:8]	
3	Flash address [7:0] ¹	
4	Byte 0 program value	
5	Byte 1 program value	
6	Byte 2 program value	
7	Byte 3 program value	

1. Must be longword aligned (Flash address [1:0] = 00).

runctional Description

Upon clearing CCIF to launch the Program Longword command, the flash memory module programs the data bytes into the flash using the supplied address. The targeted flash locations must be currently unprotected (see the description of the FPROT registers) to permit execution of the Program Longword operation.

The programming operation is unidirectional. It can only move NVM bits from the erased state ('1') to the programmed state ('0'). Erased bits that fail to program to the '0' state are flagged as errors in FSTAT[MGSTAT0]. The CCIF flag is set after the Program Longword operation completes.

The supplied address must be longword aligned (flash address [1:0] = 00):

- Byte 3 data is written to the supplied byte address ('start'),
- Byte 2 data is programmed to byte address start+0b01,
- Byte 1 data is programmed to byte address start+0b10, and
- Byte 0 data is programmed to byte address start+0b11.

Table 30-36. Program Longword Command Error Handling

Error Condition	Error Bit
Command not available in current mode/security	FSTAT[ACCERR]
An invalid flash address is supplied	FSTAT[ACCERR]
Flash address is not longword aligned	FSTAT[ACCERR]
Flash address points to a protected area	FSTAT[FPVIOL]
Any errors have been encountered during the verify operation	FSTAT[MGSTAT0]

30.4.10.5 Erase Flash Sector Command

The Erase Flash Sector operation erases all addresses in a flash sector.

 Table 30-37.
 Erase Flash Sector Command FCCOB Requirements

FCCOB Number	FCCOB Contents [7:0]
0	0x09 (ERSSCR)
1	Flash address [23:16] in the flash sector to be erased
2	Flash address [15:8] in the flash sector to be erased
3	Flash address [7:0] ¹ in the flash sector to be erased

1. Must be longword aligned (flash address [1:0] = 00).

After clearing CCIF to launch the Erase Flash Sector command, the flash memory module erases the selected program flash sector and then verifies that it is erased. The Erase Flash Sector command aborts if the selected sector is protected (see the description

of the FPROT registers). If the erase-verify fails the FSTAT[MGSTAT0] bit is set. The CCIF flag is set after the Erase Flash Sector operation completes. The Erase Flash Sector command is suspendable (see the FCNFG[ERSSUSP] bit and Figure 30-26).

Error Condition	Error Bit
Command not available in current mode/security	FSTAT[ACCERR]
An invalid Flash address is supplied	FSTAT[ACCERR]
Flash address is not longword aligned	FSTAT[ACCERR]
The selected program flash sector is protected	FSTAT[FPVIOL]
Any errors have been encountered during the verify operation ¹	FSTAT[MGSTAT0]

Table 30-38. Erase Flash Sector Command Error Handling

1. User margin read may be run using the Read 1s Section command to verify all bits are erased.

30.4.10.5.1 Suspending an Erase Flash Sector Operation

To suspend an Erase Flash Sector operation set the FCNFG[ERSSUSP] bit (see Flash Configuration Field Description) when CCIF is clear and the CCOB command field holds the code for the Erase Flash Sector command. During the Erase Flash Sector operation (see Erase Flash Sector Command), the flash memory module samples the state of the ERSSUSP bit at convenient points. If the flash memory module detects that the ERSSUSP bit is set, the Erase Flash Sector operation is suspended and the flash memory module sets CCIF. While ERSSUSP is set, all writes to flash registers are ignored except for writes to the FSTAT and FCNFG registers.

If an Erase Flash Sector operation effectively completes before the flash memory module detects that a suspend request has been made, the flash memory module clears the ERSSUSP bit prior to setting CCIF. When an Erase Flash Sector operation has been successfully suspended, the flash memory module sets CCIF and leaves the ERSSUSP bit set. While CCIF is set, the ERSSUSP bit can only be cleared to prevent the withdrawal of a suspend request before the flash memory module has acknowledged it.

30.4.10.5.2 Resuming a Suspended Erase Flash Sector Operation

If the ERSSUSP bit is still set when CCIF is cleared to launch the next command, the previous Erase Flash Sector operation resumes. The flash memory module acknowledges the request to resume a suspended operation by clearing the ERSSUSP bit. A new suspend request can then be made by setting ERSSUSP. A single Erase Flash Sector operation can be suspended and resumed multiple times.

There is a minimum elapsed time limit between the request to resume the Erase Flash Sector operation (CCIF is cleared) and the request to suspend the operation again (ERSSUSP is set). This minimum time period is required to ensure that the Erase Flash

runctional Description

Sector operation will eventually complete. If the minimum period is continually violated, i.e. the suspend requests come repeatedly and too quickly, no forward progress is made by the Erase Flash Sector algorithm. The resume/suspend sequence runs indefinitely without completing the erase.

30.4.10.5.3 Aborting a Suspended Erase Flash Sector Operation

The user may choose to abort a suspended Erase Flash Sector operation by clearing the ERSSUSP bit prior to clearing CCIF for the next command launch. When a suspended operation is aborted, the flash memory module starts the new command using the new FCCOB contents.

Note

Aborting the erase leaves the bitcells in an indeterminate, partially-erased state. Data in this sector is not reliable until a new erase command fully completes.

The following figure shows how to suspend and resume the Erase Flash Sector operation.

Chapter 30 Flash Memory Module (FTFA)

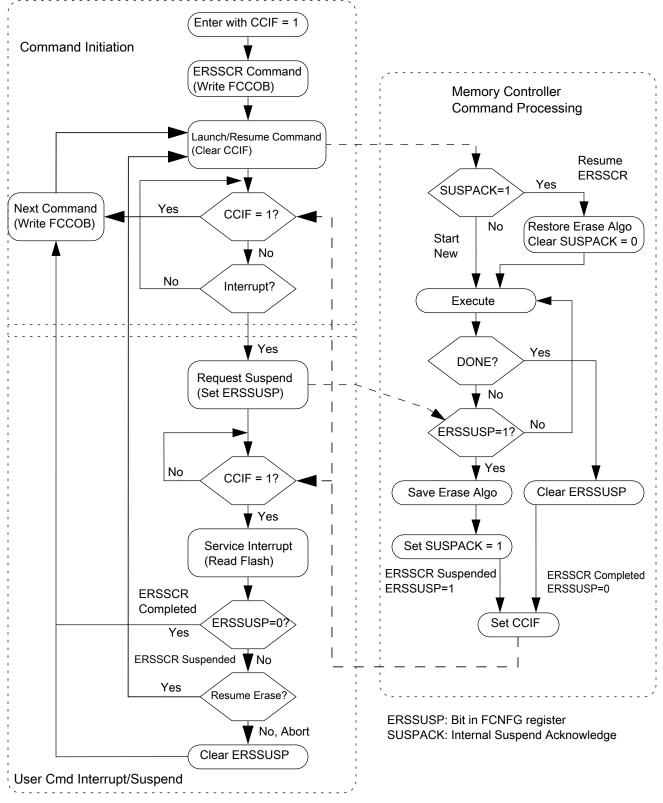


Figure 30-26. Suspend and Resume of Erase Flash Sector Operation

runctional Description

30.4.10.6 Read 1s All Blocks Command

The Read 1s All Blocks command checks if the program flash blocks have been erased to the specified read margin level, if applicable, and releases security if the readout passes, i.e. all data reads as '1'.

Table 30-39. Read 1s All Blocks Command FCCOB Requirements

FCCOB Number	FCCOB Contents [7:0]	
0	0x40 (RD1ALL)	
1	Read-1 Margin Choice	

After clearing CCIF to launch the Read 1s All Blocks command, the flash memory module :

- sets the read margin for 1s according to Table 30-40,
- checks the contents of the program flash are in the erased state.

If the flash memory module confirms that these memory resources are erased, security is released by setting the FSEC[SEC] field to the unsecure state. The security byte in the flash configuration field (see Flash Configuration Field Description) remains unaffected by the Read 1s All Blocks command. If the read fails, i.e. all memory resources are not in the fully erased state, the FSTAT[MGSTAT0] bit is set.

The CCIF flag sets after the Read 1s All Blocks operation has completed.

 Table 30-40.
 Margin Level Choices for Read 1s All Blocks

Read Margin Choice	Margin Level Description	
0x00	Use the 'normal' read level for 1s	
0x01	Apply the 'User' margin to the normal read-1 level	
0x02	Apply the 'Factory' margin to the normal read-1 level	

Table 30-41. Read 1s All Blocks Command Error Handling

Error Condition	Error Bit
An invalid margin choice is specified	FSTAT[ACCERR]
Read-1s fails	FSTAT[MGSTAT0]

30.4.10.7 Read Once Command

The Read Once command provides read access to special 64-byte fields located in the program flash 0 IFR (see Program Flash IFR Map and Program Once Field). Access to the Program Once field is via 16 records (index values 0x00 - 0x0F), each 4 bytes long. These fields are programmed using the Program Once command described in Program Once Command.

FCCOB Number	FCCOB Contents [7:0]	
0	0x41 (RDONCE)	
1	Program Once record index (0x00 - 0x0F)	
2	Not used	
3	Not used	
	Returned Values	
4	Program Once byte 0 value	
5	Program Once byte 1 value	
6	Program Once byte 2 value	
7	Program Once byte 3 value	

 Table 30-42.
 Read Once Command FCCOB Requirements

After clearing CCIF to launch the Read Once command, a 4-byte Program Once record is read and stored in the FCCOB register. The CCIF flag is set after the Read Once operation completes. Valid record index values for the Read Once command range from 0x00 - 0x0F. During execution of the Read Once command, any attempt to read addresses within the program flash block containing the selected record index returns invalid data. The Read Once command can be executed any number of times.

 Table 30-43.
 Read Once Command Error Handling

Error Condition	Error Bit
Command not available in current mode/security	FSTAT[ACCERR]
An invalid record index is supplied	FSTAT[ACCERR]

30.4.10.8 Program Once Command

The Program Once command enables programming to special 64-byte fields in the program flash 0 IFR (see Program Flash IFR Map and Program Once Field). Access to the Program Once field is via 16 records (index values 0x00 - 0x0F), each 4 bytes long. These records can be read using the Read Once command (see Read Once Command) or using the Read Resource command (see Read Resource Command). These records can be programmed only once since the program flash 0 IFR cannot be erased.

runctional Description

FCCOB Number	FCCOB Contents [7:0]	
0	0x43 (PGMONCE)	
1	Program Once record index (0x00 - 0x0F)	
2	Not Used	
3	Not Used	
4	Program Once byte 0 value	
5	Program Once byte 1 value	
6	Program Once byte 2 value	
7	Program Once byte 3 value	

Table 30-44. Program Once Command FCCOB Requirements

After clearing CCIF to launch the Program Once command, the flash memory module first verifies that the selected record is erased. If erased, then the selected record is programmed using the values provided. The Program Once command also verifies that the programmed values read back correctly. The CCIF flag is set after the Program Once operation has completed.

Any attempt to program one of these records when the existing value is not Fs (erased) is not allowed. Valid record index values for the Program Once command range from 0x00 - 0x0F. During execution of the Program Once command, any attempt to read addresses within the program flash block containing the selected record index returns invalid data.

Error Condition	Error Bit
Command not available in current mode/security	FSTAT[ACCERR]
An invalid record index is supplied	FSTAT[ACCERR]
The requested record has already been programmed to a non-FFFF value ¹	FSTAT[ACCERR]
Any errors have been encountered during the verify operation	FSTAT[MGSTAT0]

1. If a Program Once record is initially programmed to 0xFFFF_FFFF, the Program Once command is allowed to execute again on that same record.

30.4.10.9 Erase All Blocks Command

The Erase All Blocks operation erases all flash memory, verifies all memory contents, and releases MCU security.

 Table 30-46.
 Erase All Blocks Command FCCOB Requirements

FCCOB Number	FCCOB Contents [7:0]	
0	0x44 (ERSALL)	

After clearing CCIF to launch the Erase All Blocks command, the flash memory module erases all program flash memory, then verifies that all are erased.

If the flash memory module verifies that all flash memories were properly erased, security is released by setting the FSEC[SEC] field to the unsecure state. The Erase All Blocks command aborts if any flash region is protected. The security byte and all other contents of the flash configuration field (see Flash Configuration Field Description) are erased by the Erase All Blocks command. If the erase-verify fails, the FSTAT[MGSTAT0] bit is set. The CCIF flag is set after the Erase All Blocks operation completes.

Error Condition	Error Bit
Command not available in current mode/security	FSTAT[ACCERR]
Any region of the program flash memory is protected	FSTAT[FPVIOL]
Any errors have been encountered during the verify operation ¹	FSTAT[MGSTAT0]

Table 30-47. Erase All Blocks Command Error Handling

1. User margin read may be run using the Read 1s All Blocks command to verify all bits are erased.

30.4.10.9.1 Triggering an Erase All External to the Flash Memory Module

The functionality of the Erase All BlocksErase All Blocks Unsecure command is also available in an uncommanded fashion outside of the flash memory. Refer to the device's Chip Configuration details for information on this functionality.

Before invoking the external erase all function, the FSTAT[ACCERR and PVIOL] flags must be cleared and the FCCOB0 register must not contain 0x44. When invoked, the erase-all function erases all program flash memory regardless of the protection settings. If the post-erase verify passes, the routine then releases security by setting the FSEC[SEC] field register to the unsecure state. The security byte in the Flash Configuration Field is also programmed to the unsecure state. The status of the erase-all request is reflected in the FCNFG[ERSAREQ] bit. The FCNFG[ERSAREQ] bit is cleared once the operation completes and the normal FSTAT error reporting is available as described in Erase All Blocks Command.

30.4.10.10 Verify Backdoor Access Key Command

The Verify Backdoor Access Key command only executes if the mode and security conditions are satisfied (see Flash Commands by Mode). Execution of the Verify Backdoor Access Key command is further qualified by the FSEC[KEYEN] bits. The Verify Backdoor Access Key command releases security if user-supplied keys in the FCCOB match those stored in the Backdoor Comparison Key bytes of the Flash

runctional Description

Configuration Field (see Flash Configuration Field Description). The column labelled Flash Configuration Field offset address shows the location of the matching byte in the Flash Configuration Field.

FCCOB Number	FCCOB Contents [7:0]	Flash Configuration Field Offset Address
0	0x45 (VFYKEY)	
1-3	Not Used	
4	Key Byte 0	0x0_0003
5	Key Byte 1	0x0_0002
6	Key Byte 2	0x0_0001
7	Key Byte 3	0x0_0000
8	Key Byte 4	0x0_0007
9	Key Byte 5	0x0_0006
A	Key Byte 6	0x0_0005
В	Key Byte 7	0x0_0004

Table 30-48. Verify Backdoor Access Key Command FCCOB Requirements

After clearing CCIF to launch the Verify Backdoor Access Key command, the flash memory module checks the FSEC[KEYEN] bits to verify that this command is enabled. If not enabled, the flash memory module sets the FSTAT[ACCERR] bit and terminates. If the command is enabled, the flash memory module compares the key provided in FCCOB to the backdoor comparison key in the Flash Configuration Field. If the backdoor keys match, the FSEC[SEC] field is changed to the unsecure state and security is released. If the backdoor keys do not match, security is not released and all future attempts to execute the Verify Backdoor Access Key command are immediately aborted and the FSTAT[ACCERR] bit is (again) set to 1 until a reset of the flash memory module module occurs. If the entire 8-byte key is all zeros or all ones, the Verify Backdoor Access Key command fails with an access error. The CCIF flag is set after the Verify Backdoor Access Key operation completes.

	-
Error Condition	Error Bit
The supplied key is all-0s or all-Fs	FSTAT[ACCERR]
An incorrect backdoor key is supplied	FSTAT[ACCERR]
Backdoor key access has not been enabled (see the description of the FSEC register)	FSTAT[ACCERR]
This command is launched and the backdoor key has mismatched since the last power down reset	FSTAT[ACCERR]

Table 30-49. Verify Backdoor Access Key Command Error Handling

30.4.11 Security

The flash memory module provides security information to the MCU based on contents of the FSEC security register.

The MCU then limits access to flash memory resources as defined in the device's Chip Configuration details. During reset, the flash memory module initializes the FSEC register using data read from the security byte of the Flash Configuration Field (see Flash Configuration Field Description).

The following fields are available in the FSEC register. The settings are described in the Flash Security Register (FTFA_FSEC) details.

Flash security features are discussed further in AN4507: Using the Kinetis Security and Flash Protection Features . Note that not all features described in the application note are available on this device.

FSEC field	Description						
KEYEN	Backdoor Key Access						
MEEN	Mass Erase Capability						
FSLACC	Freescale Factory Access						
SEC	MCU security						

 Table 30-50.
 FSEC register fields

30.4.11.1 Flash Memory Access by Mode and Security

The following table summarizes how access to the flash memory module is affected by security and operating mode.

Table 30-51.	Flash Memo	y Access Summary
--------------	------------	------------------

Operating Mode	Chip Security State									
	Unsecure	Secure								
NVM Normal	Full command set									
NVM Special	Full command set	Only the Erase All Blocks and Read 1s All Blocks commands.								

runctional Description

30.4.11.2 Changing the Security State

The security state out of reset can be permanently changed by programming the security byte of the flash configuration field. This assumes that you are starting from a mode where the necessary program flash erase and program commands are available and that the region of the program flash containing the flash configuration field is unprotected. If the flash security byte is successfully programmed, its new value takes affect after the next chip reset.

30.4.11.2.1 Unsecuring the Chip Using Backdoor Key Access

The user code stored in the program flash memory must have a method of receiving the backdoor keys from an external stimulus. This external stimulus would typically be through one of the on-chip serial ports.

If the KEYEN bits are in the enabled state, the chip can be unsecured by the following backdoor key access sequence:

- 1. Follow the command sequence for the Verify Backdoor Access Key command as explained in Verify Backdoor Access Key Command
- 2. If the Verify Backdoor Access Key command is successful, the chip is unsecured and the FSEC[SEC] bits are forced to the unsecure state

An illegal key provided to the Verify Backdoor Access Key command prohibits further use of the Verify Backdoor Access Key command. A reset of the chip is the only method to re-enable the Verify Backdoor Access Key command when a comparison fails.

After the backdoor keys have been correctly matched, the chip is unsecured by changing the FSEC[SEC] bits. A successful execution of the Verify Backdoor Access Key command changes the security in the FSEC register only. It does not alter the security byte or the keys stored in the Flash Configuration Field (Flash Configuration Field Description). After the next reset of the chip, the security state of the flash memory

module reverts back to the flash security byte in the Flash Configuration Field. The Verify Backdoor Access Key command sequence has no effect on the program and erase protections defined in the program flash protection registers.

If the backdoor keys successfully match, the unsecured chip has full control of the contents of the Flash Configuration Field. The chip may erase the sector containing the Flash Configuration Field and reprogram the flash security byte to the unsecure state and change the backdoor keys to any desired value.

30.4.12 Reset Sequence

On each system reset the flash memory module executes a sequence which establishes initial values for the flash block configuration parameters, FPROT, FOPT, and FSEC registers.

FSTAT[CCIF] is cleared throughout the reset sequence. The flash memory module holds off CPU access during the reset sequence. Flash reads are possible when the hold is removed. Completion of the reset sequence is marked by setting CCIF which enables flash user commands.

If a reset occurs while any flash command is in progress, that command is immediately aborted. The state of the word being programmed or the sector/block being erased is not guaranteed. Commands and operations do not automatically resume after exiting reset.

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

Chapter 31 Cyclic Redundancy Check (CRC)

31.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The cyclic redundancy check (CRC) module generates 16/32-bit CRC code for error detection.

The CRC module provides a programmable polynomial, WAS, and other parameters required to implement a 16-bit or 32-bit CRC standard.

The 16/32-bit code is calculated for 32 bits of data at a time.

31.1.1 Features

Features of the CRC module include:

- Hardware CRC generator circuit using a 16-bit or 32-bit programmable shift register
- Programmable initial seed value and polynomial
- Option to transpose input data or output data (the CRC result) bitwise or bytewise. This option is required for certain CRC standards. A bytewise transpose operation is not possible when accessing the CRC data register via 8-bit accesses. In this case, the user's software must perform the bytewise transpose function.
- Option for inversion of final CRC result
- 32-bit CPU register programming interface

31.1.2 Block diagram

The following is a block diagram of the CRC.

wemory map and register descriptions

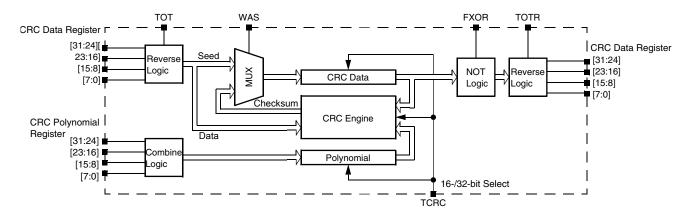


Figure 31-1. Programmable cyclic redundancy check (CRC) block diagram

31.1.3 Modes of operation

Various MCU modes affect the CRC module's functionality.

31.1.3.1 Run mode

This is the basic mode of operation.

31.1.3.2 Low-power modes (Wait or Stop)

Any CRC calculation in progress stops when the MCU enters a low-power mode that disables the module clock. It resumes after the clock is enabled or via the system reset for exiting the low-power mode. Clock gating for this module is dependent on the MCU.

31.2 Memory map and register descriptions

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4003_2000	CRC Data register (CRC_DATA)	32	R/W	FFFF_FFFh	31.2.1/553
4003_2004	CRC Polynomial register (CRC_GPOLY)	32	R/W	0000_1021h	31.2.2/554
4003_2008	CRC Control register (CRC_CTRL)	32	R/W	0000_0000h	31.2.3/554

CRC memory map

31.2.1 CRC Data register (CRC_DATA)

The CRC Data register contains the value of the seed, data, and checksum. When CTRL[WAS] is set, any write to the data register is regarded as the seed value. When CTRL[WAS] is cleared, any write to the data register is regarded as data for general CRC computation.

In 16-bit CRC mode, the HU and HL fields are not used for programming the seed value, and reads of these fields return an indeterminate value. In 32-bit CRC mode, all fields are used for programming the seed value.

When programming data values, the values can be written 8 bits, 16 bits, or 32 bits at a time, provided all bytes are contiguous; with MSB of data value written first.

After all data values are written, the CRC result can be read from this data register. In 16bit CRC mode, the CRC result is available in the LU and LL fields. In 32-bit CRC mode, all fields contain the result. Reads of this register at any time return the intermediate CRC value, provided the CRC module is configured.

Address: 4003	2000h base	+ 0h offset =	4003	2000h

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R W				Н	U							Н	L				LU						LL									
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

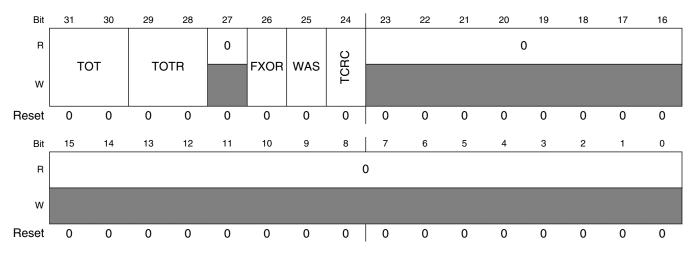
CRC_DATA field descriptions

Field	Description
31–24 HU	CRC High Upper Byte
	In 16-bit CRC mode (CTRL[TCRC] is 0), this field is not used for programming a seed value. In 32-bit CRC mode (CTRL[TCRC] is 1), values written to this field are part of the seed value when CTRL[WAS] is 1. When CTRL[WAS] is 0, data written to this field is used for CRC checksum generation in both 16-bit and 32-bit CRC modes.
23–16 HL	CRC High Lower Byte
	In 16-bit CRC mode (CTRL[TCRC] is 0), this field is not used for programming a seed value. In 32-bit CRC mode (CTRL[TCRC] is 1), values written to this field are part of the seed value when CTRL[WAS] is 1. When CTRL[WAS] is 0, data written to this field is used for CRC checksum generation in both 16-bit and 32-bit CRC modes.
15–8 LU	CRC Low Upper Byte
	When CTRL[WAS] is 1, values written to this field are part of the seed value. When CTRL[WAS] is 0, data written to this field is used for CRC checksum generation.
7–0 LL	CRC Low Lower Byte
	When CTRL[WAS] is 1, values written to this field are part of the seed value. When CTRL[WAS] is 0, data written to this field is used for CRC checksum generation.

31.2.2 CRC Polynomial register (CRC_GPOLY)

This register contains the value of the polynomial for the CRC calculation. The HIGH field contains the upper 16 bits of the CRC polynomial, which are used only in 32-bit CRC mode. Writes to the HIGH field are ignored in 16-bit CRC mode. The LOW field contains the lower 16 bits of the CRC polynomial, which are used in both 16- and 32-bit CRC modes.

Address: 4003_2000h base + 4h offset = 4003_2004h


Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R W								HI	GΗ															LC	w							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1

Field	Description
31–16 HIGH	High Polynominal Half-word
	Writable and readable in 32-bit CRC mode (CTRL[TCRC] is 1). This field is not writable in 16-bit CRC mode (CTRL[TCRC] is 0).
15–0 LOW	Low Polynominal Half-word
	Writable and readable in both 32-bit and 16-bit CRC modes.

CRC_GPOLY field descriptions

31.2.3 CRC Control register (CRC_CTRL)

This register controls the configuration and working of the CRC module. Appropriate bits must be set before starting a new CRC calculation. A new CRC calculation is initialized by asserting CTRL[WAS] and then writing the seed into the CRC data register.

Address: 4003_2000h base + 8h offset = 4003_2008h

CRC_CTRL field descriptions

Field	Description
31–30	Type Of Transpose For Writes
тот	Defines the transpose configuration of the data written to the CRC data register. See the description of the transpose feature for the available transpose options.
	00 No transposition.
	01 Bits in bytes are transposed; bytes are not transposed.
	10 Both bits in bytes and bytes are transposed.
	11 Only bytes are transposed; no bits in a byte are transposed.
29–28 TOTR	Type Of Transpose For Read
	Identifies the transpose configuration of the value read from the CRC Data register. See the description of the transpose feature for the available transpose options.
	00 No transposition.
	01 Bits in bytes are transposed; bytes are not transposed.
	10 Both bits in bytes and bytes are transposed.
	11 Only bytes are transposed; no bits in a byte are transposed.
27	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
26 FXOR	Complement Read Of CRC Data Register
	Some CRC protocols require the final checksum to be XORed with 0xFFFFFFFF or 0xFFFF. Asserting this bit enables on the fly complementing of read data.
	0 No XOR on reading.
	1 Invert or complement the read value of the CRC Data register.
25 WAS	Write CRC Data Register As Seed
	When asserted, a value written to the CRC data register is considered a seed value. When deasserted, a value written to the CRC data register is taken as data for CRC computation.
	0 Writes to the CRC data register are data values.
	1 Writes to the CRC data register are seed values.
24 TCRC	Width of CRC protocol.
	0 16-bit CRC protocol.
	1 32-bit CRC protocol.
23–0	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

31.3 Functional description

runctional description

31.3.1 CRC initialization/reinitialization

To enable the CRC calculation, the user must program CRC_CTRL[WAS], CRC_GPOLY,necessary parameters for transposition and CRC result inversion in the applicable registers. Asserting CRC_CTRL[WAS] enables the programming of the seed value into the CRC_DATA register.

After a completed CRC calculation, the module can be reinitialized for a new CRC computation by reasserting CRC_CTRL[WAS] and programming a new, or previously used, seed value. All other parameters must be set before programming the seed value and subsequent data values.

31.3.2 CRC calculations

In 16-bit and 32-bit CRC modes, data values can be programmed 8 bits, 16 bits, or 32 bits at a time, provided all bytes are contiguous. Noncontiguous bytes can lead to an incorrect CRC computation.

31.3.2.1 16-bit CRC

To compute a 16-bit CRC:

- 1. Clear CRC_CTRL[TCRC] to enable 16-bit CRC mode.
- 2. Program the transpose and complement options in the CTRL register as required for the CRC calculation. See Transpose feature and CRC result complement for details.
- 3. Write a 16-bit polynomial to the CRC_GPOLY[LOW] field. The CRC_GPOLY[HIGH] field is not usable in 16-bit CRC mode.
- 4. Set CRC_CTRL[WAS] to program the seed value.
- 5. Write a 16-bit seed to CRC_DATA[LU:LL]. CRC_DATA[HU:HL] are not used.
- 6. Clear CRC_CTRL[WAS] to start writing data values.
- 7. Write data values into CRC_DATA[HU:HL:LU:LL]. A CRC is computed on every data value write, and the intermediate CRC result is stored back into CRC_DATA[LU:LL].
- 8. When all values have been written, read the final CRC result from CRC_DATA[LU:LL].

Transpose and complement operations are performed on the fly while reading or writing values. See Transpose feature and CRC result complement for details.

31.3.2.2 32-bit CRC

To compute a 32-bit CRC:

- 1. Set CRC_CTRL[TCRC] to enable 32-bit CRC mode.
- 2. Program the transpose and complement options in the CTRL register as required for the CRC calculation. See Transpose feature and CRC result complement for details.
- 3. Write a 32-bit polynomial to CRC_GPOLY[HIGH:LOW].
- 4. Set CRC_CTRL[WAS] to program the seed value.
- 5. Write a 32-bit seed to CRC_DATA[HU:HL:LU:LL].
- 6. Clear CRC_CTRL[WAS] to start writing data values.
- 7. Write data values into CRC_DATA[HU:HL:LU:LL]. A CRC is computed on every data value write, and the intermediate CRC result is stored back into CRC_DATA[HU:HL:LU:LL].
- 8. When all values have been written, read the final CRC result from CRC_DATA[HU:HL:LU:LL]. The CRC is calculated bytewise, and two clocks are required to complete one CRC calculation.

Transpose and complement operations are performed on the fly while reading or writing values. See Transpose feature and CRC result complement for details.

31.3.3 Transpose feature

By default, the transpose feature is not enabled. However, some CRC standards require the input data and/or the final checksum to be transposed. The user software has the option to configure each transpose operation separately, as desired by the CRC standard. The data is transposed on the fly while being read or written.

Some protocols use little endian format for the data stream to calculate a CRC. In this case, the transpose feature usefully flips the bits. This transpose option is one of the types supported by the CRC module.

31.3.3.1 Types of transpose

The CRC module provides several types of transpose functions to flip the bits and/or bytes, for both writing input data and reading the CRC result, separately using the CTRL[TOT] or CTRL[TOTR] fields, according to the CRC calculation being used.

The following types of transpose functions are available for writing to and reading from the CRC data register:

1. CTRL[TOT] or CTRL[TOTR] is 00.

No transposition occurs.

2. CTRL[TOT] or CTRL[TOTR] is 01

Bits in a byte are transposed, while bytes are not transposed.

reg[31:0] becomes {reg[24:31], reg[16:23], reg[8:15], reg[0:7]}

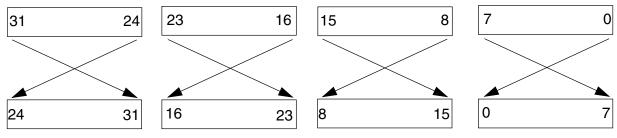


Figure 31-5. Transpose type 01

3. CTRL[TOT] or CTRL[TOTR] is 10.

Both bits in bytes and bytes are transposed.

reg[31:0] becomes = {reg[0:7], reg[8:15], reg[16:23], reg[24:31]}

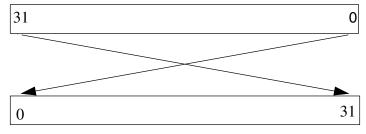


Figure 31-6. Transpose type 10

4. CTRL[TOT] or CTRL[TOTR] is 11.

Bytes are transposed, but bits are not transposed.

reg[31:0] becomes {reg[7:0], reg[15:8], reg[23:16], reg[31:24]}

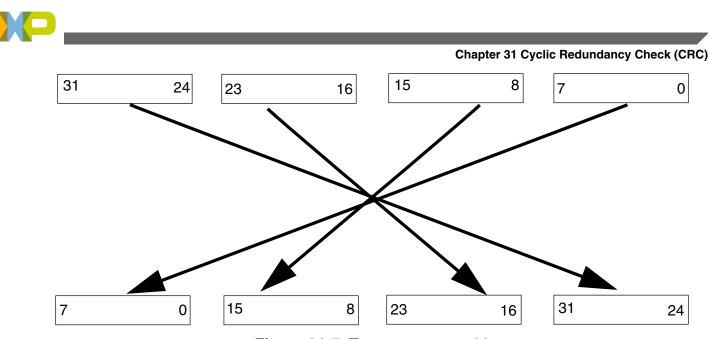


Figure 31-7. Transpose type 11

NOTE

For 8-bit and 16-bit write accesses to the CRC data register, the data is transposed with zeros on the unused byte or bytes (taking 32 bits as a whole), but the CRC is calculated on the valid byte(s) only. When reading the CRC data register for a 16-bit CRC result and using transpose options 10 and 11, the resulting value after transposition resides in the CRC[HU:HL] fields. The user software must account for this situation when reading the 16-bit CRC result, so reading 32 bits is preferred.

31.3.4 CRC result complement

When CTRL[FXOR] is set, the checksum is complemented. The CRC result complement function outputs the complement of the checksum value stored in the CRC data register every time the CRC data register is read. When CTRL[FXOR] is cleared, reading the CRC data register accesses the raw checksum value.

Chapter 32 Analog-to-Digital Converter (ADC)

32.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The 16-bit analog-to-digital converter (ADC) is a successive approximation ADC designed for operation within an integrated microcontroller system-on-chip.

NOTE

For the chip specific modes of operation, see the power management information of the device.

32.1.1 Features

Following are the features of the ADC module.

- Linear successive approximation algorithm with up to 16-bit resolution
- Up to four pairs of differential and 24 single-ended external analog inputs
- Output modes:
 - differential 16-bit, 13-bit, 11-bit, and 9-bit modes
 - single-ended 16-bit, 12-bit, 10-bit, and 8-bit modes
- Output format in 2's complement 16-bit sign extended for differential modes
- Output in right-justified unsigned format for single-ended
- Single or continuous conversion, that is, automatic return to idle after single conversion

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

nuroduction

- Configurable sample time and conversion speed/power
- Conversion complete/hardware average complete flag and interrupt
- Input clock selectable from up to four sources
- Operation in low-power modes for lower noise
- Asynchronous clock source for lower noise operation with option to output the clock
- Selectable hardware conversion trigger with hardware channel select
- Automatic compare with interrupt for less-than, greater-than or equal-to, within range, or out-of-range, programmable value
- Temperature sensor
- Hardware average function
- Selectable voltage reference: external or alternate
- Self-Calibration mode

32.1.2 Block diagram

The following figure is the ADC module block diagram.

Chapter 32 Analog-to-Digital Converter (ADC)

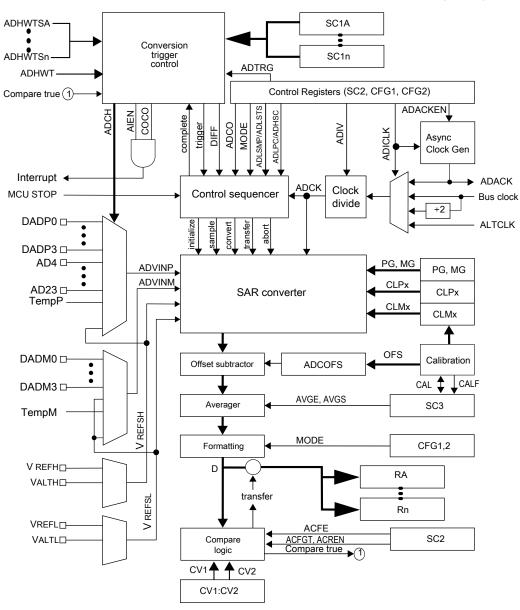


Figure 32-1. ADC block diagram

32.2 ADC signal descriptions

The ADC module supports up to 4 pairs of differential inputs and up to 24 single-ended inputs.

Each differential pair requires two inputs, DADPx and DADMx. The ADC also requires four supply/reference/ground connections.

NOTE

For the number of channels supported on this device as well as information regarding other chip-specific inputs into the ADC block, see the chip-specific ADC configuration information.

Signal	Description	I/O
DADP3-DADP0	Differential Analog Channel Inputs	I
DADM3–DADM0	Differential Analog Channel Inputs	I
ADn	Single-Ended Analog Channel Inputs	I
V _{REFSH}	Voltage Reference Select High	I
V _{REFSL}	Voltage Reference Select Low	I
V _{DDA}	Analog Power Supply	I
V _{SSA}	Analog Ground	I

32.2.1 Analog Power (V_{DDA})

The ADC analog portion uses V_{DDA} as its power connection. In some packages, V_{DDA} is connected internally to V_{DD} . If externally available, connect the V_{DDA} pin to the same voltage potential as V_{DD} . External filtering may be necessary to ensure clean V_{DDA} for good results.

32.2.2 Analog Ground (V_{SSA})

The ADC analog portion uses V_{SSA} as its ground connection. In some packages, V_{SSA} is connected internally to V_{SS} . If externally available, connect the V_{SSA} pin to the same voltage potential as V_{SS} .

32.2.3 Voltage Reference Select

 V_{REFSH} and V_{REFSL} are the high and low reference voltages for the ADC module.

The ADC can be configured to accept one of two voltage reference pairs for V_{REFSH} and V_{REFSL} . Each pair contains a positive reference that must be between the minimum Ref Voltage High and V_{DDA} , and a ground reference that must be at the same potential as V_{SSA} . The two pairs are external (V_{REFH} and V_{REFL}) and alternate (V_{ALTH} and V_{ALTL}). These voltage references are selected using SC2[REFSEL]. The alternate V_{ALTH} and

 V_{ALTL} voltage reference pair may select additional external pins or internal sources depending on MCU configuration. See the chip configuration information on the Voltage References specific to this MCU.

In some packages, V_{REFH} is connected in the package to V_{DDA} and V_{REFL} to V_{SSA} . If externally available, the positive reference(s) may be connected to the same potential as V_{DDA} or may be driven by an external source to a level between the minimum Ref Voltage High and the V_{DDA} potential. V_{REFH} must never exceed V_{DDA} . Connect the ground references to the same voltage potential as V_{SSA} .

32.2.4 Analog Channel Inputs (ADx)

The ADC module supports up to 24 single-ended analog inputs. A single-ended input is selected for conversion through the SC1[ADCH] channel select bits when SC1n[DIFF] is low.

32.2.5 Differential Analog Channel Inputs (DADx)

The ADC module supports up to four differential analog channel inputs. Each differential analog input is a pair of external pins, DADPx and DADMx, referenced to each other to provide the most accurate analog to digital readings. A differential input is selected for conversion through SC1[ADCH] when SC1n[DIFF] is high. All DADPx inputs may be used as single-ended inputs if SC1n[DIFF] is low. In certain MCU configurations, some DADMx inputs may also be used as single-ended inputs if SC1n[DIFF] is low. For ADC connections specific to this device, see the chip-specific ADC information.

32.3 Memory map and register definitions

This section describes the ADC registers.

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4003_B000	ADC Status and Control Registers 1 (ADC0_SC1A)	32	R/W	0000_001Fh	32.3.1/567
4003_B004	ADC Status and Control Registers 1 (ADC0_SC1B)	32	R/W	0000_001Fh	32.3.1/567
4003_B008	ADC Configuration Register 1 (ADC0_CFG1) 32 R/W 0000_0000h				
4003_B00C	ADC Configuration Register 2 (ADC0_CFG2)	32	R/W	0000_0000h	32.3.3/572
4003_B010	ADC Data Result Register (ADC0_RA)	32	R	0000_0000h	32.3.4/573

ADC memory map

Table continues on the next page ...

ADC memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4003_B014	ADC Data Result Register (ADC0_RB)	32	R	0000_0000h	32.3.4/573
4003_B018	Compare Value Registers (ADC0_CV1)	32	R/W	0000_0000h	32.3.5/575
4003_B01C	Compare Value Registers (ADC0_CV2)	32	R/W	0000_0000h	32.3.5/575
4003_B020	Status and Control Register 2 (ADC0_SC2)	32	R/W	0000_0000h	32.3.6/576
4003_B024	Status and Control Register 3 (ADC0_SC3)	32	R/W	0000_0000h	32.3.7/578
4003_B028	ADC Offset Correction Register (ADC0_OFS)	32	R/W	0000_0004h	32.3.8/579
4003_B02C	ADC Plus-Side Gain Register (ADC0_PG)	32	R/W	0000_8200h	32.3.9/580
4003_B030	ADC Minus-Side Gain Register (ADC0_MG)	32	R/W	0000_8200h	32.3.10/ 580
4003_B034	ADC Plus-Side General Calibration Value Register (ADC0_CLPD)	32	R/W	0000_000Ah	32.3.11/ 581
4003_B038	ADC Plus-Side General Calibration Value Register (ADC0_CLPS)	32	R/W	0000_0020h	32.3.12/ 582
4003_B03C	ADC Plus-Side General Calibration Value Register (ADC0_CLP4)	R/W	0000_0200h	32.3.13/ 582	
4003_B040	ADC Plus-Side General Calibration Value Register 32 R/W		0000_0100h	32.3.14/ 583	
4003_B044	DC Plus-Side General Calibration Value Register 32 R/W		0000_0080h	32.3.15/ 583	
4003_B048	ADC Plus-Side General Calibration Value Register (ADC0_CLP1) 32		R/W	0000_0040h	32.3.16/ 584
4003_B04C	ADC Plus-Side General Calibration Value Register 32 R/W		0000_0020h	32.3.17/ 584	
4003_B054	ADC Minus-Side General Calibration Value Register 32 R/W		0000_000Ah	32.3.18/ 585	
4003_B058	ADC Minus-Side General Calibration Value Register (ADC0_CLMS)	32	R/W	0000_0020h	32.3.19/ 585
4003_B05C	ADC Minus-Side General Calibration Value Register (ADC0_CLM4)	32	R/W	0000_0200h	32.3.20/ 586
4003_B060	ADC Minus-Side General Calibration Value Register (ADC0_CLM3)	32	R/W	0000_0100h	32.3.21/ 586
4003_B064	ADC Minus-Side General Calibration Value Register (ADC0_CLM2)	32	R/W	0000_0080h	32.3.22/ 587
4003_B068	ADC Minus-Side General Calibration Value Register (ADC0_CLM1)		R/W	0000_0040h	32.3.23/ 587
4003_B06C	ADC Minus-Side General Calibration Value Register (ADC0_CLM0)		R/W	0000_0020h	32.3.24/ 588
4003_C000	ADC Status and Control Registers 1 (ADC1_SC1A)	32	R/W	0000_001Fh	32.3.1/567
4003_C004	ADC Status and Control Registers 1 (ADC1_SC1B)	32	R/W	0000_001Fh	32.3.1/567
4003_C008	ADC Configuration Register 1 (ADC1_CFG1)	32	R/W	0000_0000h	32.3.2/571
4003_C00C	ADC Configuration Register 2 (ADC1_CFG2)	32	R/W	0000_0000h	32.3.3/572
4003_C010	ADC Data Result Register (ADC1_RA)	32	R	0000_0000h	32.3.4/573

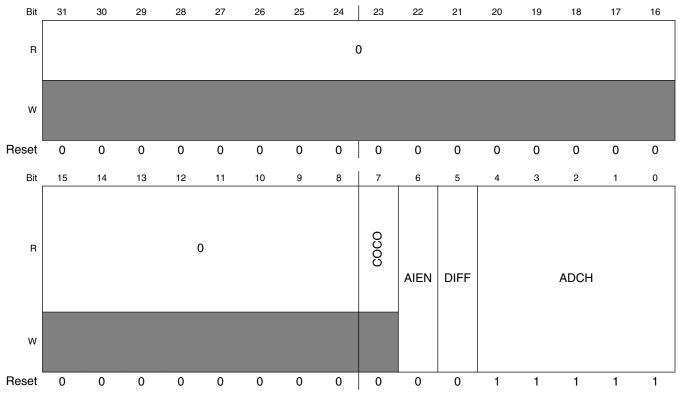
Table continues on the next page ...

ADC memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4003_C014	ADC Data Result Register (ADC1_RB)	32	R	0000_0000h	32.3.4/573
4003_C018	Compare Value Registers (ADC1_CV1)	32	R/W	0000_0000h	32.3.5/575
4003_C01C	Compare Value Registers (ADC1_CV2)	32	R/W	0000_0000h	32.3.5/575
4003_C020	Status and Control Register 2 (ADC1_SC2)	32	R/W	0000_0000h	32.3.6/576
4003_C024	Status and Control Register 3 (ADC1_SC3)	32	R/W	0000_0000h	32.3.7/578
4003_C028	ADC Offset Correction Register (ADC1_OFS)	32	R/W	0000_0004h	32.3.8/579
4003_C02C	ADC Plus-Side Gain Register (ADC1_PG)	32	R/W	0000_8200h	32.3.9/580
4003_C030	ADC Minus-Side Gain Register (ADC1_MG)	32	R/W	0000_8200h	32.3.10/ 580
4003_C034	ADC Plus-Side General Calibration Value Register (ADC1_CLPD)	32	R/W	0000_000Ah	32.3.11/ 581
4003_C038	ADC Plus-Side General Calibration Value Register (ADC1_CLPS) 32 R/W		0000_0020h	32.3.12/ 582	
4003_C03C	ADC Plus-Side General Calibration Value Register (ADC1_CLP4)	32	R/W	0000_0200h	32.3.13/ 582
4003_C040	ADC Plus-Side General Calibration Value Register 32 R/W		R/W	0000_0100h	32.3.14/ 583
4003_C044	ADC Plus-Side General Calibration Value Register (ADC1_CLP2)	32	R/W	0000_0080h	32.3.15/ 583
4003_C048	ADC Plus-Side General Calibration Value Register (ADC1_CLP1) 32		R/W	0000_0040h	32.3.16/ 584
4003_C04C	ADC Plus-Side General Calibration Value Register 32 R/W		0000_0020h	32.3.17/ 584	
4003_C054	ADC Minus-Side General Calibration Value Register (ADC1_CLMD)	32	R/W	0000_000Ah	32.3.18/ 585
4003_C058	ADC Minus-Side General Calibration Value Register (ADC1_CLMS)	32	R/W	0000_0020h	32.3.19/ 585
4003_C05C	ADC Minus-Side General Calibration Value Register (ADC1_CLM4)	32	R/W	0000_0200h	32.3.20/ 586
4003_C060	ADC Minus-Side General Calibration Value Register (ADC1_CLM3)		R/W	0000_0100h	32.3.21/ 586
4003_C064	ADC Minus-Side General Calibration Value Register (ADC1_CLM2)		R/W	0000_0080h	32.3.22/ 587
4003_C068	ADC Minus-Side General Calibration Value Register (ADC1_CLM1)	32	R/W	0000_0040h	32.3.23/ 587
4003_C06C	ADC Minus-Side General Calibration Value Register (ADC1_CLM0)	32	R/W	0000_0020h	32.3.24/ 588

32.3.1 ADC Status and Control Registers 1 (ADCx_SC1*n*)

SC1A is used for both software and hardware trigger modes of operation.


memory map and register definitions

To allow sequential conversions of the ADC to be triggered by internal peripherals, the ADC can have more than one status and control register: one for each conversion. The SC1B–SC1n registers indicate potentially multiple SC1 registers for use only in hardware trigger mode. See the chip configuration information about the number of SC1n registers specific to this device. The SC1n registers have identical fields, and are used in a "ping-pong" approach to control ADC operation.

At any one point in time, only one of the SC1n registers is actively controlling ADC conversions. Updating SC1A while SC1n is actively controlling a conversion is allowed, and vice-versa for any of the SC1n registers specific to this MCU.

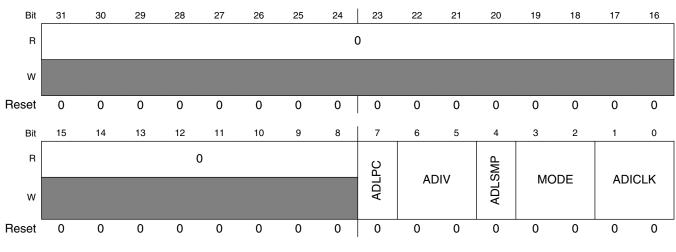
Writing SC1A while SC1A is actively controlling a conversion aborts the current conversion. In Software Trigger mode, when SC2[ADTRG]=0, writes to SC1A subsequently initiate a new conversion, if SC1[ADCH] contains a value other than all 1s (module disabled).

Writing any of the SC1n registers while that specific SC1n register is actively controlling a conversion aborts the current conversion. None of the SC1B-SC1n registers are used for software trigger operation and therefore writes to the SC1B–SC1n registers do not initiate a new conversion.

Address: Base address + 0h offset + $(4d \times i)$, where i=0d to 1d

ADCx_SC1*n* field descriptions

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7	Conversion Complete Flag
COCO	This is a read-only field that is set each time a conversion is completed when the compare function is disabled, or SC2[ACFE]=0 and the hardware average function is disabled, or SC3[AVGE]=0. When the compare function is enabled, or SC2[ACFE]=1, COCO is set upon completion of a conversion only if the compare result is true. When the hardware average function is enabled, or SC3[AVGE]=1, COCO is set upon completion of the selected number of conversions (determined by AVGS). COCO in SC1A is also set at the completion of a calibration sequence. COCO is cleared when the respective SC1n register is written or when the respective Rn register is read.
	0 Conversion is not completed.1 Conversion is completed.
6	Interrupt Enable
AIEN	Enables conversion complete interrupts. When COCO becomes set while the respective AIEN is high, an interrupt is asserted.
	0 Conversion complete interrupt is disabled.
	1 Conversion complete interrupt is enabled.
5 DIFF	Differential Mode Enable
DIFF	Configures the ADC to operate in differential mode. When enabled, this mode automatically selects from the differential channels, and changes the conversion algorithm and the number of cycles to complete a conversion.
	0 Single-ended conversions and input channels are selected.
	 Differential conversions and input channels are selected.
4–0	Input channel select
ADCH	Selects one of the input channels. The input channel decode depends on the value of DIFF. DAD0-DAD3 are associated with the input pin pairs DADPx and DADMx.
	NOTE: Some of the input channel options in the bitfield-setting descriptions might not be available for your device. For the actual ADC channel assignments for your device, see the Chip Configuration details.
	The successive approximation converter subsystem is turned off when the channel select bits are all set, that is, ADCH = 11111. This feature allows explicit disabling of the ADC and isolation of the input channel from all sources. Terminating continuous conversions this way prevents an additional single conversion from being performed. It is not necessary to set ADCH to all 1s to place the ADC in a low-power state when continuous conversions are not enabled because the module automatically enters a low-power state when a conversion completes.
	00000 When DIFF=0, DADP0 is selected as input; when DIFF=1, DAD0 is selected as input.
	00001 When DIFF=0, DADP1 is selected as input; when DIFF=1, DAD1 is selected as input.
	00010 When DIFF=0, DADP2 is selected as input; when DIFF=1, DAD2 is selected as input.
	00011 When DIFF=0, DADP3 is selected as input; when DIFF=1, DAD3 is selected as input.
	When DIFF=0, AD4 is selected as input; when DIFF=1, it is reserved.When DIFF=0, AD5 is selected as input; when DIFF=1, it is reserved.
	00110 When DIFF=0, AD6 is selected as input, when DIFF=1, it is reserved.
	00111 When DIFF=0, AD7 is selected as input; when DIFF=1, it is reserved.


ADCx_SC1*n* field descriptions (continued)

Field		Description
	01000	When DIFF=0, AD8 is selected as input; when DIFF=1, it is reserved.
	01001	When DIFF=0, AD9 is selected as input; when DIFF=1, it is reserved.
	01010	When DIFF=0, AD10 is selected as input; when DIFF=1, it is reserved.
	01011	When DIFF=0, AD11 is selected as input; when DIFF=1, it is reserved.
	01100	When DIFF=0, AD12 is selected as input; when DIFF=1, it is reserved.
	01101	When DIFF=0, AD13 is selected as input; when DIFF=1, it is reserved.
	01110	When DIFF=0, AD14 is selected as input; when DIFF=1, it is reserved.
	01111	When DIFF=0, AD15 is selected as input; when DIFF=1, it is reserved.
	10000	When DIFF=0, AD16 is selected as input; when DIFF=1, it is reserved.
	10001	When DIFF=0, AD17 is selected as input; when DIFF=1, it is reserved.
	10010	When DIFF=0, AD18 is selected as input; when DIFF=1, it is reserved.
	10011	When DIFF=0, AD19 is selected as input; when DIFF=1, it is reserved.
	10100	When DIFF=0, AD20 is selected as input; when DIFF=1, it is reserved.
	10101	When DIFF=0, AD21 is selected as input; when DIFF=1, it is reserved.
	10110	When DIFF=0, AD22 is selected as input; when DIFF=1, it is reserved.
	10111	When DIFF=0, AD23 is selected as input; when DIFF=1, it is reserved.
	11000	Reserved.
	11001	Reserved.
	11010	When DIFF=0, Temp Sensor (single-ended) is selected as input; when DIFF=1, Temp Sensor (differential) is selected as input.
	11011	When DIFF=0,Bandgap (single-ended) is selected as input; when DIFF=1, Bandgap (differential) is selected as input.
	11100	Reserved.
	11101	When DIFF=0,V _{REFSH} is selected as input; when DIFF=1, -V _{REFSH} (differential) is selected as input. Voltage reference selected is determined by SC2[REFSEL].
	11110	When DIFF=0,V _{REFSL} is selected as input; when DIFF=1, it is reserved. Voltage reference selected is determined by SC2[REFSEL].
	11111	Module is disabled.

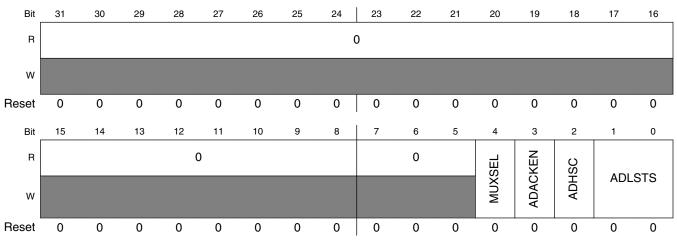
32.3.2 ADC Configuration Register 1 (ADCx_CFG1)

The configuration Register 1 (CFG1) selects the mode of operation, clock source, clock divide, and configuration for low power or long sample time.

Address: Base address + 8h offset

ADCx_CFG1 field descriptions

Field	Description							
31–8	This field is reserved.							
Reserved	This read-only field is reserved and always has the value 0.							
7 ADLPC	Low-Power Configuration							
	Controls the power configuration of the successive approximation converter. This optimizes power							
	consumption when higher sample rates are not required.							
	0 Normal power configuration.							
	1 Low-power configuration. The power is reduced at the expense of maximum clock speed.							
6–5 ADIV	Clock Divide Select							
	Selects the divide ratio used by the ADC to generate the internal clock ADCK.							
	00 The divide ratio is 1 and the clock rate is input clock.							
	01 The divide ratio is 2 and the clock rate is (input clock)/2.							
	10 The divide ratio is 4 and the clock rate is (input clock)/4.							
	11 The divide ratio is 8 and the clock rate is (input clock)/8.							
4 ADLSMP	Sample Time Configuration							
	Selects between different sample times based on the conversion mode selected. This field adjusts the sample period to allow higher impedance inputs to be accurately sampled or to maximize conversion speed for lower impedance inputs. Longer sample times can also be used to lower overall power consumption if continuous conversions are enabled and high conversion rates are not required. When ADLSMP=1, the long sample time select bits, (ADLSTS[1:0]), can select the extent of the long sample time.							


Table continues on the next page ...

ADCx_CFG1	field descriptions	(continued)
-----------	--------------------	-------------

Field	Description							
	0 Short sample time.							
	1 Long sample time.							
3–2 MODE	Conversion mode selection							
	Selects the ADC resolution mode.							
	00 When DIFF=0:It is single-ended 8-bit conversion; when DIFF=1, it is differential 9-bit conversion with 2's complement output.							
	01 When DIFF=0:It is single-ended 12-bit conversion ; when DIFF=1, it is differential 13-bit conversion with 2's complement output.							
	10 When DIFF=0:It is single-ended 10-bit conversion. ; when DIFF=1, it is differential 11-bit conversion with 2's complement output							
	11 When DIFF=0:It is single-ended 16-bit conversion; when DIFF=1, it is differential 16-bit conversion with 2's complement output							
1–0 ADICLK	Input Clock Select							
ADICER	Selects the input clock source to generate the internal clock, ADCK. Note that when the ADACK clock source is selected, it is not required to be active prior to conversion start. When it is selected and it is not active prior to a conversion start, when CFG2[ADACKEN]=0, the asynchronous clock is activated at the start of a conversion and deactivated when conversions are terminated. In this case, there is an associated clock startup delay each time the clock source is re-activated.							
	00 Bus clock							
	01 Bus clock divided by 2(BUSCLK/2)							
	10 Alternate clock (ALTCLK)							
	11 Asynchronous clock (ADACK)							

32.3.3 ADC Configuration Register 2 (ADCx_CFG2)

Configuration Register 2 (CFG2) selects the special high-speed configuration for very high speed conversions and selects the long sample time duration during long sample mode.

Address: Base address + Ch offset

ADCx_CFG2 field descriptions

31–8 This field is reserved. Reserved This read-only field is reserved and always has the value 0. 7–5 This field is reserved. Reserved This read-only field is reserved and always has the value 0. 4 ADC Mux Select MUXSEL Changes the ADC mux setting to select between alternate sets of ADC channels. 0 ADxxa channels are selected. 1 ADxxb channels are selected. 3 Asynchronous Clock Output Enable	
7-5 This field is reserved. Reserved This read-only field is reserved and always has the value 0. 4 ADC Mux Select MUXSEL Changes the ADC mux setting to select between alternate sets of ADC channels. 0 ADxxa channels are selected. 1 ADxxb channels are selected. 3 Asynchronous Clock Output Enable	
Reserved This read-only field is reserved and always has the value 0. 4 ADC Mux Select MUXSEL Changes the ADC mux setting to select between alternate sets of ADC channels. 0 ADxxa channels are selected. 1 ADxxb channels are selected. 3 Asynchronous Clock Output Enable	
4 ADC Mux Select MUXSEL Changes the ADC mux setting to select between alternate sets of ADC channels. 0 ADxxa channels are selected. 1 ADxxb channels are selected. 3 Asynchronous Clock Output Enable	
MUXSEL Changes the ADC mux setting to select between alternate sets of ADC channels. 0 ADxxa channels are selected. 1 ADxxb channels are selected. 3 Asynchronous Clock Output Enable	
0 ADxxa channels are selected. 1 ADxxb channels are selected. 3 Asynchronous Clock Output Enable	
1 ADxxb channels are selected. 3 Asynchronous Clock Output Enable	
3 Asynchronous Clock Output Enable	
Enables the asynchronous clock source and the clock source output regardless of the conversion ar status of CFG1[ADICLK]. Based on MCU configuration, the asynchronous clock may be used by oth modules. See chip configuration information. Setting this field allows the clock to be used even while ADC is idle or operating from a different clock source. Also, latency of initiating a single or first-contin conversion with the asynchronous clock selected is reduced because the ADACK clock is already operational.	er the
0 Asynchronous clock output disabled; Asynchronous clock is enabled only if selected by ADICLK conversion is active.	and a
1 Asynchronous clock and clock output is enabled regardless of the state of the ADC.	
2 High-Speed Configuration	
ADHSC Configures the ADC for very high-speed operation. The conversion sequence is altered with 2 ADCk cycles added to the conversion time to allow higher speed conversion clocks.	C
0 Normal conversion sequence selected.	
1 High-speed conversion sequence selected with 2 additional ADCK cycles to total conversion tim	e.
1–0 Long Sample Time Select	
Selects between the extended sample times when long sample time is selected, that is, when CFG1[ADLSMP]=1. This allows higher impedance inputs to be accurately sampled or to maximize conversion speed for lower impedance inputs. Longer sample times can also be used to lower overa power consumption when continuous conversions are enabled if high conversion rates are not requi	
00 Default longest sample time; 20 extra ADCK cycles; 24 ADCK cycles total.	
01 12 extra ADCK cycles; 16 ADCK cycles total sample time.	
10 6 extra ADCK cycles; 10 ADCK cycles total sample time.	
11 2 extra ADCK cycles; 6 ADCK cycles total sample time.	

32.3.4 ADC Data Result Register (ADCx_Rn)

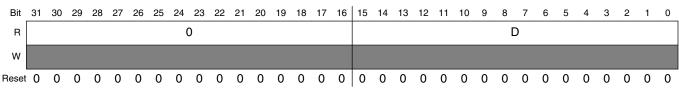
The data result registers (Rn) contain the result of an ADC conversion of the channel selected by the corresponding status and channel control register (SC1A:SC1n). For every status and channel control register, there is a corresponding data result register.

memory map and register definitions

Unused bits in R n are cleared in unsigned right-aligned modes and carry the sign bit (MSB) in sign-extended 2's complement modes. For example, when configured for 10-bit single-ended mode, D[15:10] are cleared. When configured for 11-bit differential mode, D[15:10] carry the sign bit, that is, bit 10 extended through bit 15.

The following table describes the behavior of the data result registers in the different modes of operation.

Conversion mode	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Format
16-bit differential	S	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Signed 2's complement
16-bit single- ended	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Unsigned right justified
13-bit differential	S	S	S	S	D	D	D	D	D	D	D	D	D	D	D	D	Sign-extended 2's complement
12-bit single- ended	0	0	0	0	D	D	D	D	D	D	D	D	D	D	D	D	Unsigned right- justified
11-bit differential	S	S	S	S	S	S	D	D	D	D	D	D	D	D	D	D	Sign-extended 2's complement
10-bit single- ended	0	0	0	0	0	0	D	D	D	D	D	D	D	D	D	D	Unsigned right- justified
9-bit differential	S	S	S	S	S	S	S	S	D	D	D	D	D	D	D	D	Sign-extended 2's complement
8-bit single- ended	0	0	0	0	0	0	0	0	D	D	D	D	D	D	D	D	Unsigned right- justified


Table 32-43.	Data result register description
--------------	----------------------------------

NOTE

S: Sign bit or sign bit extension;

D: Data, which is 2's complement data if indicated

Address: Base address + 10h offset + $(4d \times i)$, where i=0d to 1d

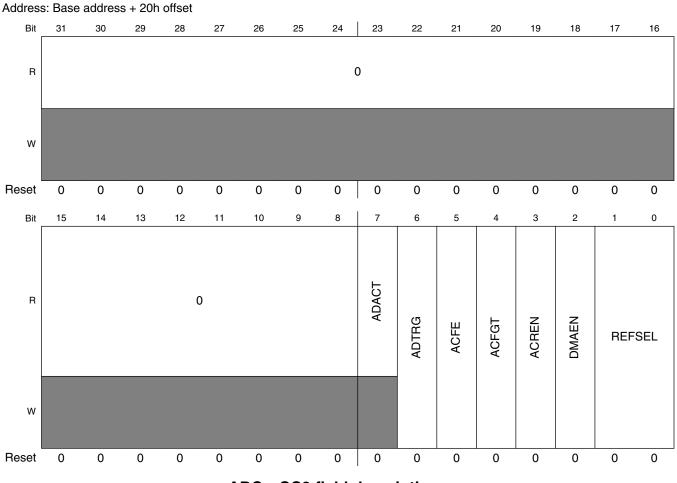
ADCx_Rn field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 D	Data result

32.3.5 Compare Value Registers (ADCx_CVn)

The Compare Value Registers (CV1 and CV2) contain a compare value used to compare the conversion result when the compare function is enabled, that is, SC2[ACFE]=1. This register is formatted in the same way as the Rn registers in different modes of operation for both bit position definition and value format using unsigned or sign-extended 2's complement. Therefore, the compare function uses only the CVn fields that are related to the ADC mode of operation.

The compare value 2 register (CV2) is used only when the compare range function is enabled, that is, SC2[ACREN]=1.


Address: Base address + 18h offset + (4d × i), where i=0d to 1d Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R 0 CV W Reset 0

ADCx_CV*n* field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 CV	Compare Value.

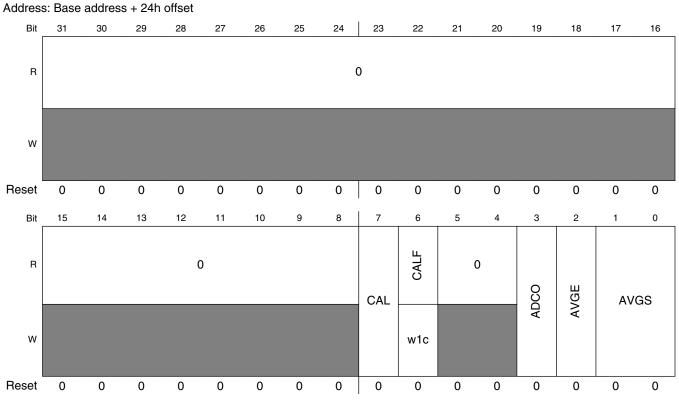
32.3.6 Status and Control Register 2 (ADCx_SC2)

The status and control register 2 (SC2) contains the conversion active, hardware/software trigger select, compare function, and voltage reference select of the ADC module.

ADCx_SC2 field descriptions

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7 ADACT	Conversion Active Indicates that a conversion or hardware averaging is in progress. ADACT is set when a conversion is initiated and cleared when a conversion is completed or aborted.
	 Conversion not in progress. Conversion in progress.
6 ADTRG	Conversion Trigger Select Selects the type of trigger used for initiating a conversion. Two types of trigger are selectable:

Table continues on the next page...



ADCx_SC2 field descriptions (continued)

Field	Description
	Software trigger: When software trigger is selected, a conversion is initiated following a write to
	 SC1A. Hardware trigger: When hardware trigger is selected, a conversion is initiated following the assertion of the ADHWT input after a pulse of the ADHWTSn input.
	0 Software trigger selected.
	1 Hardware trigger selected.
5	Compare Function Enable
ACFE	Enables the compare function.
	0 Compare function disabled.
	1 Compare function enabled.
4	Compare Function Greater Than Enable
ACFGT	Configures the compare function to check the conversion result relative to the CV1 and CV2 based upon the value of ACREN. ACFE must be set for ACFGT to have any effect.
	0 Configures less than threshold, outside range not inclusive and inside range not inclusive; functionality based on the values placed in CV1 and CV2.
	1 Configures greater than or equal to threshold, outside and inside ranges inclusive; functionality based on the values placed in CV1 and CV2.
3 ACBEN	Compare Function Range Enable
ACHEN	Configures the compare function to check if the conversion result of the input being monitored is either between or outside the range formed by CV1 and CV2 determined by the value of ACFGT. ACFE must be set for ACFGT to have any effect.
	0 Range function disabled. Only CV1 is compared.
	1 Range function enabled. Both CV1 and CV2 are compared.
2 DMAEN	DMA Enable
	0 DMA is disabled.
	1 DMA is enabled and will assert the ADC DMA request during an ADC conversion complete event noted when any of the SC1n[COCO] flags is asserted.
1–0 REFSEL	Voltage Reference Selection
	Selects the voltage reference source used for conversions.
	00 Default voltage reference pin pair, that is, external pins V_{REFH} and V_{REFL}
	01 Alternate reference pair, that is, V _{ALTH} and V _{ALTL} . This pair may be additional external pins or internal sources depending on the MCU configuration. See the chip configuration information for details specific to this MCU
	10 Reserved
	11 Reserved

32.3.7 Status and Control Register 3 (ADCx_SC3)

The Status and Control Register 3 (SC3) controls the calibration, continuous convert, and hardware averaging functions of the ADC module.

ADCx_SC3 field descriptions

Field	Description
31–8 Decembed	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
7	Calibration
CAL	Begins the calibration sequence when set. This field stays set while the calibration is in progress and is cleared when the calibration sequence is completed. CALF must be checked to determine the result of the calibration sequence. Once started, the calibration routine cannot be interrupted by writes to the ADC registers or the results will be invalid and CALF will set. Setting CAL will abort any current conversion.
6	Calibration Failed Flag
CALF	Displays the result of the calibration sequence. The calibration sequence will fail if SC2[ADTRG] = 1, any ADC register is written, or any stop mode is entered before the calibration sequence completes. Writing 1 to CALF clears it.
	0 Calibration completed normally.
	1 Calibration failed. ADC accuracy specifications are not guaranteed.
5–4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

Table continues on the next page ...

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

ADCx_SC3 field descriptions (continued)

Field	Description
3 ADCO	Continuous Conversion Enable
	Enables continuous conversions.
	0 One conversion or one set of conversions if the hardware average function is enabled, that is, AVGE=1, after initiating a conversion.
	1 Continuous conversions or sets of conversions if the hardware average function is enabled, that is, AVGE=1, after initiating a conversion.
2 AVGE	Hardware Average Enable
AVGE	Enables the hardware average function of the ADC.
	0 Hardware average function disabled.
	1 Hardware average function enabled.
1–0 AVGS	Hardware Average Select
	Determines how many ADC conversions will be averaged to create the ADC average result.
	00 4 samples averaged.
	01 8 samples averaged.
	10 16 samples averaged.
	11 32 samples averaged.

32.3.8 ADC Offset Correction Register (ADCx_OFS)

The ADC Offset Correction Register (OFS) contains the user-selected or calibrationgenerated offset error correction value. This register is a 2's complement, left-justified, 16-bit value . The value in OFS is subtracted from the conversion and the result is transferred into the result registers, Rn. If the result is greater than the maximum or less than the minimum result value, it is forced to the appropriate limit for the current mode of operation.

For more information regarding the calibration procedure, please refer to the Calibration function section.

Address: Base address + 28h offset

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R								()															OF	s							
W																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

Field	Description
31–16	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

Table continues on the next page ...

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

ADCx_OFS field descriptions	(continued)
-----------------------------	-------------

Field	Description
15–0 OFS	Offset Error Correction Value

32.3.9 ADC Plus-Side Gain Register (ADCx_PG)

The Plus-Side Gain Register (PG) contains the gain error correction for the plus-side input in differential mode or the overall conversion in single-ended mode. PG, a 16-bit real number in binary format, is the gain adjustment factor, with the radix point fixed between PG[15] and PG[14]. This register must be written by the user with the value described in the calibration procedure. Otherwise, the gain error specifications may not be met.

For more information regarding the calibration procedure, please refer to the Calibration function section.

Add	lress	s: Ba	ase	add	ress	8 + 2	2Ch	offs	et																							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	0																					Р	G									
w																		_														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

ADCx_PG field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 PG	Plus-Side Gain

32.3.10 ADC Minus-Side Gain Register (ADCx_MG)

The Minus-Side Gain Register (MG) contains the gain error correction for the minus-side input in differential mode. This register is ignored in single-ended mode. MG, a 16-bit real number in binary format, is the gain adjustment factor, with the radix point fixed between MG[15] and MG[14]. This register must be written by the user with the value described in the calibration procedure. Otherwise, the gain error specifications may not be met.

For more information regarding the calibration procedure, please refer to the Calibration function section.

Add	ddress: Base address + 30h offset																															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R 0																					м	G									
W																				_							_					
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

ADCx_MG field descriptions

Field	Description
	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 MG	Minus-Side Gain

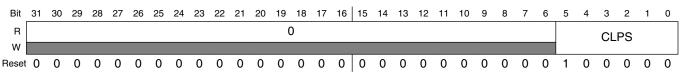
32.3.11 ADC Plus-Side General Calibration Value Register (ADCx_CLPD)

The Plus-Side General Calibration Value Registers (CLPx) contain calibration information that is generated by the calibration function. These registers contain seven calibration values of varying widths: CLP0[5:0], CLP1[6:0], CLP2[7:0], CLP3[8:0], CLP4[9:0], CLPS[5:0], and CLPD[5:0]. CLPx are automatically set when the selfcalibration sequence is done, that is, CAL is cleared. If these registers are written by the user after calibration, the linearity error specifications may not be met.

For more information regarding the calibration procedure, please refer to the Calibration function section.

Add	res	s: Ba	ase	add	ress	8 + 3	34h	offse	ət																							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R													()															CL	PD		
W																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0

ADCx_CLPD field descriptions


Field	Description
31–6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5–0 CLPD	Calibration Value

32.3.12 ADC Plus-Side General Calibration Value Register (ADCx_CLPS)

For more information, see CLPD register description.

Address: Base address + 38h offset

ADCx_CLPS field descriptions

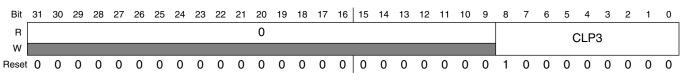
Field	Description
31–6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5–0 CLPS	Calibration Value

32.3.13 ADC Plus-Side General Calibration Value Register (ADCx_CLP4)

For more information, see CLPD register description.

Add	ress	s: Ba	ase	add	ress	6 + 3	BCh	offs	et																							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R											()															CL	P4				
w																											-					
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

ADCx_CLP4 field descriptions


Field	Description
31–10	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
9–0 CLP4	Calibration Value
	Calibration Value

32.3.14 ADC Plus-Side General Calibration Value Register (ADCx_CLP3)

For more information, see CLPD register description.

Address: Base address + 40h offset

ADCx_CLP3 field descriptions

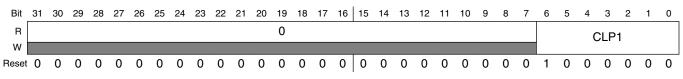
Field	Description
31–9 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
8–0 CLP3	Calibration Value

32.3.15 ADC Plus-Side General Calibration Value Register (ADCx_CLP2)

For more information, see CLPD register description.

Add	ress	s: Ba	ase	add	ress	s + 4	l4h	offs	et																							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R												()															CL	P2			
w																												-				
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

ADCx_CLP2 field descriptions


Field	Description
31–8	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
7–0 CLP2	Calibration Value
	Calibration Value

32.3.16 ADC Plus-Side General Calibration Value Register (ADCx_CLP1)

For more information, see CLPD register description.

Address: Base address + 48h offset

ADCx_CLP1 field descriptions

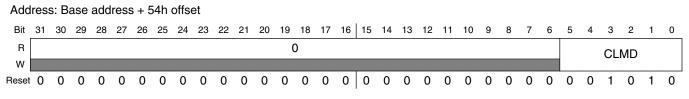
Field	Description
31–7 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
6–0 CLP1	Calibration Value

32.3.17 ADC Plus-Side General Calibration Value Register (ADCx_CLP0)

For more information, see CLPD register description.

Add	ress	s: Ba	ase	add	ress	s + 4	lCh	offs	et																							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R													()															CL	P0		
W																													_			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0

ADCx_CLP0 field descriptions


Field	Description
31–6	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
5–0 CLP0	Calibration Value
	Calibration Value

32.3.18 ADC Minus-Side General Calibration Value Register (ADCx_CLMD)

The Minus-Side General Calibration Value (CLMx) registers contain calibration information that is generated by the calibration function. These registers contain seven calibration values of varying widths: CLM0[5:0], CLM1[6:0], CLM2[7:0], CLM3[8:0], CLM4[9:0], CLMS[5:0], and CLMD[5:0]. CLMx are automatically set when the self-calibration sequence is done, that is, CAL is cleared. If these registers are written by the user after calibration, the linearity error specifications may not be met.

For more information regarding the calibration procedure, please refer to the Calibration function section.

ADCx_CLMD field descriptions

Field	Description
31–6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5–0 CLMD	Calibration Value
CEMD	Calibration Value

32.3.19 ADC Minus-Side General Calibration Value Register (ADCx_CLMS)

For more information, see CLMD register description.

Address: Base address + 58h offset

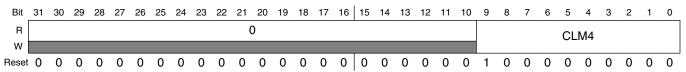
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R													()															CL	MS		
w																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0

ADCx_CLMS field descriptions

Field	Description
	This field is reserved. This read-only field is reserved and always has the value 0.

Table continues on the next page ...

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

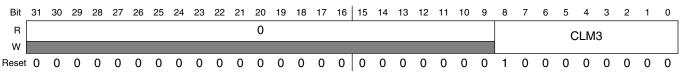

ADCx_CLMS field	descriptions	(continued)
-----------------	--------------	-------------

Field	Description
5–0 CLMS	Calibration Value
	Calibration Value

32.3.20 ADC Minus-Side General Calibration Value Register (ADCx_CLM4)

For more information, see CLMD register description.

Address: Base address + 5Ch offset


ADCx_CLM4 field descriptions

Field	Description
31–10 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
9–0 CLM4	Calibration Value Calibration Value

32.3.21 ADC Minus-Side General Calibration Value Register (ADCx_CLM3)

For more information, see CLMD register description.

Address: Base address + 60h offset

ADCx_CLM3 field descriptions


Field	Description
31–9	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
8–0 CLM3	Calibration Value
	Calibration Value

32.3.22 ADC Minus-Side General Calibration Value Register (ADCx_CLM2)

For more information, see CLMD register description.

Address: Base address + 64h offset

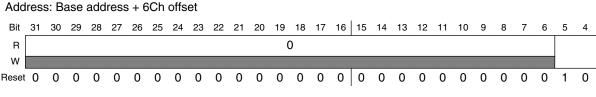
ADCx_CLM2 field descriptions

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7–0 CLM2	Calibration Value Calibration Value

32.3.23 ADC Minus-Side General Calibration Value Register (ADCx_CLM1)

For more information, see CLMD register description.

Add	ress	s: Ba	ase	add	ress	5 + 6	8h	offs	et																							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R													0															С	LM	1		
w																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0


ADCx_CLM1 field descriptions

Field	Description
31–7	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
6–0 CLM1	Calibration Value
	Calibration Value

32.3.24 ADC Minus-Side General Calibration Value Register (ADCx_CLM0)

For more information, see CLMD register description.

ADCx_CLM0 field descriptions

Field	Description
31–6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5–0 CLM0	Calibration Value Calibration Value

32.4 Functional description

The ADC module is disabled during reset, in Low-Power Stop mode, or when SC1n[ADCH] are all high; see the power management information for details. The module is idle when a conversion has completed and another conversion has not been initiated. When it is idle and the asynchronous clock output enable is disabled, or CFG2[ADACKEN]= 0, the module is in its lowest power state. The ADC can perform an analog-to-digital conversion on any of the software selectable channels. All modes perform conversion by a successive approximation algorithm.

To meet accuracy specifications, the ADC module must be calibrated using the on-chip calibration function.

See Calibration function for details on how to perform calibration.

When the conversion is completed, the result is placed in the Rn data registers. The respective SC1n[COCO] is then set and an interrupt is generated if the respective conversion complete interrupt has been enabled, or, when SC1n[AIEN]=1.

The ADC module has the capability of automatically comparing the result of a conversion with the contents of the CV1 and CV2 registers. The compare function is enabled by setting SC2[ACFE] and operates in any of the conversion modes and configurations.

CLM0

0 0 0 0

The ADC module has the capability of automatically averaging the result of multiple conversions. The hardware average function is enabled by setting SC3[AVGE] and operates in any of the conversion modes and configurations.

NOTE

For the chip specific modes of operation, see the power management information of this MCU.

32.4.1 Clock select and divide control

One of four clock sources can be selected as the clock source for the ADC module.

This clock source is then divided by a configurable value to generate the input clock ADCK, to the module. The clock is selected from one of the following sources by means of CFG1[ADICLK].

- Bus clock. This is the default selection following reset.
- Bus clock divided by two. For higher bus clock rates, this allows a maximum divideby-16 of the bus clock using CFG1[ADIV].
- ALTCLK: As defined for this MCU. See the chip configuration information. Conversions are possible using ALTCLK as the input clock source while the MCU is in Normal Stop mode.
- Asynchronous clock (ADACK): This clock is generated from a clock source within the ADC module. When the ADACK clock source is selected, it is not required to be active prior to conversion start. When it is selected and it is not active prior to a conversion start CFG2[ADACKEN]=0, ADACK is activated at the start of a conversion and deactivated when conversions are terminated. In this case, there is an associated clock startup delay each time the clock source is re-activated. To avoid the conversion time variability and latency associated with the ADACK clock startup, set CFG2[ADACKEN]=1 and wait the worst-case startup time of 5 µs prior to initiating any conversions using the ADACK clock source. Conversions are possible using ADACK as the input clock source while the MCU is in Normal Stop mode. See Power Control for more information.

Whichever clock is selected, its frequency must fall within the specified frequency range for ADCK. If the available clocks are too slow, the ADC may not perform according to specifications. If the available clocks are too fast, the clock must be divided to the appropriate frequency. This divider is specified by CFG1[ADIV] and can be divide-by 1, 2, 4, or 8.

32.4.2 Voltage reference selection

The ADC can be configured to accept one of the two voltage reference pairs as the reference voltage (V_{REFSH} and V_{REFSL}) used for conversions.

Each pair contains a positive reference that must be between the minimum Ref Voltage High and V_{DDA} , and a ground reference that must be at the same potential as V_{SSA} . The two pairs are external (V_{REFH} and V_{REFL}) and alternate (V_{ALTH} and V_{ALTL}). These voltage references are selected using SC2[REFSEL]. The alternate (V_{ALTH} and V_{ALTL}) voltage reference pair may select additional external pins or internal sources depending on MCU configuration. See the chip configuration information on the voltage references specific to this MCU.

32.4.3 Hardware trigger and channel selects

The ADC module has a selectable asynchronous hardware conversion trigger, ADHWT, that is enabled when SC2[ADTRG] is set and a hardware trigger select event, ADHWTSn, has occurred.

This source is not available on all MCUs. See the chip-specific ADC information for information on the ADHWT source and the ADHWTSn configurations specific to this MCU.

When an ADHWT source is available and hardware trigger is enabled, that is SC2[ADTRG]=1, a conversion is initiated on the rising-edge of ADHWT after a hardware trigger select event, that is, ADHWTSn, has occurred. If a conversion is in progress when a rising-edge of a trigger occurs, the rising-edge is ignored. In continuous convert configuration, only the initial rising-edge to launch continuous conversions is observed, and until conversion is aborted, the ADC continues to do conversions on the same SCn register that initiated the conversion. The hardware trigger function operates in conjunction with any of the conversion modes and configurations.

The hardware trigger select event, ADHWTSn, must be set prior to the receipt of the ADHWT signal. If these conditions are not met, the converter may ignore the trigger or use the incorrect configuration. If a hardware trigger select event is asserted during a conversion, it must stay asserted until the end of current conversion and remain set until the receipt of the ADHWT signal to trigger a new conversion. The channel and status fields selected for the conversion depend on the active trigger select signal:

- ADHWTSA active selects SC1A.
- ADHWTSn active selects SC1n.

Note

Asserting more than one hardware trigger select signal (ADHWTSn) at the same time results in unknown results. To avoid this, select only one hardware trigger select signal (ADHWTSn) prior to the next intended conversion.

When the conversion is completed, the result is placed in the Rn registers associated with the ADHWTSn received. For example:

- ADHWTSA active selects RA register
- ADHWTSn active selects Rn register

The conversion complete flag associated with the ADHWTSn received, that is, SC1n[COCO], is then set and an interrupt is generated if the respective conversion complete interrupt has been enabled, that is, SC1[AIEN]=1.

32.4.4 Conversion control

Conversions can be performed as determined by CFG1[MODE] and SC1n[DIFF] as shown in the description of CFG1[MODE].

Conversions can be initiated by a software or hardware trigger.

In addition, the ADC module can be configured for:

- Low-power operation
- Long sample time
- Continuous conversion
- Hardware average
- Automatic compare of the conversion result to a software determined compare value

32.4.4.1 Initiating conversions

A conversion is initiated:

- Following a write to SC1A, with SC1n[ADCH] not all 1's, if software triggered operation is selected, that is, when SC2[ADTRG]=0.
- Following a hardware trigger, or ADHWT event, if hardware triggered operation is selected, that is, SC2[ADTRG]=1, and a hardware trigger select event, ADHWTSn, has occurred. The channel and status fields selected depend on the active trigger select signal:
 - ADHWTSA active selects SC1A.

unctional description

- ADHWTSn active selects SC1n.
- if neither is active, the off condition is selected

Note

Selecting more than one ADHWTSn prior to a conversion completion will result in unknown results. To avoid this, select only one ADHWTSn prior to a conversion completion.

• Following the transfer of the result to the data registers when continuous conversion is enabled, that is, when SC3[ADCO] = 1.

If continuous conversions are enabled, a new conversion is automatically initiated after the completion of the current conversion. In software triggered operation, that is, when SC2[ADTRG] = 0, continuous conversions begin after SC1A is written and continue until aborted. In hardware triggered operation, that is, when SC2[ADTRG] = 1 and one ADHWTSn event has occurred, continuous conversions begin after a hardware trigger event and continue until aborted.

If hardware averaging is enabled, a new conversion is automatically initiated after the completion of the current conversion until the correct number of conversions are completed. In software triggered operation, conversions begin after SC1A is written. In hardware triggered operation, conversions begin after a hardware trigger. If continuous conversions are also enabled, a new set of conversions to be averaged are initiated following the last of the selected number of conversions.

32.4.4.2 Completing conversions

A conversion is completed when the result of the conversion is transferred into the data result registers, Rn. If the compare functions are disabled, this is indicated by setting of SC1n[COCO]. If hardware averaging is enabled, the respective SC1n[COCO] sets only if the last of the selected number of conversions is completed. If the compare function is enabled, the respective SC1n[COCO] sets and conversion result data is transferred only if the compare condition is true. If both hardware averaging and compare functions are enabled, then the respective SC1n[COCO] sets only if the last of the selected number of conversions is completed and the compare condition is true. An interrupt is generated if the respective SC1n[AIEN] is high at the time that the respective SC1n[COCO] is set.

32.4.4.3 Aborting conversions

Any conversion in progress is aborted when:

- Writing to SC1A while it is actively controlling a conversion, aborts the current conversion. In Software Trigger mode, when SC2[ADTRG]=0, a write to SC1A initiates a new conversion if SC1A[ADCH] is equal to a value other than all 1s. Writing to any of the SC1B–SC1n registers while that specific SC1B–SC1n register is actively controlling a conversion aborts the current conversion. The SC1(B-n) registers are not used for software trigger operation and therefore writes to the SC1(B-n) registers do not initiate a new conversion.
- A write to any ADC register besides the SC1A-SC1n registers occurs. This indicates that a change in mode of operation has occurred and the current conversion is therefore invalid.
- The MCU is reset or enters Low-Power Stop modes.
- The MCU enters Normal Stop mode with ADACK or Alternate Clock Sources not enabled.

When a conversion is aborted, the contents of the data registers, Rn, are not altered. The data registers continue to be the values transferred after the completion of the last successful conversion. If the conversion was aborted by a reset or Low-Power Stop modes, RA and Rn return to their reset states.

32.4.4.4 Power control

The ADC module remains in its idle state until a conversion is initiated. If ADACK is selected as the conversion clock source, but the asynchronous clock output is disabled, that is CFG2[ADACKEN]=0, the ADACK clock generator also remains in its idle state (disabled) until a conversion is initiated. If the asynchronous clock output is enabled, that is, CFG2[ADACKEN]=1, it remains active regardless of the state of the ADC or the MCU power mode.

Power consumption when the ADC is active can be reduced by setting CFG1[ADLPC]. This results in a lower maximum value for f_{ADCK} .

runctional description

32.4.4.5 Sample time and total conversion time

For short sample, that is, when CFG1[ADLSMP]=0, there is a 2-cycle adder for first conversion over the base sample time of four ADCK cycles. For high-speed conversions, that is, when CFG2[ADHSC]=1, there is an additional 2-cycle adder on any conversion. The table below summarizes sample times for the possible ADC configurations.

	ADC configuration	Sample time (ADCK cycles)												
CFG1[ADLSMP]	CFG2[ADLSTS]	CFG2[ADHSC]	First or Single	Subsequent										
0	X	0	6	4										
1	00	24	4											
1	1 01 0 16													
1	10	0	10											
1	11	0	6	;										
0	X	1	8	6										
1	00	1	2	6										
1	01	1	18	3										
1	10	1	12							12				
1	11	1	8											

The total conversion time depends upon:

- The sample time as determined by CFG1[ADLSMP] and CFG2[ADLSTS]
- The MCU bus frequency
- The conversion mode, as determined by CFG1[MODE] and SC1n[DIFF]
- The high-speed configuration, that is, CFG2[ADHSC]
- The frequency of the conversion clock, that is, f_{ADCK} .

CFG2[ADHSC] is used to configure a higher clock input frequency. This will allow faster overall conversion times. To meet internal ADC timing requirements, CFG2[ADHSC] adds additional ADCK cycles. Conversions with CFG2[ADHSC]=1 take two more ADCK cycles. CFG2[ADHSC] must be used when the ADCLK exceeds the limit for CFG2[ADHSC]=0.

After the module becomes active, sampling of the input begins.

- 1. CFG1[ADLSMP] and CFG2[ADLSTS] select between sample times based on the conversion mode that is selected.
- 2. When sampling is completed, the converter is isolated from the input channel and a successive approximation algorithm is applied to determine the digital value of the analog signal.
- 3. The result of the conversion is transferred to Rn upon completion of the conversion algorithm.

If the bus frequency is less than f_{ADCK} , precise sample time for continuous conversions cannot be guaranteed when short sample is enabled, that is, when CFG1[ADLSMP]=0.

The maximum total conversion time is determined by the clock source chosen and the divide ratio selected. The clock source is selectable by CFG1[ADICLK], and the divide ratio is specified by CFG1[ADIV].

The maximum total conversion time for all configurations is summarized in the equation below. See the following tables for the variables referenced in the equation.

ConversionTime = SFCAdder + AverageNum × (BCT + LSTAdder + HSCAdder)

Figure 32-92. Conversion time equation

CFG1[AD LSMP]	CFG2[AD ACKEN]	CFG1[ADICLK]	Single or first continuous time adder (SFCAdder)	
1	х	0x, 10	3 ADCK cycles + 5 bus clock cycles	
1	1	11	3 ADCK cycles + 5 bus clock cycles ¹	
1	0	11	5 µs + 3 ADCK cycles + 5 bus clock cycles	
0	х	0x, 10	5 ADCK cycles + 5 bus clock cycles	
0	1	11	5 ADCK cycles + 5 bus clock cycles ¹	
0	0	11	5 µs + 5 ADCK cycles + 5 bus clock cycles	

Table 32-104. Single or first continuous time adder (SFCAdder)

1. To achieve this time, CFG2[ADACKEN] must be 1 for at least 5 µs prior to the conversion is initiated.

Table 32-105. Average number factor (AverageNum)

SC3[AVGE]	SC3[AVGS]	Average number factor (AverageNum)
0	ХХ	1
1	00	4
1	01	8
1	10	16
1	11	32

Table 32-106.	Base conversion time (BCT)
---------------	----------------------------

Mode	Base conversion time (BCT)	
8b single-ended	17 ADCK cycles	
9b differential	27 ADCK cycles	
10b single-ended	20 ADCK cycles	
11b differential	30 ADCK cycles	
12b single-ended	20 ADCK cycles	
13b differential	30 ADCK cycles	

Table continues on the next page ...

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

runctional description

Mode	Base conversion time (BCT)
16b single-ended	25 ADCK cycles
16b differential	34 ADCK cycles

Table 32-106. Base conversion time (BCT) (continued)

Table 32-107. Long sample time adder (LSTAdder)

CFG1[ADLSMP]	CFG2[ADLSTS]	Long sample time adder (LSTAdder)
0	XX	0 ADCK cycles
1	00	20 ADCK cycles
1	01	12 ADCK cycles
1	10	6 ADCK cycles
1	11	2 ADCK cycles

Table 32-108. High-speed conversion time adder (HSCAdder)

CFG2[ADHSC] High-speed conversion time adder (HSCAdder)		
0	0 ADCK cycles	
1	2 ADCK cycles	

Note

The ADCK frequency must be between f_{ADCK} minimum and f_{ADCK} maximum to meet ADC specifications.

32.4.4.6 Conversion time examples

The following examples use the Figure 32-92, and the information provided in Table 32-104 through Table 32-108.

32.4.4.6.1 Typical conversion time configuration

A typical configuration for ADC conversion is:

- 10-bit mode, with the bus clock selected as the input clock source
- The input clock divide-by-1 ratio selected
- Bus frequency of 8 MHz
- Long sample time disabled
- High-speed conversion disabled

The conversion time for a single conversion is calculated by using the Figure 32-92, and the information provided in Table 32-104 through Table 32-108. The table below lists the variables of Figure 32-92.

Variable	Time
SFCAdder	5 ADCK cycles + 5 bus clock cycles
AverageNum	1
BCT	20 ADCK cycles
LSTAdder	0
HSCAdder	0

Table 32-109. Typical conversion time

The resulting conversion time is generated using the parameters listed in the preceding table. Therefore, for a bus clock and an ADCK frequency equal to 8 MHz, the resulting conversion time is $3.75 \ \mu$ s.

32.4.4.6.2 Long conversion time configuration

A configuration for long ADC conversion is:

- 16-bit differential mode with the bus clock selected as the input clock source
- The input clock divide-by-8 ratio selected
- Bus frequency of 8 MHz
- Long sample time enabled
- Configured for longest adder
- High-speed conversion disabled
- Average enabled for 32 conversions

The conversion time for this conversion is calculated by using the Figure 32-92, and the information provided in Table 32-104 through Table 32-108. The following table lists the variables of the Figure 32-92.

Variable	Time	
SFCAdder	3 ADCK cycles + 5 bus clock cycles	
AverageNum	32	
BCT	34 ADCK cycles	
LSTAdder 20 ADCK cycles		
HSCAdder 0		

Table 32-110. Typical conversion time

runctional description

The resulting conversion time is generated using the parameters listed in the preceding table. Therefore, for bus clock equal to 8 MHz and ADCK equal to 1 MHz, the resulting conversion time is 57.625 μ s, that is, AverageNum. This results in a total conversion time of 1.844 ms.

32.4.4.6.3 Short conversion time configuration

A configuration for short ADC conversion is:

- 8-bit Single-Ended mode with the bus clock selected as the input clock source
- The input clock divide-by-1 ratio selected
- Bus frequency of 20 MHz
- Long sample time disabled
- High-speed conversion enabled

The conversion time for this conversion is calculated by using the Figure 32-92, and the information provided in Table 32-104 through Table 32-108. The table below lists the variables of Figure 32-92.

Variable	Time	
SFCAdder	5 ADCK cycles + 5 bus clock cycles	
AverageNum	1	
BCT	17 ADCK cycles	
LSTAdder	0 ADCK cycles	
HSCAdder	2	

Table 32-111. Typical conversion time

The resulting conversion time is generated using the parameters listed in in the preceding table. Therefore, for bus clock and ADCK frequency equal to 20 MHz, the resulting conversion time is $1.45 \,\mu s$.

32.4.4.7 Hardware average function

The hardware average function can be enabled by setting SC3[AVGE]=1 to perform a hardware average of multiple conversions. The number of conversions is determined by the AVGS[1:0] bits, which can select 4, 8, 16, or 32 conversions to be averaged. While the hardware average function is in progress, SC2[ADACT] will be set.

After the selected input is sampled and converted, the result is placed in an accumulator from which an average is calculated once the selected number of conversions have been completed. When hardware averaging is selected, the completion of a single conversion will not set SC1n[COCO].

If the compare function is either disabled or evaluates true, after the selected number of conversions are completed, the average conversion result is transferred into the data result registers, Rn, and SC1n[COCO] is set. An ADC interrupt is generated upon the setting of SC1n[COCO] if the respective ADC interrupt is enabled, that is, SC1n[AIEN]=1.

Note

The hardware average function can perform conversions on a channel while the MCU is in Wait or Normal Stop modes. The ADC interrupt wakes the MCU when the hardware average is completed if SC1n[AIEN] is set.

32.4.5 Automatic compare function

The compare function can be configured to check whether the result is less than or greater-than-or-equal-to a single compare value, or, if the result falls within or outside a range determined by two compare values.

The compare mode is determined by SC2[ACFGT], SC2[ACREN], and the values in the compare value registers, CV1 and CV2. After the input is sampled and converted, the compare values in CV1 and CV2 are used as described in the following table. There are six Compare modes as shown in the following table.

SC2[AC FGT]	SC2[AC REN]	ADCCV1 relative to ADCCV2	Function	Compare mode description
0	0	_	Less than threshold	Compare true if the result is less than the CV1 registers.
1	0		Greater than or equal to threshold	Compare true if the result is greater than or equal to CV1 registers.
0	1	Less than or equal	Outside range, not inclusive	Compare true if the result is less than CV1 Or the result is greater than CV2.
0	1	Greater than	Inside range, not inclusive	Compare true if the result is less than CV1 And the result is greater than CV2.
1	1	Less than or equal	Inside range, inclusive	Compare true if the result is greater than or equal to CV1 And the result is less than or equal to CV2.
1	1	Greater than	Outside range, inclusive	Compare true if the result is greater than or equal to CV1 Or the result is less than or equal to CV2.

runctional description

With SC2[ACREN] =1, and if the value of CV1 is less than or equal to the value of CV2, then setting SC2[ACFGT] will select a trigger-if-inside-compare-range inclusive-of-endpoints function. Clearing SC2[ACFGT] will select a trigger-if-outside-compare-range, not-inclusive-of-endpoints function.

If CV1 is greater than CV2, setting SC2[ACFGT] will select a trigger-if-outsidecompare-range, inclusive-of-endpoints function. Clearing SC2[ACFGT] will select a trigger-if-inside-compare-range, not-inclusive-of-endpoints function.

If the condition selected evaluates true, SC1n[COCO] is set.

Upon completion of a conversion while the compare function is enabled, if the compare condition is not true, SC1n[COCO] is not set and the conversion result data will not be transferred to the result register, Rn. If the hardware averaging function is enabled, the compare function compares the averaged result to the compare values. The same compare function definitions apply. An ADC interrupt is generated when SC1n[COCO] is set and the respective ADC interrupt is enabled, that is, SC1n[AIEN]=1.

Note

The compare function can monitor the voltage on a channel while the MCU is in Wait or Normal Stop modes. The ADC interrupt wakes the MCU when the compare condition is met.

32.4.6 Calibration function

The ADC contains a self-calibration function that is required to achieve the specified accuracy.

Calibration must be run, or valid calibration values written, after any reset and before a conversion is initiated. The calibration function sets the offset calibration value, the minus-side calibration values, and the plus-side calibration values. The offset calibration value is automatically stored in the ADC offset correction register (OFS), and the plus-side and minus-side calibration values are automatically stored in the ADC plus-side and minus-side calibration registers, CLPx and CLMx. The user must configure the ADC correctly prior to calibration, and must generate the plus-side and minus-side gain calibration results and store them in the ADC plus-side gain register (PG) after the calibration function completes.

Prior to calibration, the user must configure the ADC's clock source and frequency, low power configuration, voltage reference selection, sample time, and high speed configuration according to the application's clock source availability and needs. If the

application uses the ADC in a wide variety of configurations, the configuration for which the highest accuracy is required should be selected, or multiple calibrations can be done for the different configurations. For best calibration results:

- Set hardware averaging to maximum, that is, SC3[AVGE]=1 and SC3[AVGS]=11 for an average of 32
- Set ADC clock frequency f_{ADCK} less than or equal to 4 MHz
- V_{REFH}=V_{DDA}
- Calibrate at nominal voltage and temperature

The input channel, conversion mode continuous function, compare function, resolution mode, and differential/single-ended mode are all ignored during the calibration function.

To initiate calibration, the user sets SC3[CAL] and the calibration will automatically begin if the SC2[ADTRG] is 0. If SC2[ADTRG] is 1, SC3[CAL] will not get set and SC3[CALF] will be set. While calibration is active, no ADC register can be written and no stop mode may be entered, or the calibration routine will be aborted causing SC3[CAL] to clear and SC3[CALF] to set. At the end of a calibration sequence, SC1n[COCO] will be set. SC1n[AIEN] can be used to allow an interrupt to occur at the end of a calibration sequence. At the end of the calibration routine, if SC3[CALF] is not set, the automatic calibration routine is completed successfully.

To complete calibration, the user must generate the gain calibration values using the following procedure:

- 1. Initialize or clear a 16-bit variable in RAM.
- 2. Add the plus-side calibration results CLP0, CLP1, CLP2, CLP3, CLP4, and CLPS to the variable.
- 3. Divide the variable by two.
- 4. Set the MSB of the variable.
- 5. The previous two steps can be achieved by setting the carry bit, rotating to the right through the carry bit on the high byte and again on the low byte.
- 6. Store the value in the plus-side gain calibration register PG.
- 7. Repeat the procedure for the minus-side gain calibration value.

When calibration is complete, the user may reconfigure and use the ADC as desired. A second calibration may also be performed, if desired, by clearing and again setting SC3[CAL].

runctional description

Overall, the calibration routine may take as many as 14k ADCK cycles and 100 bus cycles, depending on the results and the clock source chosen. For an 8 MHz clock source, this length amounts to about 1.7 ms. To reduce this latency, the calibration values, which are offset, plus-side and minus-side gain, and plus-side and minus-side calibration values, may be stored in flash memory after an initial calibration and recovered prior to the first ADC conversion. This method can reduce the calibration latency to 20 register store operations on all subsequent power, reset, or Low-Power Stop mode recoveries.

Further information on the calibration procedure can be found in the Calibration section of AN3949: ADC16 Calibration Procedure and Programmable Delay Block Synchronization.

32.4.7 User-defined offset function

OFS contains the user-selected or calibration-generated offset error correction value.

This register is a 2's complement, left-justified. The value in OFS is subtracted from the conversion and the result is transferred into the result registers, Rn. If the result is greater than the maximum or less than the minimum result value, it is forced to the appropriate limit for the current mode of operation.

The formatting of the OFS is different from the data result register, Rn, to preserve the resolution of the calibration value regardless of the conversion mode selected. Lower order bits are ignored in lower resolution modes. For example, in 8-bit single-ended mode, OFS[14:7] are subtracted from D[7:0]; OFS[15] indicates the sign (negative numbers are effectively added to the result) and OFS[6:0] are ignored. The same bits are used in 9-bit differential mode because OFS[15] indicates the sign bit, which maps to D[8]. For 16-bit differential mode, OFS[15:0] are directly subtracted from the conversion result data D[15:0]. In 16-bit single-ended mode, there is no field in the OFS corresponding to the least significant result D[0], so odd values, such as -1 or +1, cannot be subtracted from the result.

OFS is automatically set according to calibration requirements once the self-calibration sequence is done, that is, SC3[CAL] is cleared. The user may write to OFS to override the calibration result if desired. If the OFS is written by the user to a value that is different from the calibration value, the ADC error specifications may not be met. Storing the value generated by the calibration function in memory before overwriting with a user-specified value is recommended.

Note

There is an effective limit to the values of offset that can be set by the user. If the magnitude of the offset is too high, the results of the conversions will cap off at the limits.

The offset calibration function may be employed by the user to remove application offsets or DC bias values. OFS may be written with a number in 2's complement format and this offset will be subtracted from the result, or hardware averaged value. To add an offset, store the negative offset in 2's complement format and the effect will be an addition. An offset correction that results in an out-of-range value will be forced to the minimum or maximum value. The minimum value for single-ended conversions is 0x0000; for a differential conversion it is 0x8000.

To preserve accuracy, the calibrated offset value initially stored in OFS must be added to the user-defined offset. For applications that may change the offset repeatedly during operation, store the initial offset calibration value in flash so it can be recovered and added to any user offset adjustment value and the sum stored in OFS.

32.4.8 Temperature sensor

The ADC module includes a temperature sensor whose output is connected to one of the ADC analog channel inputs.

The following equation provides an approximate transfer function of the temperature sensor.

$$\text{Temp} = 25 - \left(\left(V_{\text{TEMP}} - V_{\text{TEMP25}}\right) \div \text{m}\right)$$

Figure 32-93. Approximate transfer function of the temperature sensor

where:

- V_{TEMP} is the voltage of the temperature sensor channel at the ambient temperature.
- V_{TEMP25} is the voltage of the temperature sensor channel at 25 °C.
- m is referred as temperature sensor slope in the device data sheet. It is the hot or cold voltage versus temperature slope in V/°C.

For temperature calculations, use the V_{TEMP25} and temperature sensor slope values from the ADC Electricals table.

runctional description

In application code, the user reads the temperature sensor channel, calculates V_{TEMP} , and compares to V_{TEMP25} . If V_{TEMP} is greater than V_{TEMP25} the cold slope value is applied in the preceding equation. If V_{TEMP} is less than V_{TEMP25} , the hot slope value is applied in the preceding equation. ADC Electricals table may only specify one temperature sensor slope value. In that case, the user could use the same slope for the calculation across the operational temperature range.

For more information on using the temperature sensor, see the application note titled *Temperature Sensor for the HCS08 Microcontroller Family* (document AN3031).

32.4.9 MCU wait mode operation

Wait mode is a lower-power consumption Standby mode from which recovery is fast because the clock sources remain active.

If a conversion is in progress when the MCU enters Wait mode, it continues until completion. Conversions can be initiated while the MCU is in Wait mode by means of the hardware trigger or if continuous conversions are enabled.

The bus clock, bus clock divided by two; and ADACK are available as conversion clock sources while in Wait mode. The use of ALTCLK as the conversion clock source in Wait is dependent on the definition of ALTCLK for this MCU. See the Chip Configuration information on ALTCLK specific to this MCU.

If the compare and hardware averaging functions are disabled, a conversion complete event sets SC1n[COCO] and generates an ADC interrupt to wake the MCU from Wait mode if the respective ADC interrupt is enabled, that is, when SC1n[AIEN]=1. If the hardware averaging function is enabled, SC1n[COCO] will set, and generate an interrupt if enabled, when the selected number of conversions are completed. If the compare function is enabled, SC1n[COCO] will set, and generate an interrupt if enabled, SC1n[COCO] will set, and generate an interrupt if enabled, only if the compare conditions are met. If a single conversion is selected and the compare trigger is not met, the ADC will return to its idle state and cannot wake the MCU from Wait mode unless a new conversion is initiated by the hardware trigger.

32.4.10 MCU Normal Stop mode operation

Stop mode is a low-power consumption Standby mode during which most or all clock sources on the MCU are disabled.

32.4.10.1 Normal Stop mode with ADACK disabled

If the asynchronous clock, ADACK, is not selected as the conversion clock, executing a stop instruction aborts the current conversion and places the ADC in its Idle state. The contents of the ADC registers, including Rn, are unaffected by Normal Stop mode. After exiting from Normal Stop mode, a software or hardware trigger is required to resume conversions.

32.4.10.2 Normal Stop mode with ADACK enabled

If ADACK is selected as the conversion clock, the ADC continues operation during Normal Stop mode. See the chip-specific ADC information for configuration information for this device.

If a conversion is in progress when the MCU enters Normal Stop mode, it continues until completion. Conversions can be initiated while the MCU is in Normal Stop mode by means of the hardware trigger or if continuous conversions are enabled.

If the compare and hardware averaging functions are disabled, a conversion complete event sets SC1n[COCO] and generates an ADC interrupt to wake the MCU from Normal Stop mode if the respective ADC interrupt is enabled, that is, when SC1n[AIEN]=1. The result register, Rn, will contain the data from the first completed conversion that occurred during Normal Stop mode. If the hardware averaging function is enabled, SC1n[COCO] will set, and generate an interrupt if enabled, when the selected number of conversions are completed. If the compare function is enabled, SC1n[COCO] will set, and generate an interrupt if enabled, SC1n[COCO] will set, and generate an interrupt if enabled, SC1n[COCO] will set, and generate an interrupt if enabled, SC1n[COCO] will set, and generate an interrupt if enabled, SC1n[COCO] will set, and generate an interrupt if enabled, SC1n[COCO] will set, and generate an interrupt if enabled, SC1n[COCO] will set, and generate an interrupt if enabled, SC1n[COCO] will set, and generate an interrupt if enabled, SC1n[COCO] will set, and generate an interrupt if enabled, SC1n[COCO] will set, and generate an interrupt if enabled, SC1n[COCO] will set, and generate an interrupt if enabled, SC1n[COCO] will set, and generate an interrupt if enabled, only if the compare conditions are met. If a single conversion is selected and the compare is not true, the ADC will return to its idle state and cannot wake the MCU from Normal Stop mode unless a new conversion is initiated by another hardware trigger.

32.4.11 MCU Low-Power Stop mode operation

The ADC module is automatically disabled when the MCU enters Low-Power Stop mode.

All module registers contain their reset values following exit from Low-Power Stop mode. Therefore, the module must be re-enabled and re-configured following exit from Low-Power Stop mode.

NOTE

For the chip specific modes of operation, see the power management information for the device.

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

32.5 Initialization information

This section gives an example that provides some basic direction on how to initialize and configure the ADC module.

The user can configure the module for 16-bit, 12-bit, 10-bit, or 8-bit single-ended resolution or 16-bit, 13-bit, 11-bit, or 9-bit differential resolution, single or continuous conversion, and a polled or interrupt approach, among many other options. For information used in this example, refer to Table 32-107, Table 32-108, and Table 32-109.

Note

Hexadecimal values are designated by a preceding 0x, binary values designated by a preceding %, and decimal values have no preceding character.

32.5.1 ADC module initialization example

32.5.1.1 Initialization sequence

Before the ADC module can be used to complete conversions, an initialization procedure must be performed. A typical sequence is:

- 1. Calibrate the ADC by following the calibration instructions in Calibration function.
- 2. Update CFG to select the input clock source and the divide ratio used to generate ADCK. This register is also used for selecting sample time and low-power configuration.
- 3. Update SC2 to select the conversion trigger, hardware or software, and compare function options, if enabled.
- 4. Update SC3 to select whether conversions will be continuous or completed only once (ADCO) and whether to perform hardware averaging.
- 5. Update SC1:SC1n registers to select whether conversions will be single-ended or differential and to enable or disable conversion complete interrupts. Also, select the input channel which can be used to perform conversions.

32.5.1.2 Pseudo-code example

In this example, the ADC module is set up with interrupts enabled to perform a single 10bit conversion at low-power with a long sample time on input channel 1, where ADCK is derived from the bus clock divided by 1.

CFG1 = 0x98 (%10011000)

Bit 7 ADLPC 1 Configures for low power, lowers maximum clock speed. Bit 6:5 ADIV 00 Sets the ADCK to the input clock ÷ 1. ADLSMP 1 Configures for long sample time. Bit 4 Bit 3:2 MODE 10 Selects the single-ended 10-bit conversion, differential 11bit conversion. ADICLK 00 Bit 1:0 Selects the bus clock.

SC2 = 0x00 (%00000000)

Bit 7 ADACT 0 Flag indicates if a conversion is in progress. Bit 6 ADTRG Software trigger selected. 0 Compare function disabled. Bit 5 ACFE 0 Bit 4 ACFGT 0 Not used in this example. Bit 3 ACREN 0 Compare range disabled. Bit 2 DMAEN 0 DMA request disabled. Bit 1:0 REFSEL 00 Selects default voltage reference pin pair (External pins VREFH

```
and V_{\text{REFL}}) .
```

SC1A = 0x41 (%01000001)

Bit 7COCO0Read-only flag which is set when a conversion completes.Bit 6AIEN1Conversion complete interrupt enabled.Bit 5DIFF 0Single-ended conversion selected.Bit 4:0 ADCH00001Input channel 1selected as ADC input channel.

$\mathbf{RA} = \mathbf{0}\mathbf{x}\mathbf{x}\mathbf{x}$

Holds results of conversion.

CV = 0xxx

Holds compare value when compare function enabled.

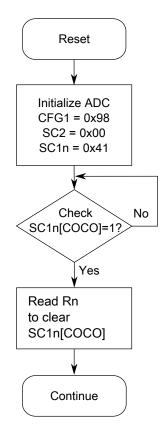


Figure 32-94. Initialization flowchart example

32.6 Application information

The ADC has been designed to be integrated into a microcontroller for use in embedded control applications requiring an ADC.

For guidance on selecting optimum external component values and converter parameters see AN4373: Cookbook for SAR ADC Measurements.

32.6.1 External pins and routing

32.6.1.1 Analog supply pins

Depending on the device, the analog power and ground supplies, V_{DDA} and V_{SSA} , of the ADC module are available as:

- V_{DDA} and V_{SSA} available as separate pins—When available on a separate pin, both V_{DDA} and V_{SSA} must be connected to the same voltage potential as their corresponding MCU digital supply, V_{DD} and V_{SS} , and must be routed carefully for maximum noise immunity and bypass capacitors placed as near as possible to the package.
- V_{SSA} is shared on the same pin as the MCU digital V_{SS} .
- V_{SSA} and V_{DDA} are shared with the MCU digital supply pins—In these cases, there are separate pads for the analog supplies bonded to the same pin as the corresponding digital supply so that some degree of isolation between the supplies is maintained.

If separate power supplies are used for analog and digital power, the ground connection between these supplies must be at the V_{SSA} pin. This must be the only ground connection between these supplies, if possible. V_{SSA} makes a good single point ground location.

32.6.1.2 Analog voltage reference pins

In addition to the analog supplies, the ADC module has connections for two reference voltage inputs used by the converter:

- V_{REFSH} is the high reference voltage for the converter.
- V_{REFSL} is the low reference voltage for the converter.

The ADC can be configured to accept one of two voltage reference pairs for V_{REFSH} and V_{REFSL} . Each pair contains a positive reference and a ground reference. The two pairs are external, V_{REFH} and V_{REFL} and alternate, V_{ALTH} and V_{ALTL} . These voltage references are selected using SC2[REFSEL]. The alternate voltage reference pair, V_{ALTH} and V_{ALTL} , may select additional external pins or internal sources based on MCU configuration. See the chip configuration information on the voltage references specific to this MCU.

In some packages, the external or alternate pairs are connected in the package to V_{DDA} and V_{SSA} , respectively. One of these positive references may be shared on the same pin as V_{DDA} on some devices. One of these ground references may be shared on the same pin as V_{SSA} on some devices.

If externally available, the positive reference may be connected to the same potential as V_{DDA} or may be driven by an external source to a level between the minimum Ref Voltage High and the V_{DDA} potential. The positive reference must never exceed V_{DDA} . If externally available, the ground reference must be connected to the same voltage potential as V_{SSA} . The voltage reference pairs must be routed carefully for maximum noise immunity and bypass capacitors placed as near as possible to the package.

AC current in the form of current spikes required to supply charge to the capacitor array at each successive approximation step is drawn through the V_{REFH} and V_{REFL} loop. The best external component to meet this current demand is a 0.1 µF capacitor with good

Application information

high-frequency characteristics. This capacitor is connected between V_{REFH} and V_{REFL} and must be placed as near as possible to the package pins. Resistance in the path is not recommended because the current causes a voltage drop that could result in conversion errors. Inductance in this path must be minimum, that is, parasitic only.

32.6.1.3 Analog input pins

The external analog inputs are typically shared with digital I/O pins on MCU devices.

Empirical data shows that capacitors on the analog inputs improve performance in the presence of noise or when the source impedance is high. Use of 0.01 μ F capacitors with good high-frequency characteristics is sufficient. These capacitors are not necessary in all cases, but when used, they must be placed as near as possible to the package pins and be referenced to V_{SSA}.

For proper conversion, the input voltage must fall between V_{REFH} and V_{REFL} . If the input is equal to or exceeds V_{REFH} , the converter circuit converts the signal to 0xFFF, which is full scale 12-bit representation, 0x3FF, which is full scale 10-bit representation, or 0xFF, which is full scale 8-bit representation. If the input is equal to or less than V_{REFL} , the converter circuit converts it to 0x000. Input voltages between V_{REFH} and V_{REFL} are straight-line linear conversions. There is a brief current associated with V_{REFL} when the sampling capacitor is charging.

For minimal loss of accuracy due to current injection, pins adjacent to the analog input pins must not be transitioning during conversions.

32.6.2 Sources of error

32.6.2.1 Sampling error

For proper conversions, the input must be sampled long enough to achieve the proper accuracy.

RAS + RADIN =SC / (FMAX * NUMTAU * CADIN)

Figure 32-95. Sampling equation

Where:

RAS = External analog source resistance

SC = Number of ADCK cycles used during sample window

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

CADIN = Internal ADC input capacitance

NUMTAU = $-\ln(LSBERR / 2^N)$

LSBERR = value of acceptable sampling error in LSBs

N = 8 in 8-bit mode, 10 in 10-bit mode, 12 in 12-bit mode or 16 in 16-bit mode

Higher source resistances or higher-accuracy sampling is possible by setting CFG1[ADLSMP] and changing CFG2[ADLSTS] to increase the sample window, or decreasing ADCK frequency to increase sample time.

32.6.2.2 Pin leakage error

Leakage on the I/O pins can cause conversion error if the external analog source resistance, R_{AS} , is high. If this error cannot be tolerated by the application, keep R_{AS} lower than $V_{REFH} / (4 \times I_{LEAK} \times 2^N)$ for less than 1/4 LSB leakage error, where N = 8 in 8-bit mode, 10 in 10-bit mode, 12 in 12-bit mode, or 16 in 16-bit mode.

32.6.2.3 Noise-induced errors

System noise that occurs during the sample or conversion process can affect the accuracy of the conversion. The ADC accuracy numbers are guaranteed as specified only if the following conditions are met:

- There is a 0.1 μ F low-ESR capacitor from V_{REFH} to V_{REFL}.
- There is a 0.1 μ F low-ESR capacitor from V_{DDA} to V_{SSA}.
- If inductive isolation is used from the primary supply, an additional 1 μ F capacitor is placed from V_{DDA} to V_{SSA}.
- V_{SSA} , and V_{REFL} , if connected, is connected to V_{SS} at a quiet point in the ground plane.
- Operate the MCU in Wait or Normal Stop mode before initiating (hardware-triggered conversions) or immediately after initiating (hardware- or software-triggered conversions) the ADC conversion.

Application information

- For software triggered conversions, immediately follow the write to SC1 with a Wait instruction or Stop instruction.
- For Normal Stop mode operation, select ADACK as the clock source. Operation in Normal Stop reduces V_{DD} noise but increases effective conversion time due to stop recovery.
- There is no I/O switching, input or output, on the MCU during the conversion.

There are some situations where external system activity causes radiated or conducted noise emissions or excessive V_{DD} noise is coupled into the ADC. In these situations, or when the MCU cannot be placed in Wait or Normal Stop mode, or I/O activity cannot be halted, the following actions may reduce the effect of noise on the accuracy:

- Place a 0.01 μ F capacitor (C_{AS}) on the selected input channel to V_{REFL} or V_{SSA}. This improves noise issues, but affects the sample rate based on the external analog source resistance.
- Average the result by converting the analog input many times in succession and dividing the sum of the results. Four samples are required to eliminate the effect of a 1 LSB, one-time error.
- Reduce the effect of synchronous noise by operating off the asynchronous clock, that is, ADACK, and averaging. Noise that is synchronous to ADCK cannot be averaged out.

32.6.2.4 Code width and quantization error

The ADC quantizes the ideal straight-line transfer function into 65536 steps in the 16-bit mode.. Each step ideally has the same height, that is, 1 code, and width. The width is defined as the delta between the transition points to one code and the next. The ideal code width for an N-bit converter, where N can be 16, 12, 10, or 8, defined as 1 LSB, is:

$$1LSB=(V_{REFH})/2^{N}$$

Figure 32-96. Ideal code width for an N-bit converter

There is an inherent quantization error due to the digitization of the result. For 8-bit, 10bit, or 12-bit conversions, the code transitions when the voltage is at the midpoint between the points where the straight line transfer function is exactly represented by the actual transfer function. Therefore, the quantization error will be $\pm 1/2$ LSB in 8-bit, 10bit, or 12-bit modes. As a consequence, however, the code width of the first (0x000) conversion is only 1/2 LSB and the code width of the last (0xFF or 0x3FF) is 1.5 LSB.

For 16-bit conversions, the code transitions only after the full code width is present, so the quantization error is -1 LSB to 0 LSB and the code width of each step is 1 LSB.

32.6.2.5 Linearity errors

The ADC may also exhibit non-linearity of several forms. Every effort has been made to reduce these errors, but the system designers must be aware of these errors because they affect overall accuracy:

- Zero-scale error (E_{ZS}), sometimes called offset: This error is defined as the difference between the actual code width of the first conversion and the ideal code width. This is 1/2 LSB in 8-bit, 10-bit, or 12-bit modes and 1 LSB in 16-bit mode. If the first conversion is 0x001, the difference between the actual 0x001 code width and its ideal (1 LSB) is used.
- Full-scale error (E_{FS}) : This error is defined as the difference between the actual code width of the last conversion and the ideal code width. This is 1.5 LSB in 8-bit, 10-bit, or 12-bit modes and 1 LSB in 16-bit mode. If the last conversion is 0x3FE, the difference between the actual 0x3FE code width and its ideal (1 LSB) is used.
- Differential non-linearity (DNL): This error is defined as the worst-case difference between the actual code width and the ideal code width for all conversions.
- Integral non-linearity (INL): This error is defined as the highest-value or absolute value that the running sum of DNL achieves. More simply, this is the worst-case difference of the actual transition voltage to a given code and its corresponding ideal transition voltage, for all codes.
- Total unadjusted error (TUE): This error is defined as the difference between the actual transfer function and the ideal straight-line transfer function and includes all forms of error.

32.6.2.6 Code jitter, non-monotonicity, and missing codes

Analog-to-digital converters are susceptible to three special forms of error:

• Code jitter: Code jitter occurs when a given input voltage converts to one of the two values when sampled repeatedly. Ideally, when the input voltage is infinitesimally smaller than the transition voltage, the converter yields the lower code, and vice-versa. However, even small amounts of system noise can cause the converter to be indeterminate, between two codes, for a range of input voltages around the transition voltage.

Application information

This error may be reduced by repeatedly sampling the input and averaging the result. Additionally, the techniques discussed in Noise-induced errors reduces this error.

- Non-monotonicity: Non-monotonicity occurs when, except for code jitter, the converter converts to a lower code for a higher input voltage.
- Missing codes: Missing codes are those values never converted for any input value.

In 8-bit or 10-bit mode, the ADC is guaranteed to be monotonic and have no missing codes.

Chapter 33 Comparator (CMP)

33.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The comparator (CMP) module provides a circuit for comparing two analog input voltages. The comparator circuit is designed to operate across the full range of the supply voltage, known as rail-to-rail operation.

The Analog MUX (ANMUX) provides a circuit for selecting an analog input signal from eight channels. One signal is provided by the 6-bit digital-to-analog converter (DAC). The mux circuit is designed to operate across the full range of the supply voltage.

The 6-bit DAC is 64-tap resistor ladder network which provides a selectable voltage reference for applications where voltage reference is needed. The 64-tap resistor ladder network divides the supply reference V_{in} into 64 voltage levels. A 6-bit digital signal input selects the output voltage level, which varies from V_{in} to $V_{in}/64$. V_{in} can be selected from two voltage sources, V_{in1} and V_{in2} . The 6-bit DAC from a comparator is available as an on-chip internal signal only and is not available externally to a pin.

33.1.1 CMP features

The CMP has the following features:

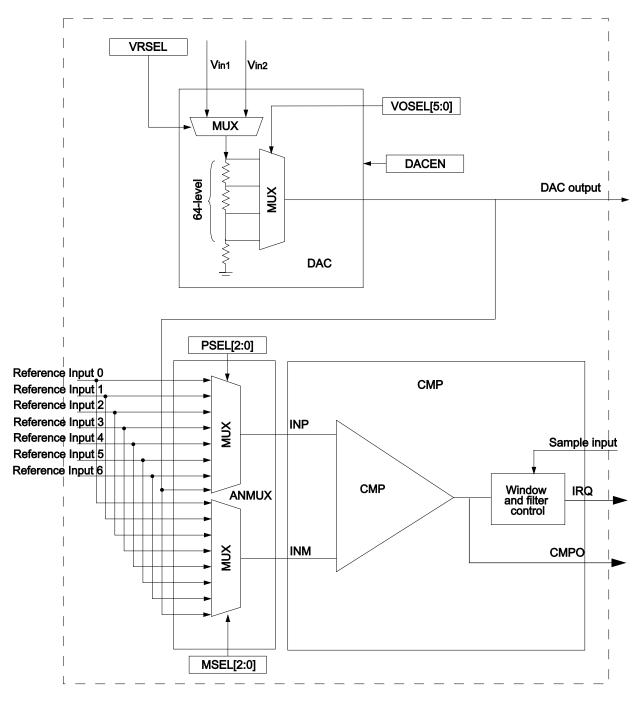
- Operational over the entire supply range
- Inputs may range from rail to rail
- Programmable hysteresis control

nuroduction

- Selectable interrupt on rising-edge, falling-edge, or both rising or falling edges of the comparator output
- Selectable inversion on comparator output
- Capability to produce a wide range of outputs such as:
 - Sampled
 - Windowed, which is ideal for certain PWM zero-crossing-detection applications
 - Digitally filtered:
 - Filter can be bypassed
 - Can be clocked via external SAMPLE signal or scaled bus clock
- External hysteresis can be used at the same time that the output filter is used for internal functions
- Two software selectable performance levels:
 - Shorter propagation delay at the expense of higher power
 - Low power, with longer propagation delay
- DMA transfer support
 - A comparison event can be selected to trigger a DMA transfer
- Functional in all modes of operation
- The window and filter functions are not available in the following modes:
 - Stop
 - VLPS

33.1.2 6-bit DAC key features

- 6-bit resolution
- Selectable supply reference source
- Power Down mode to conserve power when not in use
- Option to route the output to internal comparator input


33.1.3 ANMUX key features


- Two 8-to-1 channel mux
- Operational over the entire supply range

33.1.4 CMP, DAC and ANMUX diagram

The following figure shows the block diagram for the High-Speed Comparator, DAC, and ANMUX modules.

33.1.5 CMP block diagram

The following figure shows the block diagram for the CMP module.

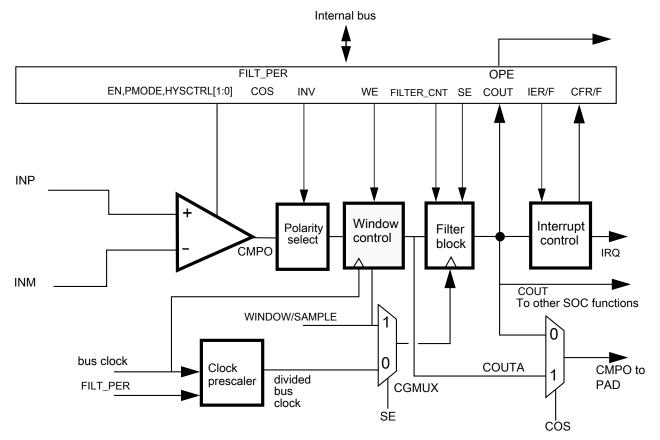


Figure 33-2. Comparator module block diagram

In the CMP block diagram:

- The Window Control block is bypassed when CR1[WE] = 0
- If CR1[WE] = 1, the comparator output will be sampled on every bus clock when WINDOW=1 to generate COUTA. Sampling does NOT occur when WINDOW = 0.
- The Filter block is bypassed when not in use.
- The Filter block acts as a simple sampler if the filter is bypassed and CR0[FILTER_CNT] is set to 0x01.
- The Filter block filters based on multiple samples when the filter is bypassed and CR0[FILTER_CNT] is set greater than 0x01.

- If CR1[SE] = 1, the external SAMPLE input is used as sampling clock
- If CR1[SE] = 0, the divided bus clock is used as sampling clock
- If enabled, the Filter block will incur up to one bus clock additional latency penalty on COUT due to the fact that COUT, which is crossing clock domain boundaries, must be resynchronized to the bus clock.
- CR1[WE] and CR1[SE] are mutually exclusive.

33.2 Memory map/register definitions

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4007_3000	CMP Control Register 0 (CMP0_CR0)	8	R/W	00h	33.2.1/619
4007_3001	CMP Control Register 1 (CMP0_CR1)	8	R/W	00h	33.2.2/620
4007_3002	CMP Filter Period Register (CMP0_FPR)	8	R/W	00h	33.2.3/622
4007_3003	CMP Status and Control Register (CMP0_SCR)	8	R/W	00h	33.2.4/622
4007_3004	DAC Control Register (CMP0_DACCR)	8	R/W	00h	33.2.5/623
4007_3005	MUX Control Register (CMP0_MUXCR)	8	R/W	00h	33.2.6/624
4007_3008	CMP Control Register 0 (CMP1_CR0)	8	R/W	00h	33.2.1/619
4007_3009	CMP Control Register 1 (CMP1_CR1)	8	R/W	00h	33.2.2/620
4007_300A	CMP Filter Period Register (CMP1_FPR)	8	R/W	00h	33.2.3/622
4007_300B	CMP Status and Control Register (CMP1_SCR)	8	R/W	00h	33.2.4/622
4007_300C	DAC Control Register (CMP1_DACCR)	8	R/W	00h	33.2.5/623
4007_300D	MUX Control Register (CMP1_MUXCR)	8	R/W	00h	33.2.6/624

CMP memory map

33.2.1 CMP Control Register 0 (CMPx_CR0)

Address: Base address + 0h offset

Bit	7	6	5	4	3	2	1	0
Read	0	FILTER_CNT			0	0	HYS	TCTR
Write								
Reset	0	0	0	0	0	0	0	0

CMPx_CR0 field descriptions

Field	Description				
7	This field is reserved.				
Reserved	This read-only field is reserved and always has the value 0.				

Table continues on the next page...

Field	Description					
6–4 FILTER_CNT	Filter Sample Count					
	Represents the number of consecutive samples that must agree prior to the comparator ouput filter accepting a new output state. For information regarding filter programming and latency, see the Functional description.					
	000 Filter is disabled. If SE = 1, then COUT is a logic 0. This is not a legal state, and is not recommended. If SE = 0, COUT = COUTA.					
	001 One sample must agree. The comparator output is simply sampled.					
	010 2 consecutive samples must agree.					
	011 3 consecutive samples must agree.					
	100 4 consecutive samples must agree.					
	101 5 consecutive samples must agree.					
	110 6 consecutive samples must agree.					
	111 7 consecutive samples must agree.					
3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.					
2	This field is reserved.					
Reserved	This read-only field is reserved and always has the value 0.					
1–0 HYSTCTR	Comparator hard block hysteresis control					
	Defines the programmable hysteresis level. The hysteresis values associated with each level are device- specific. See the Data Sheet of the device for the exact values.					
	00 Level 0					
	01 Level 1					
	10 Level 2					
	11 Level 3					

CMPx_CR0 field descriptions (continued)

33.2.2 CMP Control Register 1 (CMPx_CR1)

Address: Base address + 1h offset

Bit	7	6	5	4	3	2	1	0
Read Write	SE	WE	TRIGM	PMODE	INV	COS	OPE	EN
Reset	0	0	0	0	0	0	0	0

CMPx_CR1 field descriptions

Field	Description
7 SE	Sample Enable At any given time, either SE or WE can be set. It is mandatory request to not set SE and WE both at a
	given time.0 Sampling mode is not selected.1 Sampling mode is selected.

Table continues on the next page ...

CMPx_CR1 field descriptions (continued)

Field	Description
6	Windowing Enable
WE	At any given time, either SE or WE can be set. It is mandatory request to not set SE and WE both at a given time.
	0 Windowing mode is not selected.
	1 Windowing mode is selected.
5	Trigger Mode Enable
TRIGM	CMP and DAC are configured to CMP Trigger mode when CMP_CR1[TRIGM] is set to 1. In addition, the CMP should be enabled. If the DAC is to be used as a reference to the CMP, it should also be enabled.
	CMP Trigger mode depends on an external timer resource to periodically enable the CMP and 6-bit DAC in order to generate a triggered compare.
	Upon setting TRIGM, the CMP and DAC are placed in a standby state until an external timer resource trigger is received.
	See the chip configuration for details about the external timer resource.
	0 Trigger mode is disabled.
	1 Trigger mode is enabled.
4 PMODE	Power Mode Select
PMODE	See the electrical specifications table in the device Data Sheet for details.
	0 Low-Speed (LS) Comparison mode selected. In this mode, CMP has slower output propagation delay and lower current consumption.
	1 High-Speed (HS) Comparison mode selected. In this mode, CMP has faster output propagation delay and higher current consumption.
3 INV	Comparator INVERT
	Allows selection of the polarity of the analog comparator function. It is also driven to the COUT output, on both the device pin and as SCR[COUT], when OPE=0.
	0 Does not invert the comparator output.
	1 Inverts the comparator output.
2	Comparator Output Select
COS	0 Set the filtered comparator output (CMPO) to equal COUT.
	1 Set the unfiltered comparator output (CMPO) to equal COUTA.
1 OPE	Comparator Output Pin Enable
OFE	0 CMPO is not available on the associated CMPO output pin. If the comparator does not own the pin, this field has no effect.
	¹ CMPO is available on the associated CMPO output pin.
	The comparator output (CMPO) is driven out on the associated CMPO output pin if the comparator owns the pin. If the comparator does not own the field, this bit has no effect.
0	Comparator Module Enable
EN	Enables the Analog Comparator module. When the module is not enabled, it remains in the off state, and consumes no power. When the user selects the same input from analog mux to the positive and negative port, the comparator is disabled automatically.

Table continues on the next page ...

memory map/register definitions

CMPx_CR1 field descriptions (continued)

Field	Description						
	0 Analog Comparator is disabled.						
	1 Analog Comparator is enabled.						

33.2.3 CMP Filter Period Register (CMPx_FPR)

Address: Base address + 2h offset

Bit	7	6	5	4	3	2	1	0
Read Write				FILT_	_PER			
Reset	0	0	0	0	0	0	0	0

CMPx_FPR field descriptions

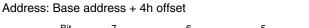
Field	Description
7–0 FILT_PER	Filter Sample Period Specifies the sampling period, in bus clock cycles, of the comparator output filter, when CR1[SE]=0. Setting FILT_PER to 0x0 disables the filter. Filter programming and latency details appear in the Functional description. This field has no effect when CR1[SE]=1. In that case, the external SAMPLE signal is used to determine the sampling period.

33.2.4 CMP Status and Control Register (CMPx_SCR)

Address: Base	Address: Base address + 3h offset							
Bit	7	6	5	4	3	2	1	0
Read	0	DMAEN	0	IER	IEF	CFR	CFF	COUT
Write		DIMALIN		1611	161	w1c	w1c	
Reset	0	0	0	0	0	0	0	0

CMPx_SCR field descriptions

Field	Description
7 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
6 DMAEN	DMA Enable Control Enables the DMA transfer triggered from the CMP module. When this field is set, a DMA request is asserted when CFR or CFF is set.
	0 DMA is disabled.1 DMA is enabled.


Table continues on the next page ...

CMPx_SCR field descriptions (continued)

Field	Description
5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
4 IER	Comparator Interrupt Enable Rising Enables the CFR interrupt from the CMP. When this field is set, an interrupt will be asserted when CFR is set.
	0 Interrupt is disabled.1 Interrupt is enabled.
3 IEF	Comparator Interrupt Enable Falling Enables the CFF interrupt from the CMP. When this field is set, an interrupt will be asserted when CFF is set.
	0 Interrupt is disabled.1 Interrupt is enabled.
2 CFR	 Analog Comparator Flag Rising Detects a rising-edge on COUT, when set, during normal operation. CFR is cleared by writing 1 to it. During Stop modes, CFR is edge sensitive . Rising-edge on COUT has not been detected.
	1 Rising-edge on COUT has occurred.
1 CFF	Analog Comparator Flag Falling Detects a falling-edge on COUT, when set, during normal operation. CFF is cleared by writing 1 to it. During Stop modes, CFF is edge sensitive .
	 Falling-edge on COUT has not been detected. Falling-edge on COUT has occurred.
0 COUT	Analog Comparator Output Returns the current value of the Analog Comparator output, when read. The field is reset to 0 and will read as CR1[INV] when the Analog Comparator module is disabled, that is, when CR1[EN] = 0. Writes to this field are ignored.

33.2.5 DAC Control Register (CMPx_DACCR)

CMPx_DACCR field descriptions

Field	Description
7	DAC Enable
DACEN	Enables the DAC. When the DAC is disabled, it is powered down to conserve power.
	Table continues on the post page

Table continues on the next page ...

Field	Description
	0 DAC is disabled.
	1 DAC is enabled.
6 VRSEL	Supply Voltage Reference Source Select
	0 V _{in1} is selected as resistor ladder network supply reference.
	1 V _{in2} is selected as resistor ladder network supply reference.
5–0 VOSEL	DAC Output Voltage Select
VOOLL	Selects an output voltage from one of 64 distinct levels.
	DACO = $(V_{in} / 64) * (VOSEL[5:0] + 1)$, so the DACO range is from V in /64 to V in.

CMPx_DACCR field descriptions (continued)

33.2.6 MUX Control Register (CMPx_MUXCR)

Address: Base address + 5h offset

Bit	7	6	5	4	3	2	1	0
Read Write	Reserved	0		PSEL			MSEL	
Reset	0	0	0	0	0	0	0	0

CMPx_MUXCR field descriptions

Field	Description					
7 Reserved	Bit can be programmed to zero only . This field is reserved.					
6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.					
5–3 PSEL	Plus Input Mux Control Determines which input is selected for the plus input of the comparator. For INx inputs, see CMP, DAC, and ANMUX block diagrams.					
	NOTE: When an inappropriate operation selects the same input for both muxes, the comparator automatically shuts down to prevent itself from becoming a noise generator.					
	000 IN0					
	001 IN1					
	010 IN2					
	011 IN3					
	100 IN4					
	101 IN5					
	110 IN6					
	111 IN7					
2–0 MSEL	Minus Input Mux Control Determines which input is selected for the minus input of the comparator. For INx inputs, see CMP, DAC, and ANMUX block diagrams.					

Table continues on the next page ...

Field	Description
	NOTE: When an inappropriate operation selects the same input for both muxes, the comparator automatically shuts down to prevent itself from becoming a noise generator.
	000 IN0
	001 IN1
	010 IN2
	011 IN3
	100 IN4
	101 IN5
	110 IN6
	111 IN7

CMPx_MUXCR field descriptions (continued)

33.3 Functional description

The CMP module can be used to compare two analog input voltages applied to INP and INM.

CMPO is high when the non-inverting input is greater than the inverting input, and is low when the non-inverting input is less than the inverting input. This signal can be selectively inverted by setting CR1[INV] = 1.

SCR[IER] and SCR[IEF] are used to select the condition which will cause the CMP module to assert an interrupt to the processor. SCR[CFF] is set on a falling-edge and SCR[CFR] is set on rising-edge of the comparator output. The optionally filtered CMPO can be read directly through SCR[COUT].

33.3.1 CMP functional modes

There are the following main sub-blocks to the CMP module:

- The comparator itself
- The window function
- The filter function

The filter, CR0[FILTER_CNT], can be clocked from an internal or external clock source. The filter is programmable with respect to the number of samples that must agree before a change in the output is registered. In the simplest case, only one sample must agree. In this case, the filter acts as a simple sampler.

The external sample input is enabled using CR1[SE]. When set, the output of the comparator is sampled only on rising edges of the sample input.

runctional description

The "windowing mode" is enabled by setting CR1[WE]. When set, the comparator output is sampled only when WINDOW=1. This feature can be used to ignore the comparator output during time periods in which the input voltages are not valid. This is especially useful when implementing zero-crossing-detection for certain PWM applications.

The comparator filter and sampling features can be combined as shown in the following table. Individual modes are discussed below.

Mode #	CR1[EN]	CR1[WE]	CR1[SE]	CR0[FILTER_C NT]	FPR[FILT_PER]	Operation
1	0	Х	Х	Х	х	Disabled
						See the Disabled mode (# 1).
2A	1	0	0	0x00	Х	Continuous Mode
2B	1	0	0	х	0x00	See the Continuous mode (#s 2A & 2B).
ЗA	1	0	1	0x01	Х	Sampled, Non-Filtered mode
3B	1	0	0	0x01	> 0x00	See the Sampled, Non-Filtered mode (#s 3A & 3B).
4A	1	0	1	> 0x01	Х	Sampled, Filtered mode
4B	1	0	0	> 0x01	> 0x00	See the Sampled, Filtered mode (#s 4A & 4B).
5A	1	1	0	0x00	Х	Windowed mode
5B	1	1	0	x	0x00	Comparator output is sampled on every rising bus clock edge when SAMPLE=1 to generate COUTA. See the Windowed mode (#s 5A &
						5B).
6	1	1	0	0x01	0x01–0xFF	Windowed/Resampled mode Comparator output is sampled on every rising bus clock edge when SAMPLE=1 to generate COUTA, which is then resampled on an interval determined by FILT_PER to generate COUT. See the Windowed/Resampled mode (# 6)
7	1	1	0	> 0x01	0x01–0xFF	mode (# 6). Windowed/Filtered mode
,			0	> 0.001		Comparator output is sampled on every rising bus clock edge when SAMPLE=1 to generate COUTA, which is then resampled and filtered to generate COUT. See the Windowed/Filtered mode
						(#7).
All other combinations of CR1[EN], CR1[WE], CR1[SE], CR0[FILTER_CNT], and FPR[FILT_PER] are illegal.						

Table 33-22.	Comparator sample/filter controls
--------------	-----------------------------------

Chapter 33 Comparator (CMP)

For cases where a comparator is used to drive a fault input, for example, for a , it must be configured to operate in Continuous mode so that an external fault can immediately pass through the comparator to the target fault circuitry.

Note

Filtering and sampling settings must be changed only after setting CR1[SE]=0 and CR0[FILTER_CNT]=0x00. This resets the filter to a known state.

33.3.1.1 Disabled mode (# 1)

In Disabled mode, the analog comparator is non-functional and consumes no power. CMPO is 0 in this mode.

33.3.1.2 Continuous mode (#s 2A & 2B)

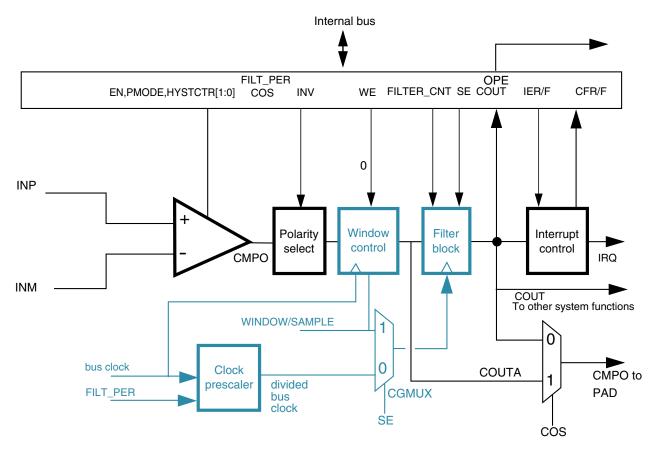


Figure 33-21. Comparator operation in Continuous mode

NOTE

See the chip configuration section for the source of sample/ window input.

The analog comparator block is powered and active. CMPO may be optionally inverted, but is not subject to external sampling or filtering. Both window control and filter blocks are completely bypassed. SCR[COUT] is updated continuously. The path from comparator input pins to output pin is operating in combinational unclocked mode. COUT and COUTA are identical.

For control configurations which result in disabling the filter block, see the Filter Block Bypass Logic diagram.

33.3.1.3 Sampled, Non-Filtered mode (#s 3A & 3B)

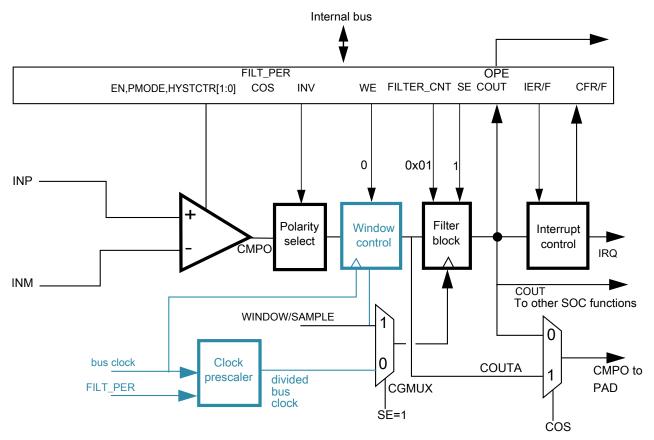


Figure 33-22. Sampled, Non-Filtered (# 3A): sampling point externally driven

In Sampled, Non-Filtered mode, the analog comparator block is powered and active. The path from analog inputs to COUTA is combinational unclocked. Windowing control is completely bypassed. COUTA is sampled whenever a rising-edge is detected on the filter block clock input.

The only difference in operation between Sampled, Non-Filtered (# 3A) and Sampled, Non-Filtered (# 3B) is in how the clock to the filter block is derived. In #3A, the clock to filter block is externally derived while in #3B, the clock to filter block is internally derived.

The comparator filter has no other function than sample/hold of the comparator output in this mode (# 3B).

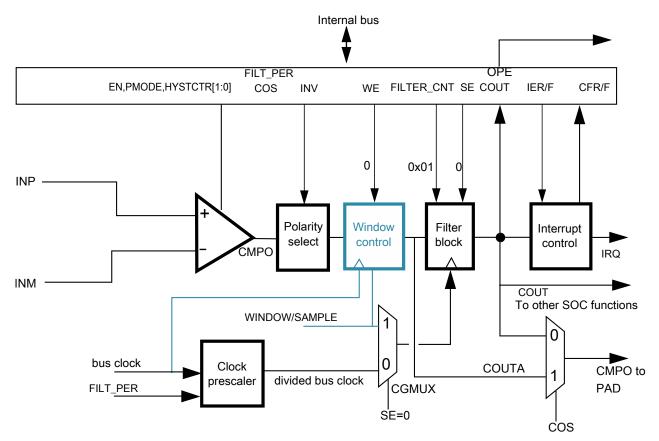


Figure 33-23. Sampled, Non-Filtered (# 3B): sampling interval internally derived

33.3.1.4 Sampled, Filtered mode (#s 4A & 4B)

In Sampled, Filtered mode, the analog comparator block is powered and active. The path from analog inputs to COUTA is combinational unclocked. Windowing control is completely bypassed. COUTA is sampled whenever a rising edge is detected on the filter block clock input.

The only difference in operation between Sampled, Non-Filtered (# 3A) and Sampled, Filtered (# 4A) is that, now, CR0[FILTER_CNT]>1, which activates filter operation.

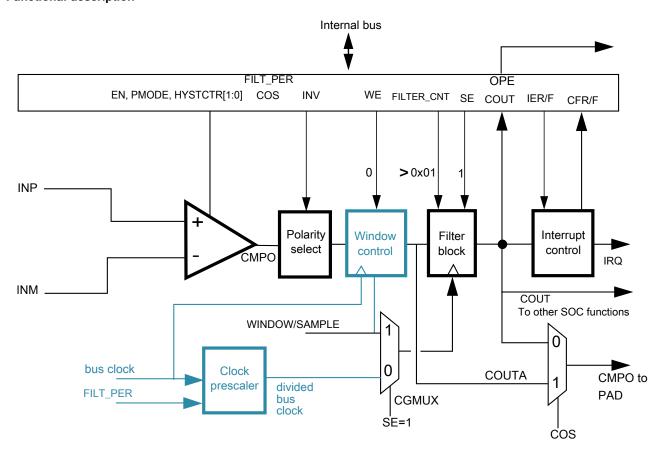


Figure 33-24. Sampled, Filtered (# 4A): sampling point externally driven

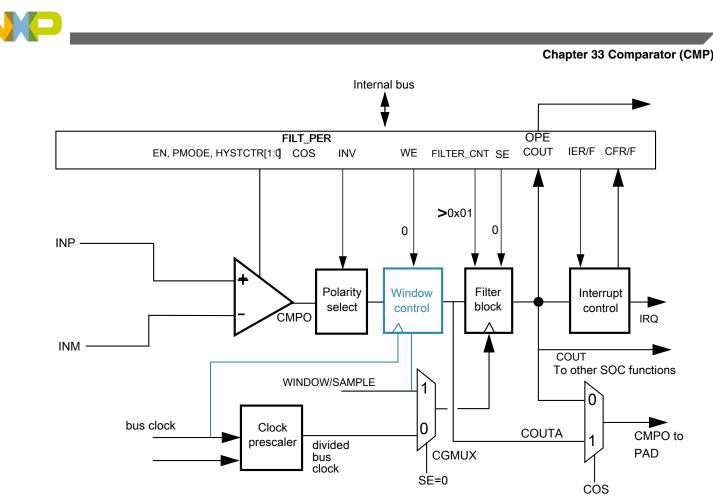
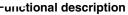
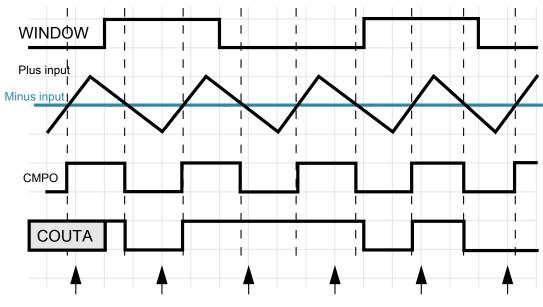


Figure 33-25. Sampled, Filtered (# 4B): sampling point internally derived

The only difference in operation between Sampled, Non-Filtered (# 3B) and Sampled, Filtered (# 4B) is that now, CR0[FILTER_CNT]>1, which activates filter operation.

33.3.1.5 Windowed mode (#s 5A & 5B)


The following figure illustrates comparator operation in the Windowed mode, ignoring latency of the analog comparator, polarity select, and window control block. It also assumes that the polarity select is set to non-inverting state.


NOTE


The analog comparator output is passed to COUTA only when the WINDOW signal is high.

In actual operation, COUTA may lag the analog inputs by up to one bus clock cycle plus the combinational path delay through the comparator and polarity select logic.

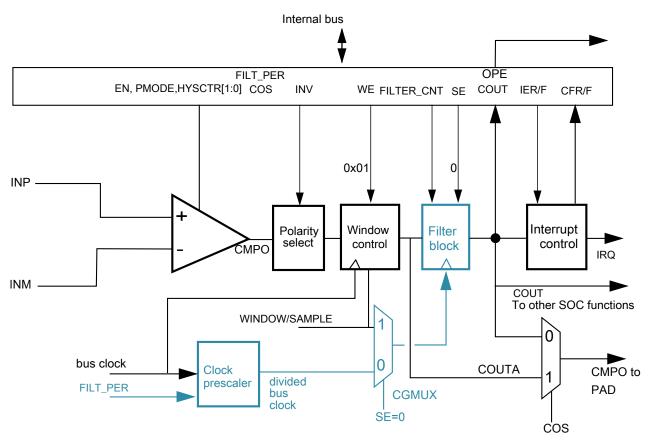


Figure 33-27. Windowed mode

For control configurations which result in disabling the filter block, see Filter Block Bypass Logic diagram.

When any windowed mode is active, COUTA is clocked by the bus clock whenever WINDOW = 1. The last latched value is held when WINDOW = 0.

33.3.1.6 Windowed/Resampled mode (# 6)

The following figure uses the same input stimulus shown in Figure 33-26, and adds resampling of COUTA to generate COUT. Samples are taken at the time points indicated by the arrows in the figure. Again, prop delays and latency are ignored for the sake of clarity.

This example was generated solely to demonstrate operation of the comparator in windowed/resampled mode, and does not reflect any specific application. Depending upon the sampling rate and window placement, COUT may not see zero-crossing events detected by the analog comparator. Sampling period and/or window placement must be carefully considered for a given application.

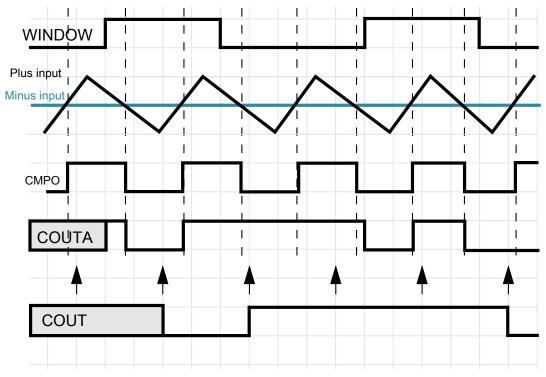


Figure 33-28. Windowed/resampled mode operation

This mode of operation results in an unfiltered string of comparator samples where the interval between the samples is determined by FPR[FILT_PER] and the bus clock rate. Configuration for this mode is virtually identical to that for the Windowed/Filtered Mode shown in the next section. The only difference is that the value of CR0[FILTER_CNT] must be 1.

33.3.1.7 Windowed/Filtered mode (#7)

This is the most complex mode of operation for the comparator block, as it uses both windowing and filtering features. It also has the highest latency of any of the modes. This can be approximated: up to 1 bus clock synchronization in the window function + ((CR0[FILTER_CNT] * FPR[FILT_PER]) + 1) * bus clock for the filter function.

When any windowed mode is active, COUTA is clocked by the bus clock whenever WINDOW = 1. The last latched value is held when WINDOW = 0.

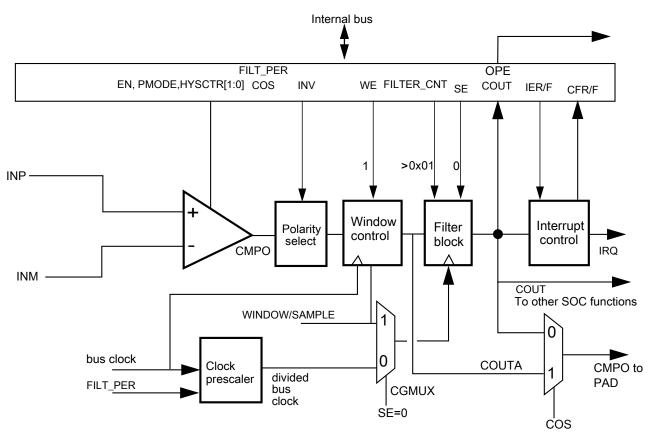


Figure 33-29. Windowed/Filtered mode

33.3.2 Power modes

33.3.2.1 Wait mode operation

During Wait and VLPW modes, the CMP, if enabled, continues to operate normally and a CMP interrupt can wake the MCU.

33.3.2.2 Stop mode operation

Depending on clock restrictions related to the MCU core or core peripherals, the MCU is brought out of stop when a compare event occurs and the corresponding interrupt is enabled. Similarly, if CR1[OPE] is enabled, the comparator output operates as in the normal operating mode and comparator output is placed onto the external pin. In Stop modes, the comparator can be operational in both:

- High-Speed (HS) Comparison mode when CR1[PMODE] = 1
- Low-Speed (LS) Comparison mode when CR1[PMODE] = 0

It is recommended to use the LS mode to minimize power consumption.

If stop is exited with a reset, all comparator registers are put into their reset state.

33.3.2.3 Background Debug Mode Operation

When the microcontroller is in active background debug mode, the CMP continues to operate normally.

33.3.3 Startup and operation

A typical startup sequence is listed here.

- The time required to stabilize COUT will be the power-on delay of the comparators plus the largest propagation delay from a selected analog source through the analog comparator, windowing function and filter. See the Data Sheets for power-on delays of the comparators. The windowing function has a maximum of one bus clock period delay. The filter delay is specified in the Low-pass filter.
- During operation, the propagation delay of the selected data paths must always be considered. It may take many bus clock cycles for COUT and SCR[CFR]/SCR[CFF] to reflect an input change or a configuration change to one of the components involved in the data path.
- When programmed for filtering modes, COUT will initially be equal to 0, until sufficient clock cycles have elapsed to fill all stages of the filter. This occurs even if COUTA is at a logic 1.

runctional description

33.3.4 Low-pass filter

The low-pass filter operates on the unfiltered and unsynchronized and optionally inverted comparator output COUTA and generates the filtered and synchronized output COUT.

Both COUTA and COUT can be configured as module outputs and are used for different purposes within the system.

Synchronization and edge detection are always used to determine status register bit values. They also apply to COUT for all sampling and windowed modes. Filtering can be performed using an internal timebase defined by FPR[FILT_PER], or using an external SAMPLE input to determine sample time.

The need for digital filtering and the amount of filtering is dependent on user requirements. Filtering can become more useful in the absence of an external hysteresis circuit. Without external hysteresis, high-frequency oscillations can be generated at COUTA when the selected INM and INP input voltages differ by less than the offset voltage of the differential comparator.

33.3.4.1 Enabling filter modes

Filter modes can be enabled by:

- Setting CR0[FILTER_CNT] > 0x01 and
- Setting FPR[FILT_PER] to a nonzero value or setting CR1[SE]=1

If using the divided bus clock to drive the filter, it will take samples of COUTA every FPR[FILT_PER] bus clock cycles.

The filter output will be at logic 0 when first initialized, and will subsequently change when all the consecutive CR0[FILTER_CNT] samples agree that the output value has changed. In other words, SCR[COUT] will be 0 for some initial period, even when COUTA is at logic 1.

Setting both CR1[SE] and FPR[FILT_PER] to 0 disables the filter and eliminates switching current associated with the filtering process.

Note

Always switch to this setting prior to making any changes in filter parameters. This resets the filter to a known state. Switching CR0[FILTER_CNT] on the fly without this intermediate step can result in unexpected behavior.

If CR1[SE]=1, the filter takes samples of COUTA on each positive transition of the sample input. The output state of the filter changes when all the consecutive CR0[FILTER_CNT] samples agree that the output value has changed.

33.3.4.2 Latency issues

The value of FPR[FILT_PER] or SAMPLE period must be set such that the sampling period is just longer than the period of the expected noise. This way a noise spike will corrupt only one sample. The value of CR0[FILTER_CNT] must be chosen to reduce the probability of noisy samples causing an incorrect transition to be recognized. The probability of an incorrect transition is defined as the probability of an incorrect sample raised to the power of CR0[FILTER_CNT].

The values of FPR[FILT_PER] or SAMPLE period and CR0[FILTER_CNT] must also be traded off against the desire for minimal latency in recognizing actual comparator output transitions. The probability of detecting an actual output change within the nominal latency is the probability of a correct sample raised to the power of CR0[FILTER_CNT].

The following table summarizes maximum latency values for the various modes of operation *in the absence of noise*. Filtering latency is restarted each time an actual output transition is masked by noise.

Mode #	CR1[EN]	CR1[WE]	CR1[SE]	CR0[FILTER _CNT]	FPR[FILT_P ER]	Operation	Maximum latency ¹
1	0	Х	Х	Х	Х	Disabled	N/A
2A	1	0	0	0x00	Х	Continuous Mode	T _{PD}
2B	1	0	0	Х	0x00		
ЗA	1	0	1	0x01	Х	Sampled, Non-Filtered mode	T _{PD} + T _{SAMPLE} + T _{per}
3B	1	0	0	0x01	> 0x00		T _{PD} + (FPR[FILT_PER] * T _{per}) + T _{per}
4A	1	0	1	> 0x01	х	Sampled, Filtered mode	$T_{PD} + (CR0[FILTER_CNT] * T_{SAMPLE}) + T_{per}$
4B	1	0	0	> 0x01	> 0x00		T _{PD} + (CR0[FILTER_CNT] * FPR[FILT_PER] x T _{per}) + T _{per}
5A	1	1	0	0x00	Х	Windowed mode	T _{PD} + T _{per}
5B	1	1	0	Х	0x00		T _{PD} + T _{per}
6	1	1	0	0x01	0x01 - 0xFF	Windowed / Resampled mode	T _{PD} + (FPR[FILT_PER] * T _{per}) + 2T _{per}
7	1	1	0	> 0x01	0x01 - 0xFF	Windowed / Filtered mode	T _{PD} + (CR0[FILTER_CNT] * FPR[FILT_PER] x T _{per}) + 2T _{per}

 Table 33-23.
 Comparator sample/filter maximum latencies

1. T_{PD} represents the intrinsic delay of the analog component plus the polarity select logic. T_{SAMPLE} is the clock period of the external sample clock. T_{per} is the period of the bus clock.

33.4 CMP interrupts

The CMP module is capable of generating an interrupt on either the rising- or fallingedge of the comparator output, or both.

The following table gives the conditions in which the interrupt request is asserted and deasserted.

When	Then
SCR[IER] and SCR[CFR] are set	The interrupt request is asserted
SCR[IEF] and SCR[CFF] are set	The interrupt request is asserted
SCR[IER] and SCR[CFR] are cleared for a rising-edge interrupt	The interrupt request is deasserted
SCR[IEF] and SCR[CFF] are cleared for a falling-edge interrupt	The interrupt request is deasserted

33.5 DMA support

Normally, the CMP generates a CPU interrupt if there is a change on the COUT. When DMA support is enabled by setting SCR[DMAEN] and the interrupt is enabled by setting SCR[IER], SCR[IEF], or both, the corresponding change on COUT forces a DMA transfer request rather than a CPU interrupt instead. When the DMA has completed the transfer, it sends a transfer completing indicator that deasserts the DMA transfer request and clears the flag to allow a subsequent change on comparator output to occur and force another DMA request.

The comparator can remain functional in STOP modes.

When DMA support is enabled by setting SCR[DMAEN] and the interrupt is enabled by setting SCR[IER], SCR[IEF], or both, the corresponding change on COUT forces a DMA transfer request to wake up the system from STOP modes. After the data transfer has finished, system will go back to STOP modes. Refer to DMA chapters in the device reference manual for the asynchronous DMA function for details.

33.6 CMP Asynchronous DMA support

The comparator can remain functional in STOP modes.

When DMA support is enabled by setting SCR[DMAEN] and the interrupt is enabled by setting SCR[IER], SCR[IEF], or both, the corresponding change on COUT forces a DMA transfer request to wake up the system from STOP modes. After the data transfer has finished, system will go back to STOP modes. Refer to DMA chapters in the device reference manual for the asynchronous DMA function for details.

33.7 Digital-to-analog converter

The figure found here shows the block diagram of the DAC module.

It contains a 64-tap resistor ladder network and a 64-to-1 multiplexer, which selects an output voltage from one of 64 distinct levels that outputs from DACO. It is controlled through the DAC Control Register (DACCR). Its supply reference source can be selected from two sources V_{in1} and V_{in2} . The module can be powered down or disabled when not in use. When in Disabled mode, DACO is connected to the analog ground.

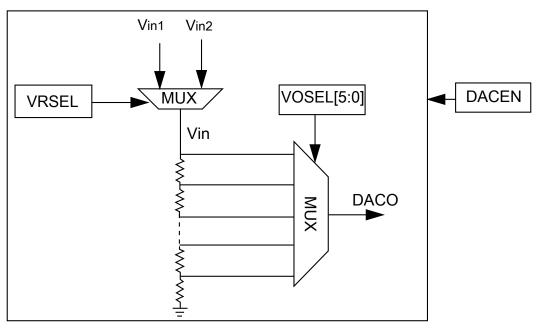


Figure 33-30. 6-bit DAC block diagram

33.8 DAC functional description

This section provides DAC functional description information.

DAC resets

33.8.1 Voltage reference source select

- V_{in1} connects to the primary voltage source as supply reference of 64 tap resistor ladder
- V_{in2} connects to an alternate voltage source

33.9 DAC resets

This module has a single reset input, corresponding to the chip-wide peripheral reset.

33.10 DAC clocks

This module has a single clock input, the bus clock.

33.11 DAC interrupts

This module has no interrupts.

33.12 CMP Trigger Mode

CMP and DAC are configured to CMP Trigger mode when CMP_CR1[TRIGM] is set to 1.

In addition, the CMP must be enabled. If the DAC is to be used as a reference to the CMP, it must also be enabled.

CMP Trigger mode depends on an external timer resource to periodically enable the CMP and 6-bit DAC in order to generate a triggered compare.

Upon setting TRIGM, the CMP and DAC are placed in a standby state until an external timer resource trigger is received.

See the chip configuration chapter for details about the external timer resource.

Chapter 34 12-bit Digital-to-Analog Converter (DAC)

34.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The 12-bit digital-to-analog converter (DAC) is a low-power, general-purpose DAC. The output of the DAC can be placed on an external pin or set as one of the inputs to the analog comparator, op-amps, or ADC.

34.2 Features

The features of the DAC module include:

- On-chip programmable reference generator output. The voltage output range is from $1/4096 V_{in}$ to V_{in} , and the step is $1/4096 V_{in}$, where V_{in} is the input voltage.
- V_{in} can be selected from two reference sources
- Static operation in Normal Stop mode
- 2-word data buffer supported with configurable watermark and multiple operation modes
- DMA support

34.3 Block diagram

The block diagram of the DAC module is as follows:

wemory map/register definition

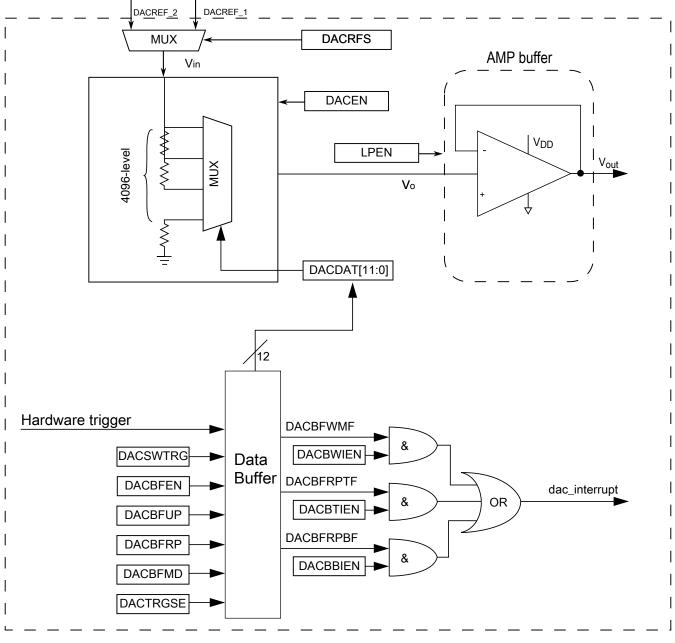


Figure 34-1. DAC block diagram

34.4 Memory map/register definition

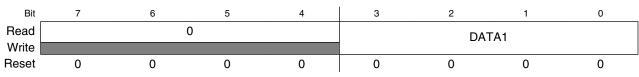
The DAC has registers to control analog comparator and programmable voltage divider to perform the digital-to-analog functions.

DAC memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4003_F000	DAC Data Low Register (DAC0_DAT0L)	8	R/W	00h	34.4.1/643
4003_F001	DAC Data High Register (DAC0_DAT0H)	8	R/W	00h	34.4.2/643
4003_F002	DAC Data Low Register (DAC0_DAT1L)	8	R/W	00h	34.4.1/643
4003_F003	DAC Data High Register (DAC0_DAT1H)	8	R/W	00h	34.4.2/643
4003_F020	DAC Status Register (DAC0_SR)	8	R/W	06h	34.4.3/644
4003_F021	DAC Control Register (DAC0_C0)	8	R/W	00h	34.4.4/645
4003_F022	DAC Control Register 1 (DAC0_C1)	8	R/W	00h	34.4.5/646
4003_F023	DAC Control Register 2 (DAC0_C2)	8	R/W	01h	34.4.6/647

34.4.1 DAC Data Low Register (DACx_DATnL)

Address: 4003_F000h base + 0h offset + (2d × i), where i=0d to 1d



DACx_DATnL field descriptions

Field	Description
7–0	DATA0
DATA0	When the DAC buffer is not enabled, DATA[11:0] controls the output voltage based on the following formula: V _{out} = V _{in} * (1 + DACDAT0[11:0])/4096
	When the DAC buffer is enabled, DATA is mapped to the 16-word buffer.

34.4.2 DAC Data High Register (DACx_DATnH)

Address: 4003_F000h base + 1h offset + (2d × i), where i=0d to 1d

DACx_DATnH field descriptions

Field	Description			
7–4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.			
3–0 DATA1	DATA1			

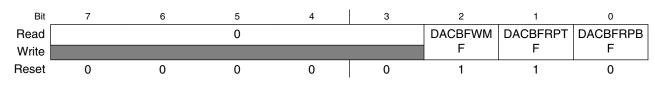
Table continues on the next page ...

DACx_DATnH field descriptions (continued)

Field	Description			
	When the DAC Buffer is not enabled, DATA[11:0] controls the output voltage based on the following formula. V _{out} = V _{in} $*$ (1 + DACDAT0[11:0])/4096			
	When the DAC buffer is enabled, DATA[11:0] is mapped to the 16-word buffer.			

34.4.3 DAC Status Register (DACx_SR)

If DMA is enabled, the flags can be cleared automatically by DMA when the DMA request is done. Writing 0 to a field clears it whereas writing 1 has no effect. After reset, DACBFRPTF is set and can be cleared by software, if needed. The flags are set only when the data buffer status is changed.


NOTE

Do not use 32/16-bit accesses to this register.

NOTE

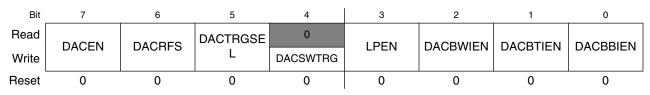
A watermark interrupt is generated if C0[DACBWIEN] is set after any write to DAC data register, since there is only 1 word depth for the buffer watermark. It is recommended not to set C0[DACBWIEN] to avoid repeated entry into the watermark interrupt.

Address: 4003_F000h base + 20h offset = 4003_F020h

DACx_SR field descriptions

Field	Description					
7–3	This field is reserved.					
Reserved	This read-only field is reserved and always has the value 0.					
2	DAC Buffer Watermark Flag					
DACBFWMF	0 The DAO by ffer read a sinter been returned and the support structure					
	0 The DAC buffer read pointer has not reached the watermark level.					
	1 The DAC buffer read pointer has reached the watermark level.					
1	DAC Buffer Read Pointer Top Position Flag					
DACBFRPTF						
	0 The DAC buffer read pointer is not zero.					
	1 The DAC buffer read pointer is zero.					
0	DAC Buffer Read Pointer Bottom Position Flag					
DACBFRPBF						
	0 The DAC buffer read pointer is not equal to C2[DACBFUP].					
	1 The DAC buffer read pointer is equal to C2[DACBFUP].					

34.4.4 DAC Control Register (DACx_C0)


NOTE

Do not use 32- or 16-bit accesses to this register.

NOTE

A watermark interrupt is generated if C0[DACBWIEN] is set after any write to DAC data register, since there is only 1 word depth for the buffer watermark. It is recommended not to set C0[DACBWIEN] to avoid repeated entry into the watermark interrupt.

Address: 4003_F000h base + 21h offset = 4003_F021h

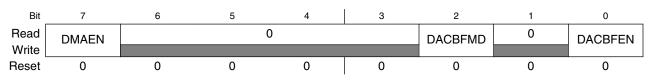
DACx_C0 field descriptions

Field	Description						
7 DACEN	DAC Enable						
	Starts the Programmable Reference Generator operation.						
	0 The DAC system is disabled.						
	1 The DAC system is enabled.						
6 DACRFS	DAC Reference Select						
	0 The DAC selects DACREF_1 as the reference voltage.						
	1 The DAC selects DACREF_2 as the reference voltage.						
5 DACTRGSEL	DAC Trigger Select						
	0 The DAC hardware trigger is selected.						
	1 The DAC software trigger is selected.						
4 DACSWTRG	DAC Software Trigger						
	Active high. This is a write-only field, which always reads 0. If DAC software trigger is selected and buffer is enabled, writing 1 to this field will advance the buffer read pointer once.						
	0 The DAC soft trigger is not valid.						
	1 The DAC soft trigger is valid.						
3 LPEN	DAC Low Power Control						
	NOTE: See the 12-bit DAC electrical characteristics of the device data sheet for details on the impact of the modes below.						

Table continues on the next page...

memory map/register definition

Field	Description					
	0 High-Power mode					
	1 Low-Power mode					
2	DAC Buffer Watermark Interrupt Enable					
DACBWIEN						
	0 The DAC buffer watermark interrupt is disabled.					
	1 The DAC buffer watermark interrupt is enabled.					
1	DAC Buffer Read Pointer Top Flag Interrupt Enable					
DACBTIEN						
	0 The DAC buffer read pointer top flag interrupt is disabled.					
	1 The DAC buffer read pointer top flag interrupt is enabled.					
0	DAC Buffer Read Pointer Bottom Flag Interrupt Enable					
DACBBIEN						
	0 The DAC buffer read pointer bottom flag interrupt is disabled.					
	1 The DAC buffer read pointer bottom flag interrupt is enabled.					


DACx_C0 field descriptions (continued)

34.4.5 DAC Control Register 1 (DACx_C1)

NOTE

Do not use 32- or 16-bit accesses to this register.

Address: 4003_F000h base + 22h offset = 4003_F022h

DACx_C1 field descriptions

Field	Description				
7 DMAEN	DMA Enable Select				
	0 DMA is disabled.				
	1 DMA is enabled. When DMA is enabled, the DMA request will be generated by original interrupts. The interrupts will not be presented on this module at the same time.				
6–3	This field is reserved.				
Reserved	This read-only field is reserved and always has the value 0.				
2 DACBFMD	DAC Buffer Work Mode Select				
	0 Normal mode				
	1 One-Time Scan mode				
1	This field is reserved.				
Reserved	This read-only field is reserved and always has the value 0.				

Table continues on the next page...

Chapter 34 12-bit Digital-to-Analog Converter (DAC)

DACx_C1 field descriptions (continued)

Field	Description
0 DACBFEN	 DAC Buffer Enable Buffer read pointer is disabled. The converted data is always the first word of the buffer. Buffer read pointer is enabled. The converted data is the word that the read pointer points to. It means converted data can be from any word of the buffer.

34.4.6 DAC Control Register 2 (DACx_C2)

Bit	7	6	5	4	3	2	1	0
Read		0		DACBFRP		0		DACBFUP
Write								
Reset	0	0	0	0	0	0	0	1

Address: 4003_F000h base + 23h offset = 4003_F023h

DACx_C2 field descriptions

Field	Description			
7–5	This field is reserved.			
Reserved	This read-only field is reserved and always has the value 0.			
4	DAC Buffer Read Pointer			
DACBFRP	Keeps the current value of the buffer read pointer.			
3–1	This field is reserved.			
Reserved	This read-only field is reserved and always has the value 0.			
0	DAC Buffer Upper Limit			
DACBFUP	Selects the upper limit of the DAC buffer. The buffer read pointer cannot exceed it.			

34.5 Functional description

The 12-bit DAC module can select one of the two reference inputs—DACREF_1 and DACREF_2 as the DAC reference voltage, V_{in} by C0[DACRFS]. See the module introduction for information on the source for DACREF_1 and DACREF_2.

When the DAC is enabled, it converts the data in DACDAT0[11:0] or the data from the DAC data buffer to a stepped analog output voltage. The output voltage range is from V_{in} to $V_{in}/4096$, and the step is $V_{in}/4096$.

runctional description

34.5.1 DAC data buffer operation

When the DAC is enabled and the buffer is not enabled, the DAC module always converts the data in DAT0 to analog output voltage.

When both the DAC and the buffer are enabled, the DAC converts the data in the data buffer to analog output voltage. The data buffer read pointer advances to the next word whenever any hardware or software trigger event occurs.

The data buffer can be configured to operate in Normal mode, One-Time Scan mode. When the buffer operation is switched from one mode to another, the read pointer does not change. The read pointer can be set to any value between 0 and C2[DACBFUP] by writing C2[DACBFRP].

34.5.1.1 DAC data buffer interrupts

There are several interrupts and associated flags that can be configured for the DAC buffer. SR[DACBFRPBF] is set when the DAC buffer read pointer reaches the DAC buffer upper limit, that is, C2[DACBFRP] = C2[DACBFUP]. SR[DACBFRPTF] is set when the DAC read pointer is equal to the start position, 0. Finally, SR[DACBFWMF] is set when the DAC buffer read pointer has reached the position defined by C1[DACBFWM]. C1[DACBFWM] can be used to generate an interrupt when the DAC buffer read pointer is between 1 to 4 words from C2[DACBFUP].

34.5.1.2 Modes of DAC data buffer operation

The following table describes the different modes of data buffer operation for the DAC module.

Modes	Description
Buffer Normal mode	This is the default mode. The buffer works as a circular buffer. The read pointer increases by one, every time the trigger occurs. When the read pointer reaches the upper limit, it goes to 0 directly in the next trigger event.
Buffer One-time Scan mode	 The read pointer increases by 1 every time the trigger occurs. When it reaches the upper limit, it stops there. If read pointer is reset to the address other than the upper limit, it will increase to the upper address and stop there again. NOTE: If the software set the read pointer to the upper limit, the read pointer will not advance in this mode.

Table 34-23. Modes of DAC data buffer operation

34.5.2 DMA operation

When DMA is enabled, DMA requests are generated instead of interrupt requests. The DMA Done signal clears the DMA request.

The status register flags are still set and are cleared automatically when the DMA completes.

34.5.3 Resets

During reset, the DAC is configured in the default mode and is disabled.

34.5.4 Low-Power mode operation

The following table shows the wait mode and the stop mode operation of the DAC module.

Modes of operation	Description
Wait mode	The DAC will operate normally, if enabled.
Stop mode	If enabled, the DAC module continues to operate in Normal Stop mode and the output voltage will hold the value before stop.
	In low-power stop modes, the DAC is fully shut down.

Table 34-24. Modes of operation

NOTE

The assignment of module modes to core modes is chipspecific. For module-to-core mode assignments, see the chapter that describes how modules are configured.

Chapter 35 FlexTimer Module (FTM)

35.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The FlexTimer module (FTM) is a two-to-eight channel timer that supports input capture, output compare, and the generation of PWM signals to control electric motor and power management applications. The FTM time reference is a 16-bit counter that can be used as an unsigned or signed counter.

35.1.1 FlexTimer philosophy

The FlexTimer is built upon a simple timer, the HCS08 Timer PWM Module – TPM, used for many years on Freescale's 8-bit microcontrollers. The FlexTimer extends the functionality to meet the demands of motor control, digital lighting solutions, and power conversion, while providing low cost and backwards compatibility with the TPM module.

Several key enhancements are made:

- Signed up counter
- Deadtime insertion hardware
- Fault control inputs
- Enhanced triggering functionality
- Initialization and polarity control

All of the features common with the TPM have fully backwards compatible register assignments. The FlexTimer can also use code on the same core platform without change to perform the same functions.

muroduction

Motor control and power conversion features have been added through a dedicated set of registers and defaults turn off all new features. The new features, such as hardware deadtime insertion, polarity, fault control, and output forcing and masking, greatly reduce loading on the execution software and are usually each controlled by a group of registers.

FlexTimer input triggers can be from comparators, ADC, or other submodules to initiate timer functions automatically. These triggers can be linked in a variety of ways during integration of the sub modules so please note the options available for used FlexTimer configuration.

More than one FlexTimers may be synchronized to provide a larger timer with their counters incrementing in unison, assuming the initialization, the input clocks, the initial and final counting values are the same in each FlexTimer.

All main user access registers are buffered to ease the load on the executing software. A number of trigger options exist to determine which registers are updated with this user defined data.

35.1.2 Features

The FTM features include:

- FTM source clock is selectable
 - Source clock can be the system clock, the fixed frequency clock, or an external clock
 - Fixed frequency clock is an additional clock input to allow the selection of an on chip clock source other than the system clock
 - Selecting external clock connects FTM clock to a chip level input pin therefore allowing to synchronize the FTM counter with an off chip clock source
- Prescaler divide-by 1, 2, 4, 8, 16, 32, 64, or 128
- 16-bit counter
 - It can be a free-running counter or a counter with initial and final value
 - The counting can be up or up-down
- Each channel can be configured for input capture, output compare, or edge-aligned PWM mode
- In Input Capture mode:

- The capture can occur on rising edges, falling edges or both edges
- An input filter can be selected for some channels
- In Output Compare mode the output signal can be set, cleared, or toggled on match
- All channels can be configured for center-aligned PWM mode
- Each pair of channels can be combined to generate a PWM signal with independent control of both edges of PWM signal
- The FTM channels can operate as pairs with equal outputs, pairs with complementary outputs, or independent channels with independent outputs
- The deadtime insertion is available for each complementary pair
- Generation of match triggers
- Software control of PWM outputs
- Up to 4 fault inputs for global fault control
- The polarity of each channel is configurable
- The generation of an interrupt per channel
- The generation of an interrupt when the counter overflows
- The generation of an interrupt when the fault condition is detected
- Synchronized loading of write buffered FTM registers
- Write protection for critical registers
- Backwards compatible with TPM
- Testing of input captures for a stuck at zero and one conditions
- Dual edge capture for pulse and period width measurement
- Quadrature decoder with input filters, relative position counting, and interrupt on position count or capture of position count on external event

35.1.3 Modes of operation

When the MCU is in an active BDM mode, the FTM temporarily suspends all counting until the MCU returns to normal user operating mode. During Stop mode, all FTM input clocks are stopped, so the FTM is effectively disabled until clocks resume. During Wait mode, the FTM continues to operate normally. If the FTM does not need to produce a

mroduction

real time reference or provide the interrupt sources needed to wake the MCU from Wait mode, the power can then be saved by disabling FTM functions before entering Wait mode.

35.1.4 Block diagram

The FTM uses one input/output (I/O) pin per channel, CHn (FTM channel (n)) where n is the channel number (0-7).

The following figure shows the FTM structure. The central component of the FTM is the 16-bit counter with programmable initial and final values and its counting can be up or up-down.

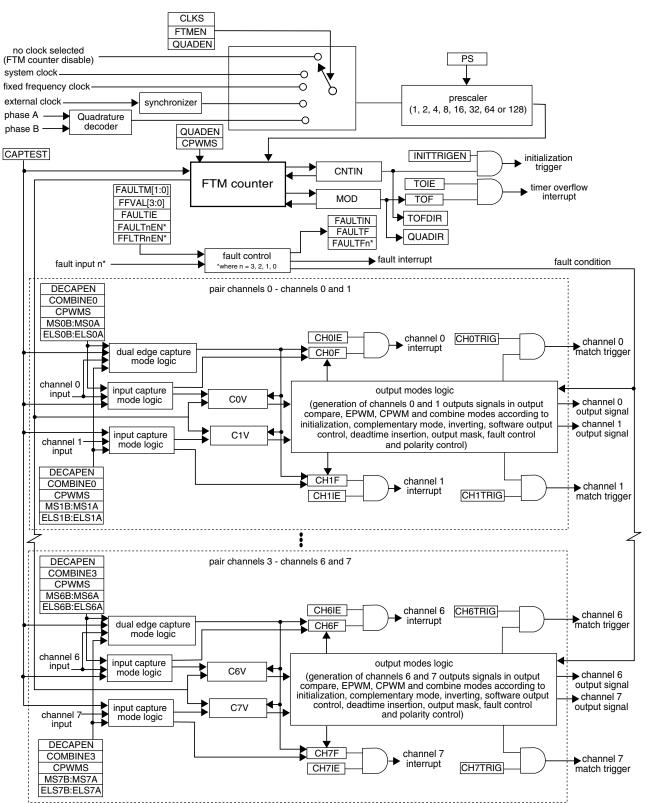


Figure 35-1. FTM block diagram

35.2 FTM signal descriptions

Table 35-1 shows the user-accessible signals for the FTM.

Signal	Description	I/O	Function
EXTCLK	External clock. FTM external clock can be selected to drive the FTM counter.	I	The external clock input signal is used as the FTM counter clock if selected by CLKS[1:0] bits in the SC register. This clock signal must not exceed 1/4 of system clock frequency. The FTM counter prescaler selection and settings are also used when an external clock is selected.
CHn	FTM channel (n), where n can be 7-0	I/O	Each FTM channel can be configured to operate either as input or output. The direction associated with each channel, input or output, is selected according to the mode assigned for that channel.
FAULTj	Fault input (j), where j can be 3-0	I	The fault input signals are used to control the CHn channel output state. If a fault is detected, the FAULTj signal is asserted and the channel output is put in a safe state. The behavior of the fault logic is defined by the FAULTM[1:0] control bits in the MODE register and FAULTEN bit in the COMBINEm register. Note that each FAULTj input may affect all channels selectively since FAULTM[1:0] and FAULTEN control bits are defined for each pair of channels. Because there are several FAULTj inputs, maximum of 4 for the FTM module, each one of these inputs is activated by the FAULTJEN bit in the FLTCTRL register.
РНА	Quadrature decoder phase A input. Input pin associated with quadrature decoder phase A.	I	The quadrature decoder phase A input is used as the Quadrature Decoder mode is selected. The phase A input signal is one of the signals that control the FTM counter increment or decrement in the Quadrature Decoder mode.
РНВ	Quadrature decoder phase B input. Input pin associated with quadrature decoder phase B.	I	The quadrature decoder phase B input is used as the Quadrature Decoder mode is selected. The phase B input signal is one of the signals that control the FTM counter increment or decrement in the Quadrature Decoder mode.

Table 35-1. FTM signal descriptions

35.3 Memory map and register definition

35.3.1 Memory map

This section presents a high-level summary of the FTM registers and how they are mapped.

The registers and bits of an unavailable function in the FTM remain in the memory map and in the reset value, but they have no active function.

Note

Do not write in the region from the CNTIN register through the PWMLOAD register when FTMEN = 0.

35.3.2 Register descriptions

Accesses to reserved addresses result in transfer errors. Registers for absent channels are considered reserved.

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4003_8000	Status And Control (FTM0_SC)	32	R/W	0000_0000h	35.3.3/662
4003_8004	Counter (FTM0_CNT)	32	R/W	0000_0000h	35.3.4/663
4003_8008	Modulo (FTM0_MOD)	32	R/W	0000_0000h	35.3.5/664
4003_800C	Channel (n) Status And Control (FTM0_C0SC)	32	R/W	0000_0000h	35.3.6/665
4003_8010	Channel (n) Value (FTM0_C0V)	32	R/W	0000_0000h	35.3.7/668
4003_8014	Channel (n) Status And Control (FTM0_C1SC)	32	R/W	0000_0000h	35.3.6/665
4003_8018	Channel (n) Value (FTM0_C1V)	32	R/W	0000_0000h	35.3.7/668
4003_801C	Channel (n) Status And Control (FTM0_C2SC)	32	R/W	0000_0000h	35.3.6/665
4003_8020	Channel (n) Value (FTM0_C2V)	32	R/W	0000_0000h	35.3.7/668
4003_8024	Channel (n) Status And Control (FTM0_C3SC)	32	R/W	0000_0000h	35.3.6/665
4003_8028	Channel (n) Value (FTM0_C3V)	32	R/W	0000_0000h	35.3.7/668
4003_802C	Channel (n) Status And Control (FTM0_C4SC)	32	R/W	0000_0000h	35.3.6/665
4003_8030	Channel (n) Value (FTM0_C4V)	32	R/W	0000_0000h	35.3.7/668
4003_8034	Channel (n) Status And Control (FTM0_C5SC)	32	R/W	0000_0000h	35.3.6/665
4003_8038	Channel (n) Value (FTM0_C5V)	32	R/W	0000_0000h	35.3.7/668
4003_803C	Channel (n) Status And Control (FTM0_C6SC)	32	R/W	0000_0000h	35.3.6/665
4003_8040	Channel (n) Value (FTM0_C6V)	32	R/W	0000_0000h	35.3.7/668
4003_8044	Channel (n) Status And Control (FTM0_C7SC)	32	R/W	0000_0000h	35.3.6/665
4003_8048	Channel (n) Value (FTM0_C7V)	32	R/W	0000_0000h	35.3.7/668
4003_804C	Counter Initial Value (FTM0_CNTIN)	32	R/W	0000_0000h	35.3.8/668
4003_8050	Capture And Compare Status (FTM0_STATUS)	32	R/W	0000_0000h	35.3.9/669
4003_8054	Features Mode Selection (FTM0_MODE)	32	R/W	0000_0004h	35.3.10/ 671
4003_8058	Synchronization (FTM0_SYNC)	32	R/W	0000_0000h	35.3.11/ 673
4003_805C	Initial State For Channels Output (FTM0_OUTINIT)	32	R/W	0000_0000h	35.3.12/ 675
4003_8060	Output Mask (FTM0_OUTMASK)	32	R/W	0000_0000h	35.3.13/ 676

FTM memory map

Table continues on the next page...

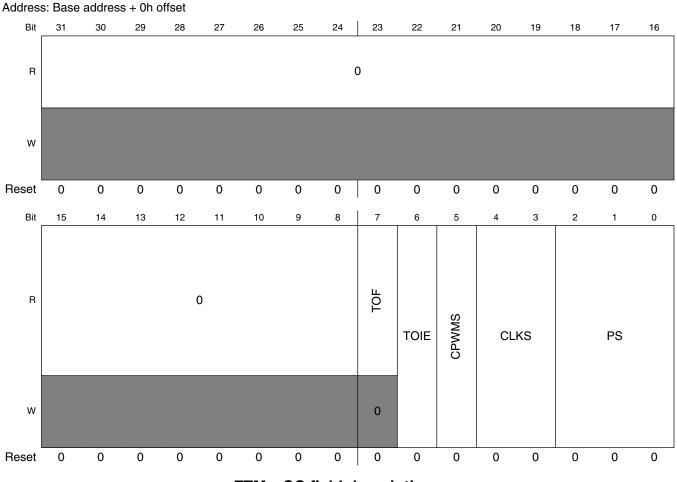
Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4003_8064	Function For Linked Channels (FTM0_COMBINE)	32	R/W	0000_0000h	35.3.14/ 678
4003_8068	Deadtime Insertion Control (FTM0_DEADTIME)	32	R/W	0000_0000h	35.3.15/ 683
4003_806C	FTM External Trigger (FTM0_EXTTRIG)	32	R/W	0000_0000h	35.3.16/ 684
4003_8070	Channels Polarity (FTM0_POL)	32	R/W	0000_0000h	35.3.17/ 686
4003_8074	Fault Mode Status (FTM0_FMS)	32	R/W	0000_0000h	35.3.18/ 688
4003_8078	Input Capture Filter Control (FTM0_FILTER)	32	R/W	0000_0000h	35.3.19/ 690
4003_807C	Fault Control (FTM0_FLTCTRL)	32	R/W	0000_0000h	35.3.20/ 691
4003_8080	Quadrature Decoder Control And Status (FTM0_QDCTRL)	32	R/W	0000_0000h	35.3.21/ 694
4003_8084	Configuration (FTM0_CONF)	32	R/W	0000_0000h	35.3.22/ 696
4003_8088	FTM Fault Input Polarity (FTM0_FLTPOL)	32	R/W	0000_0000h	35.3.23/ 697
4003_808C	Synchronization Configuration (FTM0_SYNCONF)	32	R/W	0000_0000h	35.3.24/ 698
4003_8090	FTM Inverting Control (FTM0_INVCTRL)	32	R/W	0000_0000h	35.3.25/ 700
4003_8094	FTM Software Output Control (FTM0_SWOCTRL)	32	R/W	0000_0000h	35.3.26/ 701
4003_8098	FTM PWM Load (FTM0_PWMLOAD)	32	R/W	0000_0000h	35.3.27/ 704
4003_9000	Status And Control (FTM1_SC)	32	R/W	0000_0000h	35.3.3/662
4003_9004	Counter (FTM1_CNT)	32	R/W	0000_0000h	35.3.4/663
4003_9008	Modulo (FTM1_MOD)	32	R/W	0000_0000h	35.3.5/664
4003_900C	Channel (n) Status And Control (FTM1_C0SC)	32	R/W	0000_0000h	35.3.6/665
4003_9010	Channel (n) Value (FTM1_C0V)	32	R/W	0000_0000h	35.3.7/668
4003_9014	Channel (n) Status And Control (FTM1_C1SC)	32	R/W	0000_0000h	35.3.6/665
4003_9018	Channel (n) Value (FTM1_C1V)	32	R/W	0000_0000h	35.3.7/668
4003_901C	Channel (n) Status And Control (FTM1_C2SC)	32	R/W	0000_0000h	35.3.6/665
4003_9020	Channel (n) Value (FTM1_C2V)	32	R/W	0000_0000h	35.3.7/668
4003_9024	Channel (n) Status And Control (FTM1_C3SC)	32	R/W	0000_0000h	35.3.6/665
4003_9028	Channel (n) Value (FTM1_C3V)	32	R/W	0000_0000h	35.3.7/668
4003_902C	Channel (n) Status And Control (FTM1_C4SC)	32	R/W	0000_0000h	35.3.6/665
4003_9030	Channel (n) Value (FTM1_C4V)	32	R/W	0000_0000h	35.3.7/668
4003_9034	Channel (n) Status And Control (FTM1_C5SC)	32	R/W	0000_0000h	35.3.6/665

Table continues on the next page...

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4003_9038	Channel (n) Value (FTM1_C5V)	32	R/W	0000_0000h	35.3.7/668
4003_903C	Channel (n) Status And Control (FTM1_C6SC)	32	R/W	0000_0000h	35.3.6/665
4003_9040	Channel (n) Value (FTM1_C6V)	32	R/W	0000_0000h	35.3.7/668
4003_9044	Channel (n) Status And Control (FTM1_C7SC)	32	R/W	0000_0000h	35.3.6/665
4003_9048	Channel (n) Value (FTM1_C7V)	32	R/W	0000_0000h	35.3.7/668
4003_904C	Counter Initial Value (FTM1_CNTIN)	32	R/W	0000_0000h	35.3.8/668
4003_9050	Capture And Compare Status (FTM1_STATUS)	32	R/W	0000_0000h	35.3.9/669
4003_9054	Features Mode Selection (FTM1_MODE)	32	R/W	0000_0004h	35.3.10/ 671
4003_9058	Synchronization (FTM1_SYNC)	32	R/W	0000_0000h	35.3.11/ 673
4003_905C	Initial State For Channels Output (FTM1_OUTINIT)	32	R/W	0000_0000h	35.3.12/ 675
4003_9060	Output Mask (FTM1_OUTMASK)	32	R/W	0000_0000h	35.3.13/ 676
4003_9064	Function For Linked Channels (FTM1_COMBINE)	32	R/W	0000_0000h	35.3.14/ 678
4003_9068	Deadtime Insertion Control (FTM1_DEADTIME)	32	R/W	0000_0000h	35.3.15/ 683
4003_906C	FTM External Trigger (FTM1_EXTTRIG)	32	R/W	0000_0000h	35.3.16/ 684
4003_9070	Channels Polarity (FTM1_POL)	32	R/W	0000_0000h	35.3.17/ 686
4003_9074	Fault Mode Status (FTM1_FMS)	32	R/W	0000_0000h	35.3.18/ 688
4003_9078	Input Capture Filter Control (FTM1_FILTER)	32	R/W	0000_0000h	35.3.19/ 690
4003_907C	Fault Control (FTM1_FLTCTRL)	32	R/W	0000_0000h	35.3.20/ 691
4003_9080	Quadrature Decoder Control And Status (FTM1_QDCTRL)	32	R/W	0000_0000h	35.3.21/ 694
4003_9084	Configuration (FTM1_CONF)	32	R/W	0000_0000h	35.3.22/ 696
4003_9088	FTM Fault Input Polarity (FTM1_FLTPOL)	32	R/W	0000_0000h	35.3.23/ 697
4003_908C	Synchronization Configuration (FTM1_SYNCONF)	32	R/W	0000_0000h	35.3.24/ 698
4003_9090	FTM Inverting Control (FTM1_INVCTRL)	32	R/W	0000_0000h	35.3.25/ 700
4003_9094	FTM Software Output Control (FTM1_SWOCTRL)	32	R/W	0000_0000h	35.3.26/ 701
4003_9098	FTM PWM Load (FTM1_PWMLOAD)	32	R/W	0000_0000h	35.3.27/ 704

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4003_A000	Status And Control (FTM2_SC)	32	R/W	0000_0000h	35.3.3/662
4003_A004	Counter (FTM2_CNT)	32	R/W	0000_0000h	35.3.4/663
4003_A008	Modulo (FTM2_MOD)	32	R/W	0000_0000h	35.3.5/664
4003_A00C	Channel (n) Status And Control (FTM2_C0SC)	32	R/W	0000_0000h	35.3.6/665
4003_A010	Channel (n) Value (FTM2_C0V)	32	R/W	0000_0000h	35.3.7/668
4003_A014	Channel (n) Status And Control (FTM2_C1SC)	32	R/W	0000_0000h	35.3.6/665
4003_A018	Channel (n) Value (FTM2_C1V)	32	R/W	0000_0000h	35.3.7/668
4003_A01C	Channel (n) Status And Control (FTM2_C2SC)	32	R/W	0000_0000h	35.3.6/665
4003_A020	Channel (n) Value (FTM2_C2V)	32	R/W	0000_0000h	35.3.7/668
4003_A024	Channel (n) Status And Control (FTM2_C3SC)	32	R/W	0000_0000h	35.3.6/665
4003_A028	Channel (n) Value (FTM2_C3V)	32	R/W	0000_0000h	35.3.7/668
4003_A02C	Channel (n) Status And Control (FTM2_C4SC)	32	R/W	0000_0000h	35.3.6/665
4003_A030	Channel (n) Value (FTM2_C4V)	32	R/W	0000_0000h	35.3.7/668
4003_A034	Channel (n) Status And Control (FTM2_C5SC)	32	R/W	0000_0000h	35.3.6/665
4003_A038	Channel (n) Value (FTM2_C5V)	32	R/W	0000_0000h	35.3.7/668
4003_A03C	Channel (n) Status And Control (FTM2_C6SC)	32	R/W	0000_0000h	35.3.6/665
4003_A040	Channel (n) Value (FTM2_C6V)	32	R/W	0000_0000h	35.3.7/668
4003_A044	Channel (n) Status And Control (FTM2_C7SC)	32	R/W	0000_0000h	35.3.6/665
4003_A048	Channel (n) Value (FTM2_C7V)	32	R/W	0000_0000h	35.3.7/668
4003_A04C	Counter Initial Value (FTM2_CNTIN)	32	R/W	0000_0000h	35.3.8/668
4003_A050	Capture And Compare Status (FTM2_STATUS)	32	R/W	0000_0000h	35.3.9/669
4003_A054	Features Mode Selection (FTM2_MODE)	32	R/W	0000_0004h	35.3.10/ 671
4003_A058	Synchronization (FTM2_SYNC)	32	R/W	0000_0000h	35.3.11/ 673
4003_A05C	Initial State For Channels Output (FTM2_OUTINIT)	32	R/W	0000_0000h	35.3.12/ 675
4003_A060	Output Mask (FTM2_OUTMASK)	32	R/W	0000_0000h	35.3.13/ 676
4003_A064	Function For Linked Channels (FTM2_COMBINE)	32	R/W	0000_0000h	35.3.14/ 678
4003_A068	Deadtime Insertion Control (FTM2_DEADTIME)	32	R/W	0000_0000h	35.3.15/ 683
4003_A06C	FTM External Trigger (FTM2_EXTTRIG)	32	R/W	0000_0000h	35.3.16/ 684
4003_A070	Channels Polarity (FTM2_POL)	32	R/W	0000_0000h	35.3.17/ 686
4003_A074	Fault Mode Status (FTM2_FMS)	32	R/W	0000_0000h	35.3.18/ 688
4003_A078	Input Capture Filter Control (FTM2_FILTER)	32	R/W	0000_0000h	35.3.19/ 690

Table continues on the next page...



Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4003_A07C	Fault Control (FTM2_FLTCTRL)	32	R/W	0000_0000h	35.3.20/ 691
4003_A080	Quadrature Decoder Control And Status (FTM2_QDCTRL)	32	R/W	0000_0000h	35.3.21/ 694
4003_A084	Configuration (FTM2_CONF)	32	R/W	0000_0000h	35.3.22/ 696
4003_A088	FTM Fault Input Polarity (FTM2_FLTPOL)	32	R/W	0000_0000h	35.3.23/ 697
4003_A08C	Synchronization Configuration (FTM2_SYNCONF)	32	R/W	0000_0000h	35.3.24/ 698
4003_A090	FTM Inverting Control (FTM2_INVCTRL)	32	R/W	0000_0000h	35.3.25/ 700
4003_A094	FTM Software Output Control (FTM2_SWOCTRL)	32	R/W	0000_0000h	35.3.26/ 701
4003_A098	FTM PWM Load (FTM2_PWMLOAD)	32	R/W	0000_0000h	35.3.27/ 704

35.3.3 Status And Control (FTMx_SC)

SC contains the overflow status flag and control bits used to configure the interrupt enable, FTM configuration, clock source, and prescaler factor. These controls relate to all channels within this module.

FTMx_SC field descriptions

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7 TOF	Timer Overflow Flag Set by hardware when the FTM counter passes the value in the MOD register. The TOF bit is cleared by reading the SC register while TOF is set and then writing a 0 to TOF bit. Writing a 1 to TOF has no effect.
	If another FTM overflow occurs between the read and write operations, the write operation has no effect; therefore, TOF remains set indicating an overflow has occurred. In this case, a TOF interrupt request is not lost due to the clearing sequence for a previous TOF.
	0 FTM counter has not overflowed.1 FTM counter has overflowed.

Table continues on the next page ...

Field	Description
6 TOIE	Timer Overflow Interrupt Enable Enables FTM overflow interrupts.
	 0 Disable TOF interrupts. Use software polling. 1 Enable TOF interrupts. An interrupt is generated when TOF equals one.
5 CPWMS	 Center-Aligned PWM Select Selects CPWM mode. This mode configures the FTM to operate in Up-Down Counting mode. This field is write protected. It can be written only when MODE[WPDIS] = 1. FTM counter operates in Up Counting mode. FTM counter operates in Up-Down Counting mode.
4–3 CLKS	 Clock Source Selection Selects one of the three FTM counter clock sources. This field is write protected. It can be written only when MODE[WPDIS] = 1. 00 No clock selected. This in effect disables the FTM counter. 01 System clock 10 Fixed frequency clock 11 External clock
2–0 PS	Prescale Factor Selection Selects one of 8 division factors for the clock source selected by CLKS. The new prescaler factor affects the clock source on the next system clock cycle after the new value is updated into the register bits. This field is write protected. It can be written only when MODE[WPDIS] = 1. 000 Divide by 1 001 Divide by 2 010 Divide by 4 011 Divide by 8 100 Divide by 16 101 Divide by 32 110 Divide by 64 111 Divide by 128

35.3.4 Counter (FTMx_CNT)

The CNT register contains the FTM counter value.

Reset clears the CNT register. Writing any value to COUNT updates the counter with its initial value, CNTIN.

When BDM is active, the FTM counter is frozen. This is the value that you may read.

memory map and register definition

Address: Base address + 4h offset

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R								(C															cοι	ілт							
W																		-														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

FTMx_CNT field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 COUNT	Counter Value

35.3.5 Modulo (FTMx_MOD)

The Modulo register contains the modulo value for the FTM counter. After the FTM counter reaches the modulo value, the overflow flag (TOF) becomes set at the next clock, and the next value of FTM counter depends on the selected counting method; see Counter.

Writing to the MOD register latches the value into a buffer. The MOD register is updated with the value of its write buffer according to Registers updated from write buffers.

If FTMEN = 0, this write coherency mechanism may be manually reset by writing to the SC register whether BDM is active or not.

Initialize the FTM counter, by writing to CNT, before writing to the MOD register to avoid confusion about when the first counter overflow will occur.

Add	ldress: Base address + 8h offset																															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R W							F	Rese	erve	d														МС	DD							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

FTMx_MOD field descriptions

Field	Description
31–16 Reserved	This field is reserved.
15–0 MOD	Modulo Value

35.3.6 Channel (n) Status And Control (FTMx_CnSC)

CnSC contains the channel-interrupt-status flag and control bits used to configure the interrupt enable, channel configuration, and pin function.

DECAPEN	COMBINE	CPWMS	MSnB:MSnA	ELSnB:ELSnA	Mode	Configuration
X	Х	Х	XX	00	channel pin to ge	FTM—revert the neral purpose I/O pheral control
0	0	0	00	01	Input Capture	Capture on Rising Edge Only
				10		Capture on Falling Edge Only
				11		Capture on Rising or Falling Edge
			01	01	Output Compare	Toggle Output on match
				10		Clear Output on match
				11		Set Output on match
			1X	10	Edge-Aligned PWM	High-true pulses (clear Output on match)
				X1		Low-true pulses (set Output on match)
		1	XX	10	Center-Aligned PWM	High-true pulses (clear Output on match-up)
				X1		Low-true pulses (set Output on match-up)
	1	0	XX	10	Combine PWM	High-true pulses (set on channel (n) match, and clear on channel (n+1) match)
				X1		Low-true pulses (clear on channel (n) match, and set on channel (n +1) match)

Table 35-67. Mode, edge, and level selection

Table continues on the next page...

DECAPEN	COMBINE	CPWMS	MSnB:MSnA	ELSnB:ELSnA	Mode	Configuration
1	0	0	X0	See the following table	Dual Edge Capture	One-Shot Capture mode
			X1	(Table 35-8).		Continuous Capture mode

Table 35-67. Mode, edge, and level selection (continued)

Table 35-68. Dual Edge Capture mode — edge polarity selection

ELSnB	ELSnA	Channel Port Enable	Detected Edges
0	0	Disabled	No edge
0	1	Enabled	Rising edge
1	0	Enabled	Falling edge
1	1	Enabled	Rising and falling edges

Address: Base address + Ch offset + (8d \times i), where i=0d to 7d

FTMx_CnSC field descriptions

Field	Description
31–8	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
7 CHF	Channel Flag
	Set by hardware when an event occurs on the channel. CHF is cleared by reading the CSC register while CHnF is set and then writing a 0 to the CHF bit. Writing a 1 to CHF has no effect.
	If another event occurs between the read and write operations, the write operation has no effect; therefore, CHF remains set indicating an event has occurred. In this case a CHF interrupt request is not lost due to the clearing sequence for a previous CHF.
	0 No channel event has occurred.
	1 A channel event has occurred.
6	Channel Interrupt Enable
CHIE	Enables channel interrupts.
	0 Disable channel interrupts. Use software polling.
	1 Enable channel interrupts.
5	Channel Mode Select
MSB	Used for further selections in the channel logic. Its functionality is dependent on the channel mode. See Table 35-7.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
4	Channel Mode Select
MSA	Used for further selections in the channel logic. Its functionality is dependent on the channel mode. See Table 35-7.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
3	Edge or Level Select
ELSB	The functionality of ELSB and ELSA depends on the channel mode. See Table 35-7.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
2	Edge or Level Select
ELSA	The functionality of ELSB and ELSA depends on the channel mode. See Table 35-7.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
1	FTM counter reset by the selected input capture event.
ICRST	FTM counter reset is driven by the selected event of the channel (n) in the Input Capture mode.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 FTM counter is not reset when the selected channel (n) input event is detected.
	FTM counter is reset when the selected channel (n) input event is detected.
0 DMA	DMA Enable Enables DMA transfers for the channel.
	 0 Disable DMA transfers. 1 Enable DMA transfers.

35.3.7 Channel (n) Value (FTMx_CnV)

These registers contain the captured FTM counter value for the input modes or the match value for the output modes.

In Input Capture, Capture Test, and Dual Edge Capture modes, any write to a CnV register is ignored.

In output modes, writing to a CnV register latches the value into a buffer. A CnV register is updated with the value of its write buffer according to Registers updated from write buffers.

If FTMEN = 0, this write coherency mechanism may be manually reset by writing to the CnSC register whether BDM mode is active or not.

Address: Base address + 10h offset + (8d \times i), where i=0d to 7d

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R								()															V	41							
w				_																				• ·								
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

FTMx_CnV field descriptions

Field	Description
31–16	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
15–0 VAL	Channel Value
	Captured FTM counter value of the input modes or the match value for the output modes

35.3.8 Counter Initial Value (FTMx_CNTIN)

The Counter Initial Value register contains the initial value for the FTM counter.

Writing to the CNTIN register latches the value into a buffer. The CNTIN register is updated with the value of its write buffer according to Registers updated from write buffers.

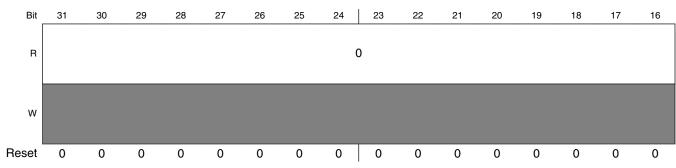
When the FTM clock is initially selected, by writing a non-zero value to the CLKS bits, the FTM counter starts with the value 0x0000. To avoid this behavior, before the first write to select the FTM clock, write the new value to the the CNTIN register and then initialize the FTM counter by writing any value to the CNT register.

Address: Base address + 4Ch offset

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R W				-			F	Rese	erve	d								-						IN	IT							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

FTMx_CNTIN field descriptions

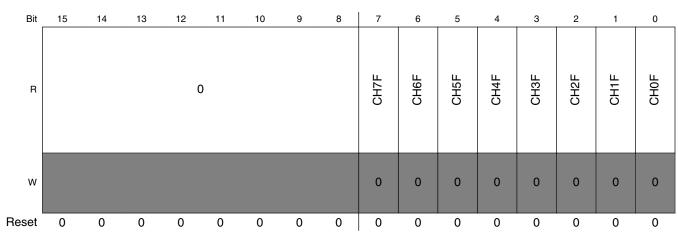
Field	Description
31–16 Reserved	This field is reserved.
15–0 INIT	Initial Value Of The FTM Counter


35.3.9 Capture And Compare Status (FTMx_STATUS)

The STATUS register contains a copy of the status flag CHnF bit in CnSC for each FTM channel for software convenience.

Each CHnF bit in STATUS is a mirror of CHnF bit in CnSC. All CHnF bits can be checked using only one read of STATUS. All CHnF bits can be cleared by reading STATUS followed by writing 0x00 to STATUS.

Hardware sets the individual channel flags when an event occurs on the channel. CHnF is cleared by reading STATUS while CHnF is set and then writing a 0 to the CHnF bit. Writing a 1 to CHnF has no effect.


If another event occurs between the read and write operations, the write operation has no effect; therefore, CHnF remains set indicating an event has occurred. In this case, a CHnF interrupt request is not lost due to the clearing sequence for a previous CHnF.

Address: Base address + 50h offset

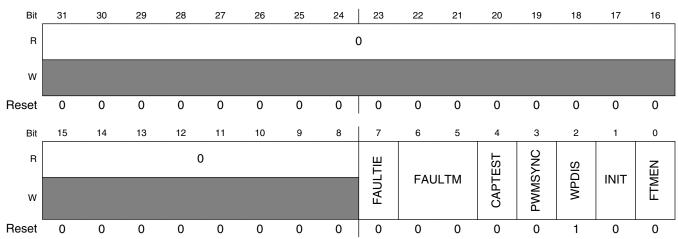
wemory map and register definition

FTMx_STATUS field descriptions

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7 CH7F	Channel 7 Flag See the register description.
	0 No channel event has occurred.1 A channel event has occurred.
6 CH6F	Channel 6 Flag See the register description. 0 No channel event has occurred.
5 CH5F	1 A channel event has occurred. Channel 5 Flag See the register description.
	0 No channel event has occurred.1 A channel event has occurred.
4 CH4F	 Channel 4 Flag See the register description. 0 No channel event has occurred. 1 A channel event has occurred.
3 CH3F	 Channel 3 Flag See the register description. 0 No channel event has occurred. 1 A channel event has occurred.
2 CH2F	Channel 2 Flag See the register description.

Table continues on the next page...

Field	Description
	0 No channel event has occurred.
	1 A channel event has occurred.
1 CH1F	Channel 1 Flag
	See the register description.
	0 No channel event has occurred.
	1 A channel event has occurred.
0 CH0F	Channel 0 Flag
	See the register description.
	0 No channel event has occurred.
	1 A channel event has occurred.


FTMx_STATUS field descriptions (continued)

35.3.10 Features Mode Selection (FTMx_MODE)

This register contains the global enable bit for FTM-specific features and the control bits used to configure:

- Fault control mode and interrupt
- Capture Test mode
- PWM synchronization
- Write protection
- Channel output initialization

These controls relate to all channels within this module.

Address: Base address + 54h offset

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7	Fault Interrupt Enable
FAULTIE	Enables the generation of an interrupt when a fault is detected by FTM and the FTM fault control is enabled.
	Fault control interrupt is disabled.Fault control interrupt is enabled.
6–5	Fault Control Mode
FAULTM	Defines the FTM fault control mode.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	00 Fault control is disabled for all channels.
	01 Fault control is enabled for even channels only (channels 0, 2, 4, and 6), and the selected mode is the manual fault clearing.
	10 Fault control is enabled for all channels, and the selected mode is the manual fault clearing.
	11 Fault control is enabled for all channels, and the selected mode is the automatic fault clearing.
4	Capture Test Mode Enable
CAPTEST	Enables the capture test mode.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 Capture test mode is disabled.
	1 Capture test mode is enabled.
3	PWM Synchronization Mode
PWMSYNC	Selects which triggers can be used by MOD, CnV, OUTMASK, and FTM counter synchronization. See PWM synchronization. The PWMSYNC bit configures the synchronization when SYNCMODE is 0.
	0 No restrictions. Software and hardware triggers can be used by MOD, CnV, OUTMASK, and FTM counter synchronization.
	 Software trigger can only be used by MOD and CnV synchronization, and hardware triggers can only be used by OUTMASK and FTM counter synchronization.
2	Write Protection Disable
WPDIS	When write protection is enabled (WPDIS = 0), write protected bits cannot be written. When write protection is disabled (WPDIS = 1), write protected bits can be written. The WPDIS bit is the negation of the WPEN bit. WPDIS is cleared when 1 is written to WPEN. WPDIS is set when WPEN bit is read as a 1 and then 1 is written to WPDIS. Writing 0 to WPDIS has no effect.
	0 Write protection is enabled.
	1 Write protection is disabled.
1	Initialize The Channels Output
INIT	When a 1 is written to INIT bit the channels output is initialized according to the state of their corresponding bit in the OUTINIT register. Writing a 0 to INIT bit has no effect.
	The INIT bit is always read as 0.
0	FTM Enable
FTMEN	This field is write protected. It can be written only when MODE[WPDIS] = 1.

Table continues on the next page...

Field	Description
	0 TPM compatibility. Free running counter and synchronization compatible with TPM.
	1 Free running counter and synchronization are different from TPM behavior.

35.3.11 Synchronization (FTMx_SYNC)

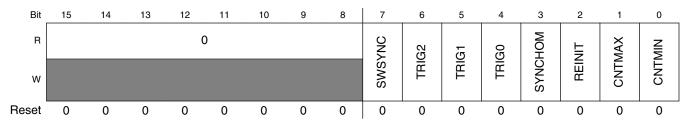
This register configures the PWM synchronization.

A synchronization event can perform the synchronized update of MOD, CV, and OUTMASK registers with the value of their write buffer and the FTM counter initialization.

NOTE

The software trigger, SWSYNC bit, and hardware triggers TRIGO, TRIG1, and TRIG2 bits have a potential conflict if used together when SYNCMODE = 0. Use only hardware or software triggers but not both at the same time, otherwise unpredictable behavior is likely to happen.

The selection of the loading point, CNTMAX and CNTMIN bits, is intended to provide the update of MOD, CNTIN, and CnV registers across all enabled channels simultaneously. The use of the loading point selection together with SYNCMODE = 0 and hardware trigger selection, TRIG0, TRIG1, or TRIG2 bits, is likely to result in unpredictable behavior.


The synchronization event selection also depends on the PWMSYNC (MODE register) and SYNCMODE (SYNCONF register) bits. See PWM synchronization.

Address: Base address + 58h offset

wemory map and register definition

FTMx_SYNC field descriptions

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7	PWM Synchronization Software Trigger
SWSYNC	Selects the software trigger as the PWM synchronization trigger. The software trigger happens when a 1 is written to SWSYNC bit.
	0 Software trigger is not selected.
	1 Software trigger is selected.
6	PWM Synchronization Hardware Trigger 2
TRIG2	Enables hardware trigger 2 to the PWM synchronization. Hardware trigger 2 happens when a rising edge is detected at the trigger 2 input signal.
	0 Trigger is disabled.
	1 Trigger is enabled.
5	PWM Synchronization Hardware Trigger 1
TRIG1	Enables hardware trigger 1 to the PWM synchronization. Hardware trigger 1 happens when a rising edge is detected at the trigger 1 input signal.
	0 Trigger is disabled.1 Trigger is enabled.
4	PWM Synchronization Hardware Trigger 0
TRIG0	Enables hardware trigger 0 to the PWM synchronization. Hardware trigger 0 occurs when a rising edge is detected at the trigger 0 input signal.
	0 Trigger is disabled.
	1 Trigger is enabled.
3 SYNCHOM	Output Mask Synchronization
	Selects when the OUTMASK register is updated with the value of its buffer.
	0 OUTMASK register is updated with the value of its buffer in all rising edges of the system clock.
	1 OUTMASK register is updated with the value of its buffer only by the PWM synchronization.
2 REINIT	FTM Counter Reinitialization By Synchronization (FTM counter synchronization)
	Determines if the FTM counter is reinitialized when the selected trigger for the synchronization is detected. The REINIT bit configures the synchronization when SYNCMODE is zero.
	0 FTM counter continues to count normally.
	1 FTM counter is updated with its initial value when the selected trigger is detected.

Table continues on the next page ...

FTMx_SYNC field descriptions (continued)

Field	Description
1 CNTMAX	Maximum Loading Point Enable
	Selects the maximum loading point to PWM synchronization. See Boundary cycle and loading points. If CNTMAX is 1, the selected loading point is when the FTM counter reaches its maximum value (MOD register).
	0 The maximum loading point is disabled.
	1 The maximum loading point is enabled.
0	Minimum Loading Point Enable
CNTMIN	Selects the minimum loading point to PWM synchronization. See Boundary cycle and loading points. If CNTMIN is one, the selected loading point is when the FTM counter reaches its minimum value (CNTIN register).
	0 The minimum loading point is disabled.
	1 The minimum loading point is enabled.

35.3.12 Initial State For Channels Output (FTMx_OUTINIT)

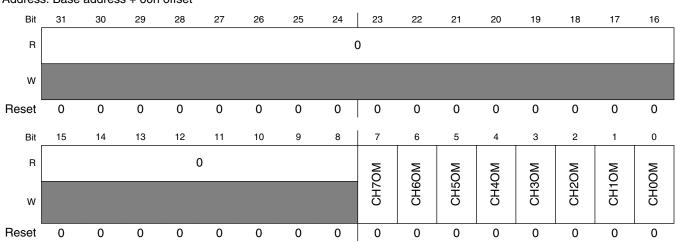
/ (001000	0. Duoo	uuuioo		i onoot												
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R								(0							
w																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R				()				ō	٥ ٥	D <u>i</u>	Ō	ō	IO	ō	ō
w									CH70	CH6OI	CH5OI	CH40I	CH30I	CH201	CH10I	CH0OI
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Address: Base address + 5Ch offset

FTMx_OUTINIT field descriptions

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7 CH7OI	 Channel 7 Output Initialization Value Selects the value that is forced into the channel output when the initialization occurs. 0 The initialization value is 0. 1 The initialization value is 1.
6 CH6OI	Channel 6 Output Initialization Value

Table continues on the next page ...


Field	Description
	Selects the value that is forced into the channel output when the initialization occurs.
	0 The initialization value is 0.
	1 The initialization value is 1.
5	Channel 5 Output Initialization Value
CH5OI	Selects the value that is forced into the channel output when the initialization occurs.
	0 The initialization value is 0.
	1 The initialization value is 1.
4	Channel 4 Output Initialization Value
CH4OI	Selects the value that is forced into the channel output when the initialization occurs.
	0 The initialization value is 0.
	1 The initialization value is 1.
3 CH3OI	Channel 3 Output Initialization Value
СНЗОГ	Selects the value that is forced into the channel output when the initialization occurs.
	0 The initialization value is 0.
	1 The initialization value is 1.
2 CH2OI	Channel 2 Output Initialization Value
	Selects the value that is forced into the channel output when the initialization occurs.
	0 The initialization value is 0.
	1 The initialization value is 1.
1	Channel 1 Output Initialization Value
CH1OI	Selects the value that is forced into the channel output when the initialization occurs.
	0 The initialization value is 0.
	1 The initialization value is 1.
0	Channel 0 Output Initialization Value
CH0OI	Selects the value that is forced into the channel output when the initialization occurs.
	0 The initialization value is 0.
	1 The initialization value is 1.

35.3.13 Output Mask (FTMx_OUTMASK)

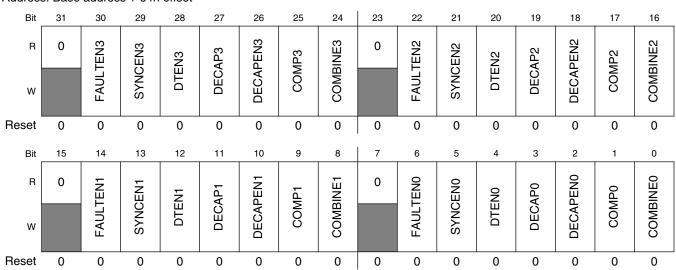
This register provides a mask for each FTM channel. The mask of a channel determines if its output responds, that is, it is masked or not, when a match occurs. This feature is used for BLDC control where the PWM signal is presented to an electric motor at specific times to provide electronic commutation.

Any write to the OUTMASK register, stores the value in its write buffer. The register is updated with the value of its write buffer according to PWM synchronization.

FTMx OUTMASK field descriptions

Address: Base address + 60h offset

Field Description 31–8 This field is reserved. Reserved This read-only field is reserved and always has the value 0. 7 Channel 7 Output Mask CH7OM Defines if the channel output is masked or unmasked. 0 Channel output is not masked. It continues to operate normally. 1 Channel output is masked. It is forced to its inactive state. 6 Channel 6 Output Mask CH6OM Defines if the channel output is masked or unmasked. 0 Channel output is not masked. It continues to operate normally. 1 Channel output is masked. It is forced to its inactive state. 5 Channel 5 Output Mask CH5OM Defines if the channel output is masked or unmasked. 0 Channel output is not masked. It continues to operate normally. 1 Channel output is masked. It is forced to its inactive state. Channel 4 Output Mask 4 CH4OM Defines if the channel output is masked or unmasked. 0 Channel output is not masked. It continues to operate normally. 1 Channel output is masked. It is forced to its inactive state. Channel 3 Output Mask З **CH3OM** Defines if the channel output is masked or unmasked.


Table continues on the next page...

Field	Description
	0 Channel output is not masked. It continues to operate normally.
	1 Channel output is masked. It is forced to its inactive state.
2 CH2OM	Channel 2 Output Mask
01120101	Defines if the channel output is masked or unmasked.
	0 Channel output is not masked. It continues to operate normally.
	1 Channel output is masked. It is forced to its inactive state.
1	Channel 1 Output Mask
CH1OM	Defines if the channel output is masked or unmasked.
	0 Channel output is not masked. It continues to operate normally.
	1 Channel output is masked. It is forced to its inactive state.
0 CH0OM	Channel 0 Output Mask
	Defines if the channel output is masked or unmasked.
	0 Channel output is not masked. It continues to operate normally.
	1 Channel output is masked. It is forced to its inactive state.

FTMx_OUTMASK field descriptions (continued)

35.3.14 Function For Linked Channels (FTMx_COMBINE)

This register contains the control bits used to configure the fault control, synchronization, deadtime insertion, Dual Edge Capture mode, Complementary, and Combine mode for each pair of channels (n) and (n+1), where n equals 0, 2, 4, and 6.

Address: Base address + 64h offset

FTMx_COMBINE field descriptions

Field	Description
31 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
30	Fault Control Enable For n = 6
FAULTEN3	Enables the fault control in channels (n) and (n+1).
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The fault control in this pair of channels is disabled.1 The fault control in this pair of channels is enabled.
29 SYNCEN3	Synchronization Enable For $n = 6$
	Enables PWM synchronization of registers C(n)V and C(n+1)V.
	0 The PWM synchronization in this pair of channels is disabled.
	1 The PWM synchronization in this pair of channels is enabled.
28 DTEN3	Deadtime Enable For n = 6
DIENS	Enables the deadtime insertion in the channels (n) and (n+1).
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The deadtime insertion in this pair of channels is disabled.
	1 The deadtime insertion in this pair of channels is enabled.
27	Dual Edge Capture Mode Captures For n = 6
DECAP3	Enables the capture of the FTM counter value according to the channel (n) input event and the configuration of the dual edge capture bits.
	This field applies only when DECAPEN = 1.
	DECAP bit is cleared automatically by hardware if dual edge capture – one-shot mode is selected and when the capture of channel (n+1) event is made.
	0 The dual edge captures are inactive.
	1 The dual edge captures are active.
26	Dual Edge Capture Mode Enable For n = 6
DECAPEN3	Enables the Dual Edge Capture mode in the channels (n) and (n+1). This bit reconfigures the function of MSnA, ELSnB:ELSnA and ELS(n+1)B:ELS(n+1)A bits in Dual Edge Capture mode according to Table 35-7.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The Dual Edge Capture mode in this pair of channels is disabled.
	1 The Dual Edge Capture mode in this pair of channels is enabled.
25	Complement Of Channel (n) for n = 6
COMP3	Enables Complementary mode for the combined channels. In Complementary mode the channel (n+1) output is the inverse of the channel (n) output.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The channel (n+1) output is the same as the channel (n) output.
	1 The channel (n+1) output is the complement of the channel (n) output.

Table continues on the next page ...

Field	Description
24	Combine Channels For n = 6
COMBINE3	Enables the combine feature for channels (n) and (n+1).
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	 Channels (n) and (n+1) are independent. Channels (n) and (n+1) are combined.
23 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
22	Fault Control Enable For n = 4
FAULTEN2	Enables the fault control in channels (n) and (n+1).
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The fault control in this pair of channels is disabled.1 The fault control in this pair of channels is enabled.
21	Synchronization Enable For n = 4
SYNCEN2	Enables PWM synchronization of registers C(n)V and C(n+1)V.
	0 The PWM synchronization in this pair of channels is disabled.
	1 The PWM synchronization in this pair of channels is enabled.
20	Deadtime Enable For n = 4
DTEN2	Enables the deadtime insertion in the channels (n) and (n+1).
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The deadtime insertion in this pair of channels is disabled.1 The deadtime insertion in this pair of channels is enabled.
19	Dual Edge Capture Mode Captures For n = 4
DECAP2	Enables the capture of the FTM counter value according to the channel (n) input event and the configuration of the dual edge capture bits.
	This field applies only when DECAPEN = 1.
	DECAP bit is cleared automatically by hardware if dual edge capture – one-shot mode is selected and when the capture of channel (n+1) event is made.
	0 The dual edge captures are inactive.
	1 The dual edge captures are active.
	Dual Edge Capture Mode Enable For n = 4
DECAPEN2	Enables the Dual Edge Capture mode in the channels (n) and (n+1). This bit reconfigures the function of MSnA, ELSnB:ELSnA and ELS(n+1)B:ELS(n+1)A bits in Dual Edge Capture mode according to Table 35-7.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The Dual Edge Capture mode in this pair of channels is disabled.
	1 The Dual Edge Capture mode in this pair of channels is enabled.
17 COMP2	Complement Of Channel (n) For n = 4
	Table continues on the post page

Table continues on the next page ...

Field	Description
	Enables Complementary mode for the combined channels. In Complementary mode the channel (n+1) output is the inverse of the channel (n) output.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	 The channel (n+1) output is the same as the channel (n) output. The channel (n+1) output is the complement of the channel (n) output.
16	Combine Channels For $n = 4$
COMBINE2	Enables the combine feature for channels (n) and $(n+1)$.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 Channels (n) and (n+1) are independent.
	1 Channels (n) and (n+1) are combined.
15 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
14	Fault Control Enable For n = 2
FAULTEN1	
	Enables the fault control in channels (n) and (n+1).
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The fault control in this pair of channels is disabled.
	1 The fault control in this pair of channels is enabled.
13	Synchronization Enable For n = 2
SYNCEN1	Enables PWM synchronization of registers $C(n)V$ and $C(n+1)V$.
	0 The PWM synchronization in this pair of channels is disabled.
	1 The PWM synchronization in this pair of channels is enabled.
12 DTENH	Deadtime Enable For n = 2
DTEN1	Enables the deadtime insertion in the channels (n) and (n+1).
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The deadtime insertion in this pair of channels is disabled.
	1 The deadtime insertion in this pair of channels is enabled.
11	Dual Edge Capture Mode Captures For n = 2
DECAP1	Enables the capture of the FTM counter value according to the channel (n) input event and the configuration of the dual edge capture bits.
	This field applies only when DECAPEN = 1.
	DECAP bit is cleared automatically by hardware if Dual Edge Capture – One-Shot mode is selected and when the capture of channel (n+1) event is made.
	0 The dual edge captures are inactive.1 The dual edge captures are active.
10	Dual Edge Capture Mode Enable For n = 2
DECAPEN1	Enables the Dual Edge Capture mode in the channels (n) and (n+1). This bit reconfigures the function o MSnA, ELSnB:ELSnA and ELS(n+1)B:ELS(n+1)A bits in Dual Edge Capture mode according to Table 35-7.

Table continues on the next page ...

This field is write protected. It can be written only when MODE[WPDIS] = 1. 0 The Dual Edge Capture mode in this pair of channels is disabled. 1 The Dual Edge Capture mode in this pair of channels is enabled. 9 Complement Of Channel (n) For n = 2 Enables Complementary mode for the combined channels. In Complementary mode the channel (n) output is the inverse of the channel (n) output. This field is write protected. It can be written only when MODE[WPDIS] = 1. 0 The channel (n+1) output is the same as the channel (n) output. 1 The channel (n+1) output is the complement of the channel (n) output. 1 The channels For n = 2 COMBINE1 Combine Channels For n = 2 EADMENT Combine feature for channels (n) and (n+1). This field is write protected. It can be written only when MODE[WPDIS] = 1. 0 Channels (n) and (n+1) are independent. 1 Channels (n) and (n+1) are combined. 7 This field is reserved. Reserved This read-only field is reserved and always has the value 0. <t< th=""><th>Field</th><th>Description</th></t<>	Field	Description
1 The Dual Edge Capture mode in this pair of channels is enabled. 9 COMP1 COMP1 Complement Of Channel (n) For n = 2 Enables Complementary mode for the combined channels. In Complementary mode the channel (n) output is the inverse of the channel (n) output. This field is write protected. It can be written only when MODE[WPDIS] = 1. 0 The channel (n+1) output is the same as the channel (n) output. 1 The channel (n+1) output is the complement of the channel (n) output. 1 The channel (n+1) output is the complement of the channel (n) output. 1 The channel (n+1) output is the complement of the channel (n) output. 1 The channel (n+1) output is the complement of the channel (n) output. 8 Combine Channels For n = 2 Enables the combine feature for channels (n) and (n+1). This field is write protected. It can be written only when MODE[WPDIS] = 1. 0 Channels (n) and (n+1) are independent. 1 Channels (n) and (n+1) are combined. 7 This field is reserved. Reserved This read-only field is reserved and always has the value 0. 6 Fault Control Enable For n = 0 Fault Control Enable For n = 0 Enables the fault control in channels (n) and (n+1).		This field is write protected. It can be written only when MODE[WPDIS] = 1.
9 Complement Of Channel (n) For n = 2 Enables Complementary mode for the combined channels. In Complementary mode the channel (noutput is the inverse of the channel (n) output. This field is write protected. It can be written only when MODE[WPDIS] = 1. 0 The channel (n+1) output is the same as the channel (n) output. 1 The channel (n+1) output is the same as the channel (n) output. 1 The channel (n+1) output is the complement of the channel (n) output. 8 Combine Channels For n = 2 Enables the combine feature for channels (n) and (n+1). This field is write protected. It can be written only when MODE[WPDIS] = 1. 0 Channels (n) and (n+1) are independent. 1 Channels (n) and (n+1) are independent. 1 Channels (n) and (n+1) are combined. 7 This field is reserved. 7 This field is reserved. 7 This field is reserved. 7 This read-only field is reserved and always has the value 0. 6 Fault Control Enable For n = 0 FAULTENO Enables the fault control in channels (n) and (n+1).		0 The Dual Edge Capture mode in this pair of channels is disabled.
COMP1 Enables Complementary mode for the combined channels. In Complementary mode the channel (n- output is the inverse of the channel (n) output. This field is write protected. It can be written only when MODE[WPDIS] = 1. 0 The channel (n+1) output is the same as the channel (n) output. 1 1 The channel (n+1) output is the same as the channel (n) output. 1 8 Combine Channels For n = 2 Enables the combine feature for channels (n) and (n+1). This field is write protected. It can be written only when MODE[WPDIS] = 1. 0 Channels (n) and (n+1) are independent. 1 1 Channels (n) and (n+1) are combined. 7 This field is reserved. This read-only field is reserved and always has the value 0. 6 Fault Control Enable For n = 0 FAULTEN0 Fault control in channels (n) and (n+1).		1 The Dual Edge Capture mode in this pair of channels is enabled.
Enables Complementary mode for the combined channels. In Complementary mode the channel (n-output is the inverse of the channel (n) output. This field is write protected. It can be written only when MODE[WPDIS] = 1. 0 The channel (n+1) output is the same as the channel (n) output. 1 The channel (n+1) output is the complement of the channel (n) output. 1 The channel (n+1) output is the complement of the channel (n) output. 8 Combine Channels For n = 2 Frables the combine feature for channels (n) and (n+1). This field is write protected. It can be written only when MODE[WPDIS] = 1. 0 Channels (n) and (n+1) are independent. 1 Channels (n) and (n+1) are combined. 7 This field is reserved. 7 This field is reserved. 7 This field is reserved. 6 Fault Control Enable For n = 0 FAULTEN0 Enables the fault control in channels (n) and (n+1).		Complement Of Channel (n) For n = 2
0 The channel (n+1) output is the same as the channel (n) output. 1 The channel (n+1) output is the complement of the channel (n) output. 8 Combine Channels For n = 2 EOMBINE1 Enables the combine feature for channels (n) and (n+1). This field is write protected. It can be written only when MODE[WPDIS] = 1. 0 Channels (n) and (n+1) are independent. 1 Channels (n) and (n+1) are combined. 7 This field is reserved. Reserved This read-only field is reserved and always has the value 0. 6 Fault Control Enable For n = 0 FAULTEN0 Enables the fault control in channels (n) and (n+1).		Enables Complementary mode for the combined channels. In Complementary mode the channel (n+1) output is the inverse of the channel (n) output.
1 The channel (n+1) output is the complement of the channel (n) output. 8 Combine Channels For n = 2 Enables the combine feature for channels (n) and (n+1). This field is write protected. It can be written only when MODE[WPDIS] = 1. 0 Channels (n) and (n+1) are independent. 1 Channels (n) and (n+1) are combined. 7 This field is reserved. 7 This field is reserved. 7 This read-only field is reserved and always has the value 0. 6 Fault Control Enable For n = 0 FAULTEN0 Enables the fault control in channels (n) and (n+1).		This field is write protected. It can be written only when MODE[WPDIS] = 1.
8 Combine Channels For n = 2 COMBINE1 Enables the combine feature for channels (n) and (n+1). This field is write protected. It can be written only when MODE[WPDIS] = 1. 0 Channels (n) and (n+1) are independent. 1 Channels (n) and (n+1) are combined. 7 This field is reserved. Reserved This read-only field is reserved and always has the value 0. 6 Fault Control Enable For n = 0 FAULTEN0 Enables the fault control in channels (n) and (n+1).		0 The channel (n+1) output is the same as the channel (n) output.
COMBINE1 Enables the combine feature for channels (n) and (n+1). This field is write protected. It can be written only when MODE[WPDIS] = 1. 0 Channels (n) and (n+1) are independent. 1 Channels (n) and (n+1) are combined. 7 This field is reserved. Reserved This read-only field is reserved and always has the value 0. 6 Fault Control Enable For n = 0 FAULTEN0 Enables the fault control in channels (n) and (n+1).		1 The channel (n+1) output is the complement of the channel (n) output.
Enables the combine feature for channels (n) and (n+1). This field is write protected. It can be written only when MODE[WPDIS] = 1. 0 Channels (n) and (n+1) are independent. 1 Channels (n) and (n+1) are combined. 7 This field is reserved. Reserved This read-only field is reserved and always has the value 0. 6 Fault Control Enable For n = 0 FAULTEN0 Enables the fault control in channels (n) and (n+1).		Combine Channels For n = 2
0 Channels (n) and (n+1) are independent. 1 Channels (n) and (n+1) are combined. 7 This field is reserved. Reserved This read-only field is reserved and always has the value 0. 6 Fault Control Enable For n = 0 FAULTEN0 Enables the fault control in channels (n) and (n+1).		Enables the combine feature for channels (n) and (n+1).
1 Channels (n) and (n+1) are combined. 7 This field is reserved. Reserved This read-only field is reserved and always has the value 0. 6 Fault Control Enable For n = 0 FAULTEN0 Enables the fault control in channels (n) and (n+1).		This field is write protected. It can be written only when MODE[WPDIS] = 1.
7 This field is reserved. Reserved This read-only field is reserved and always has the value 0. 6 Fault Control Enable For n = 0 FAULTEN0 Enables the fault control in channels (n) and (n+1).		0 Channels (n) and (n+1) are independent.
Reserved This read-only field is reserved and always has the value 0. 6 Fault Control Enable For n = 0 FAULTEN0 Enables the fault control in channels (n) and (n+1).		1 Channels (n) and (n+1) are combined.
6 FAULTEN0 Enables the fault control in channels (n) and (n+1).		
FAULTEN0 Enables the fault control in channels (n) and (n+1).		
Enables the fault control in channels (n) and (n+1).		Fault Control Enable For n = 0
This field is write protected. It can be written only when MODE[WPDIS] = 1.		Enables the fault control in channels (n) and (n+1).
		This field is write protected. It can be written only when MODE[WPDIS] = 1.
0 The fault control in this pair of channels is disabled.		0 The fault control in this pair of channels is disabled.
1 The fault control in this pair of channels is enabled.		1 The fault control in this pair of channels is enabled.
5 Synchronization Enable For n = 0		Synchronization Enable For n = 0
SYNCEN0 Enables PWM synchronization of registers C(n)V and C(n+1)V.	SYNCEN0	Enables PWM synchronization of registers C(n)V and C(n+1)V.
0 The PWM synchronization in this pair of channels is disabled.		0 The PWM synchronization in this pair of channels is disabled.
1 The PWM synchronization in this pair of channels is enabled.		1 The PWM synchronization in this pair of channels is enabled.
4 Deadtime Enable For n = 0		Deadtime Enable For n = 0
DTEN0 Enables the deadtime insertion in the channels (n) and (n+1).	DTENU	Enables the deadtime insertion in the channels (n) and (n+1).
This field is write protected. It can be written only when MODE[WPDIS] = 1.		This field is write protected. It can be written only when MODE[WPDIS] = 1.
0 The deadtime insertion in this pair of channels is disabled.		0 The deadtime insertion in this pair of channels is disabled.
1 The deadtime insertion in this pair of channels is enabled.		1 The deadtime insertion in this pair of channels is enabled.
3 Dual Edge Capture Mode Captures For n = 0	-	Dual Edge Capture Mode Captures For n = 0
DECAP0 Enables the capture of the FTM counter value according to the channel (n) input event and the configuration of the dual edge capture bits.		
This field applies only when DECAPEN = 1.		This field applies only when DECAPEN = 1.
DECAP bit is cleared automatically by hardware if dual edge capture – one-shot mode is selected at when the capture of channel (n+1) event is made.		DECAP bit is cleared automatically by hardware if dual edge capture – one-shot mode is selected and when the capture of channel (n+1) event is made.
0 The dual edge captures are inactive.		0 The dual edge captures are inactive.
1 The dual edge captures are active.		1. The dual adaption and active

Table continues on the next page ...

Field	Description
2 DECAPEN0	Dual Edge Capture Mode Enable For n = 0
	Enables the Dual Edge Capture mode in the channels (n) and (n+1). This bit reconfigures the function of MSnA, ELSnB:ELSnA and ELS(n+1)B:ELS(n+1)A bits in Dual Edge Capture mode according to Table 35-7.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The Dual Edge Capture mode in this pair of channels is disabled.
	1 The Dual Edge Capture mode in this pair of channels is enabled.
1 COMP0	Complement Of Channel (n) For n = 0
	Enables Complementary mode for the combined channels. In Complementary mode the channel (n+1) output is the inverse of the channel (n) output.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The channel (n+1) output is the same as the channel (n) output.
	1 The channel (n+1) output is the complement of the channel (n) output.
0 COMBINE0	Combine Channels For n = 0
	Enables the combine feature for channels (n) and (n+1).
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 Channels (n) and (n+1) are independent.
	1 Channels (n) and (n+1) are combined.

35.3.15 Deadtime Insertion Control (FTMx_DEADTIME)

This register selects the deadtime prescaler factor and deadtime value. All FTM channels use this clock prescaler and this deadtime value for the deadtime insertion.

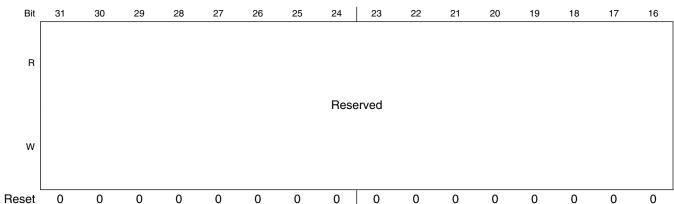
FTMx_DEADTIME field descriptions

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7–6 DTPS	Deadtime Prescaler Value Selects the division factor of the system clock. This prescaled clock is used by the deadtime counter.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.0x Divide the system clock by 1.

Table continues on the next page...

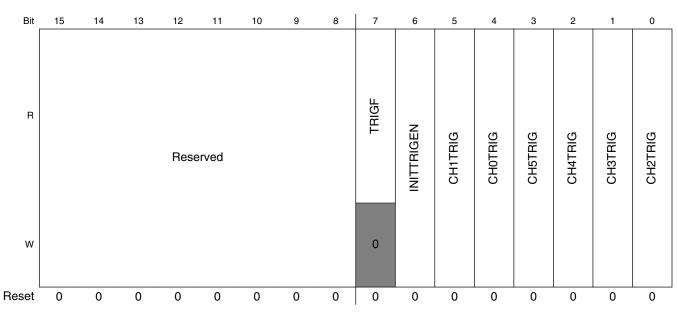
Field	Description
	10 Divide the system clock by 4.
	11 Divide the system clock by 16.
5-0	Deadtime Value
DTVAL	Selects the deadtime insertion value for the deadtime counter. The deadtime counter is clocked by a scaled version of the system clock. See the description of DTPS.
	Deadtime insert value = (DTPS × DTVAL).
	DTVAL selects the number of deadtime counts inserted as follows:
	When DTVAL is 0, no counts are inserted.
	When DTVAL is 1, 1 count is inserted.
	When DTVAL is 2, 2 counts are inserted.
	This pattern continues up to a possible 63 counts.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.

FTMx_DEADTIME field descriptions (continued)


35.3.16 FTM External Trigger (FTMx_EXTTRIG)

This register:

- Indicates when a channel trigger was generated
- Enables the generation of a trigger when the FTM counter is equal to its initial value
- Selects which channels are used in the generation of the channel triggers


Several channels can be selected to generate multiple triggers in one PWM period.

Channels 6 and 7 are not used to generate channel triggers.

Address: Base address + 6Ch offset

FTMx_EXTTRIG field descriptions

Field	Description								
31–8 Reserved	This field is reserved.								
7	Channel Trigger Flag								
TRIGF	Set by hardware when a channel trigger is generated. Clear TRIGF by reading EXTTRIG while TRIGF is set and then writing a 0 to TRIGF. Writing a 1 to TRIGF has no effect.								
	If another channel trigger is generated before the clearing sequence is completed, the sequence is reset so TRIGF remains set after the clear sequence is completed for the earlier TRIGF.								
	0 No channel trigger was generated.								
	1 A channel trigger was generated.								
6	Initialization Trigger Enable								
INITTRIGEN	Enables the generation of the trigger when the FTM counter is equal to the CNTIN register.								
	0 The generation of initialization trigger is disabled.								
	1 The generation of initialization trigger is enabled.								
5 CH1TRIG	Channel 1 Trigger Enable								
CITING	Enables the generation of the channel trigger when the FTM counter is equal to the CnV register.								
	0 The generation of the channel trigger is disabled.								
	1 The generation of the channel trigger is enabled.								
4 CH0TRIG	Channel 0 Trigger Enable								
CHUTRIG	Enables the generation of the channel trigger when the FTM counter is equal to the CnV register.								
	0 The generation of the channel trigger is disabled.								
	1 The generation of the channel trigger is enabled.								
3 CH5TRIG	Channel 5 Trigger Enable								

Table continues on the next page ...

Field	Description
	Enables the generation of the channel trigger when the FTM counter is equal to the CnV register.
	0 The generation of the channel trigger is disabled.
	1 The generation of the channel trigger is enabled.
2 CH4TRIG	Channel 4 Trigger Enable
	Enables the generation of the channel trigger when the FTM counter is equal to the CnV register.
	0 The generation of the channel trigger is disabled.
	1 The generation of the channel trigger is enabled.
1 CH3TRIG	Channel 3 Trigger Enable
	Enables the generation of the channel trigger when the FTM counter is equal to the CnV register.
	0 The generation of the channel trigger is disabled.
	1 The generation of the channel trigger is enabled.
0 CH2TRIG	Channel 2 Trigger Enable
	Enables the generation of the channel trigger when the FTM counter is equal to the CnV register.
	0 The generation of the channel trigger is disabled.
	1 The generation of the channel trigger is enabled.

FTMx_EXTTRIG field descriptions (continued)

35.3.17 Channels Polarity (FTMx_POL)

This register defines the output polarity of the FTM channels.

NOTE

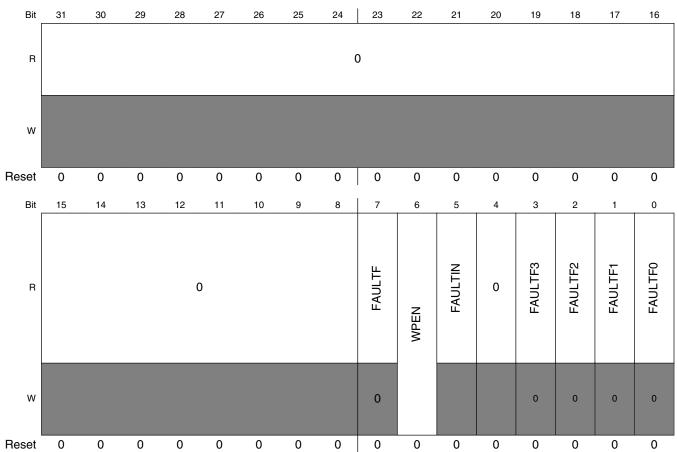
The safe value that is driven in a channel output when the fault control is enabled and a fault condition is detected is the inactive state of the channel. That is, the safe value of a channel is the value of its POL bit.

/ (000	5. Duoo	uuuuioo	0 1 7 011	011001												
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R W								Rese	erved							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R W				Rese	erved				POL7	POL6	POL5	POL4	POL3	POL2	POL1	POL0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Address: Base address + 70h offset

FTMx_POL field descriptions

Field	Description											
31–8 Reserved	This field is reserved.											
7	Channel 7 Polarity											
POL7	Defines the polarity of the channel output.											
	This field is write protected. It can be written only when MODE[WPDIS] = 1.											
	 The channel polarity is active high. The channel polarity is active low. 											
6	Channel 6 Polarity											
POL6	Defines the polarity of the channel output.											
	This field is write protected. It can be written only when MODE[WPDIS] = 1.											
	0 The channel polarity is active high.											
	1 The channel polarity is active low.											
5	Channel 5 Polarity											
POL5	Defines the polarity of the channel output.											
	This field is write protected. It can be written only when MODE[WPDIS] = 1.											
	0 The channel polarity is active high.											
	1 The channel polarity is active low.											
4 POL4	Channel 4 Polarity											
1021	Defines the polarity of the channel output.											
	This field is write protected. It can be written only when MODE[WPDIS] = 1.											
	0 The channel polarity is active high.											
	1 The channel polarity is active low.											
3 POL3	Channel 3 Polarity											
POL3	Defines the polarity of the channel output.											
	This field is write protected. It can be written only when MODE[WPDIS] = 1.											
	0 The channel polarity is active high.											
	1 The channel polarity is active low.											
2	Channel 2 Polarity											
POL2	Defines the polarity of the channel output.											
	This field is write protected. It can be written only when MODE[WPDIS] = 1.											
	0 The channel polarity is active high.											
	1 The channel polarity is active low.											
1	Channel 1 Polarity											
POL1	Defines the polarity of the channel output.											
	This field is write protected. It can be written only when MODE[WPDIS] = 1.											
	Table continues on the next page											


Table continues on the next page...

Field	Description										
	0 The channel polarity is active high.										
	1 The channel polarity is active low.										
0	Channel 0 Polarity										
POL0	Defines the polarity of the channel output.										
	This field is write protected. It can be written only when MODE[WPDIS] = 1.										
	0 The channel polarity is active high.										
	1 The channel polarity is active low.										

FTMx_POL field descriptions (continued)

35.3.18 Fault Mode Status (FTMx_FMS)

This register contains the fault detection flags, write protection enable bit, and the logic OR of the enabled fault inputs.

Address: Base address + 74h offset

FTMx_FMS field descriptions

Field	Description									
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.									
7	Fault Detection Flag									
FAULTF	Represents the logic OR of the individual FAULTFj bits where $j = 3, 2, 1, 0$. Clear FAULTF by reading the FMS register while FAULTF is set and then writing a 0 to FAULTF while there is no existing fault condition at the enabled fault inputs. Writing a 1 to FAULTF has no effect.									
	If another fault condition is detected in an enabled fault input before the clearing sequence is completed, the sequence is reset so FAULTF remains set after the clearing sequence is completed for the earlier fault condition. FAULTF is also cleared when FAULTFj bits are cleared individually.									
	0 No fault condition was detected.									
	1 A fault condition was detected.									
6	Write Protection Enable									
WPEN	The WPEN bit is the negation of the WPDIS bit. WPEN is set when 1 is written to it. WPEN is cleared when WPEN bit is read as a 1 and then 1 is written to WPDIS. Writing 0 to WPEN has no effect.									
	0 Write protection is disabled. Write protected bits can be written.									
	1 Write protection is enabled. Write protected bits cannot be written.									
5 FAULTIN	Fault Inputs									
	Represents the logic OR of the enabled fault inputs after their filter (if their filter is enabled) when fault control is enabled.									
	0 The logic OR of the enabled fault inputs is 0.									
	1 The logic OR of the enabled fault inputs is 1.									
4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.									
3	Fault Detection Flag 3									
FAULTF3	Set by hardware when fault control is enabled, the corresponding fault input is enabled and a fault condition is detected at the fault input.									
	Clear FAULTF3 by reading the FMS register while FAULTF3 is set and then writing a 0 to FAULTF3 while there is no existing fault condition at the corresponding fault input. Writing a 1 to FAULTF3 has no effect. FAULTF3 bit is also cleared when FAULTF bit is cleared.									
	If another fault condition is detected at the corresponding fault input before the clearing sequence is completed, the sequence is reset so FAULTF3 remains set after the clearing sequence is completed for the earlier fault condition.									
	0 No fault condition was detected at the fault input.									
	1 A fault condition was detected at the fault input.									
2	Fault Detection Flag 2									
FAULTF2	Set by hardware when fault control is enabled, the corresponding fault input is enabled and a fault condition is detected at the fault input.									
	Clear FAULTF2 by reading the FMS register while FAULTF2 is set and then writing a 0 to FAULTF2 while there is no existing fault condition at the corresponding fault input. Writing a 1 to FAULTF2 has no effect. FAULTF2 bit is also cleared when FAULTF bit is cleared.									

Table continues on the next page...

FTMx_	FMS	field	descriptions	(continued)
-------	-----	-------	--------------	-------------

Field	Description
	If another fault condition is detected at the corresponding fault input before the clearing sequence is completed, the sequence is reset so FAULTF2 remains set after the clearing sequence is completed for the earlier fault condition.
	0 No fault condition was detected at the fault input.
	1 A fault condition was detected at the fault input.
1	Fault Detection Flag 1
FAULTF1	Set by hardware when fault control is enabled, the corresponding fault input is enabled and a fault condition is detected at the fault input.
	Clear FAULTF1 by reading the FMS register while FAULTF1 is set and then writing a 0 to FAULTF1 while there is no existing fault condition at the corresponding fault input. Writing a 1 to FAULTF1 has no effect. FAULTF1 bit is also cleared when FAULTF bit is cleared.
	If another fault condition is detected at the corresponding fault input before the clearing sequence is completed, the sequence is reset so FAULTF1 remains set after the clearing sequence is completed for the earlier fault condition.
	0 No fault condition was detected at the fault input.
	1 A fault condition was detected at the fault input.
0	Fault Detection Flag 0
FAULTF0	Set by hardware when fault control is enabled, the corresponding fault input is enabled and a fault condition is detected at the fault input.
	Clear FAULTF0 by reading the FMS register while FAULTF0 is set and then writing a 0 to FAULTF0 while there is no existing fault condition at the corresponding fault input. Writing a 1 to FAULTF0 has no effect. FAULTF0 bit is also cleared when FAULTF bit is cleared.
	If another fault condition is detected at the corresponding fault input before the clearing sequence is completed, the sequence is reset so FAULTF0 remains set after the clearing sequence is completed for the earlier fault condition.
	0 No fault condition was detected at the fault input.
	1 A fault condition was detected at the fault input.

35.3.19 Input Capture Filter Control (FTMx_FILTER)

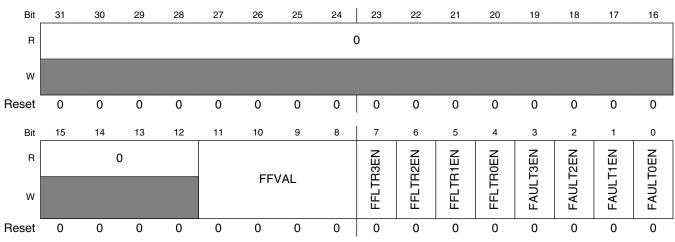
This register selects the filter value for the inputs of channels.

Channels 4, 5, 6 and 7 do not have an input filter.

NOTE

Writing to the FILTER register has immediate effect and must be done only when the channels 0, 1, 2, and 3 are not in input modes. Failure to do this could result in a missing valid signal.

Address: Base address + 78h offset


Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R W				-		-	F	Rese	erve	d				-			C	НЗЕ	=VA	L	C	H2F	=VA	L	C	H1F	=VA	L	C	CHOF	=VA	L
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

FTMx_FILTER field descriptions

Field	Description
31–16 Reserved	This field is reserved.
15–12 CH3FVAL	Channel 3 Input Filter Selects the filter value for the channel input. The filter is disabled when the value is zero.
11–8 CH2FVAL	Channel 2 Input Filter Selects the filter value for the channel input. The filter is disabled when the value is zero.
7–4 CH1FVAL	Channel 1 Input Filter Selects the filter value for the channel input. The filter is disabled when the value is zero.
3–0 CH0FVAL	Channel 0 Input Filter Selects the filter value for the channel input. The filter is disabled when the value is zero.

35.3.20 Fault Control (FTMx_FLTCTRL)

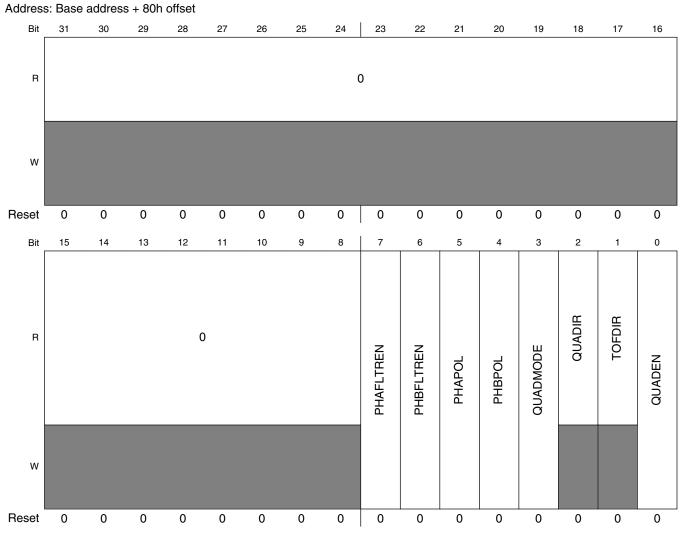
This register selects the filter value for the fault inputs, enables the fault inputs and the fault inputs filter.

Address: Base address + 7Ch offset

FTMx_FLTCTRL field descriptions

Field	Description											
31–12 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.											
11-8	Fault Input Filter											
FFVAL	Selects the filter value for the fault inputs.											
	The fault filter is disabled when the value is zero.											
	NOTE: Writing to this field has immediate effect and must be done only when the fault control or all fault inputs are disabled. Failure to do this could result in a missing fault detection.											
7 FFLTR3EN	Fault Input 3 Filter Enable											
FFLIR3EN	Enables the filter for the fault input.											
	This field is write protected. It can be written only when MODE[WPDIS] = 1.											
	0 Fault input filter is disabled.											
	1 Fault input filter is enabled.											
6 FFLTR2EN	Fault Input 2 Filter Enable											
FFLINZEN	Enables the filter for the fault input.											
	This field is write protected. It can be written only when MODE[WPDIS] = 1.											
	0 Fault input filter is disabled.											
	1 Fault input filter is enabled.											
5 FFLTR1EN	Fault Input 1 Filter Enable											
	Enables the filter for the fault input.											
	This field is write protected. It can be written only when MODE[WPDIS] = 1.											
	0 Fault input filter is disabled.											
	1 Fault input filter is enabled.											
	Fault Input 0 Filter Enable											
FFLTR0EN	Enables the filter for the fault input.											
	This field is write protected. It can be written only when MODE[WPDIS] = 1.											
	0 Fault input filter is disabled.											
	1 Fault input filter is enabled.											
3	Fault Input 3 Enable											
FAULT3EN	Enables the fault input.											
	This field is write protected. It can be written only when MODE[WPDIS] = 1.											
	0 Fault input is disabled.											
	1 Fault input is enabled.											
	Fault Input 2 Enable											
FAULT2EN	Enables the fault input.											
	This field is write protected. It can be written only when MODE[WPDIS] = 1.											
	0 Fault input is disabled.											
	1 Fault input is enabled.											

Table continues on the next page ...



FTMx_FLTCTRL field descriptions (continued)

Field	Description										
1	Fault Input 1 Enable										
FAULT1EN	Enables the fault input.										
	This field is write protected. It can be written only when MODE[WPDIS] = 1.										
	0 Fault input is disabled.										
	1 Fault input is enabled.										
0	Fault Input 0 Enable										
FAULTOEN	Enables the fault input.										
	This field is write protected. It can be written only when MODE[WPDIS] = 1.										
	0 Fault input is disabled.										
	1 Fault input is enabled.										

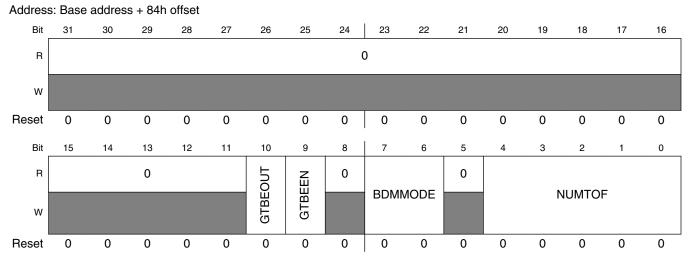
35.3.21 Quadrature Decoder Control And Status (FTMx_QDCTRL)

This register has the control and status bits for the Quadrature Decoder mode.

FTMx_QDCTRL field descriptions

Field	Description
31–8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7 PHAFLTREN	 Phase A Input Filter Enable Enables the filter for the quadrature decoder phase A input. The filter value for the phase A input is defined by the CH0FVAL field of FILTER. The phase A filter is also disabled when CH0FVAL is zero. 0 Phase A input filter is disabled. 1 Phase A input filter is enabled.

Table continues on the next page...



FTMx_QDCTRL field descriptions (continued)

Field	Description
6 PHREI TREN	Phase B Input Filter Enable
PHBFLTREN	Enables the filter for the quadrature decoder phase B input. The filter value for the phase B input is defined by the CH1FVAL field of FILTER. The phase B filter is also disabled when CH1FVAL is zero.
	0 Phase B input filter is disabled.
	1 Phase B input filter is enabled.
5 PHAPOL	Phase A Input Polarity
	Selects the polarity for the quadrature decoder phase A input.
	0 Normal polarity. Phase A input signal is not inverted before identifying the rising and falling edges of this signal.
	1 Inverted polarity. Phase A input signal is inverted before identifying the rising and falling edges of this signal.
4 PHBPOL	Phase B Input Polarity
	Selects the polarity for the quadrature decoder phase B input.
	0 Normal polarity. Phase B input signal is not inverted before identifying the rising and falling edges of this signal.
	1 Inverted polarity. Phase B input signal is inverted before identifying the rising and falling edges of this signal.
3	Quadrature Decoder Mode
QUADMODE	Selects the encoding mode used in the Quadrature Decoder mode.
	0 Phase A and phase B encoding mode.
	1 Count and direction encoding mode.
2 QUADIR	FTM Counter Direction In Quadrature Decoder Mode Indicates the counting direction.
	 Counting direction is decreasing (FTM counter decrement). Counting direction is increasing (FTM counter increment).
1 TOFDIR	Timer Overflow Direction In Quadrature Decoder Mode
	Indicates if the TOF bit was set on the top or the bottom of counting.
	0 TOF bit was set on the bottom of counting. There was an FTM counter decrement and FTM counter changes from its minimum value (CNTIN register) to its maximum value (MOD register).
	1 TOF bit was set on the top of counting. There was an FTM counter increment and FTM counter changes from its maximum value (MOD register) to its minimum value (CNTIN register).
0	Quadrature Decoder Mode Enable
QUADEN	Enables the Quadrature Decoder mode. In this mode, the phase A and B input signals control the FTM counter direction. The Quadrature Decoder mode has precedence over the other modes. See Table 35-7.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 Quadrature Decoder mode is disabled.
	1 Quadrature Decoder mode is enabled.

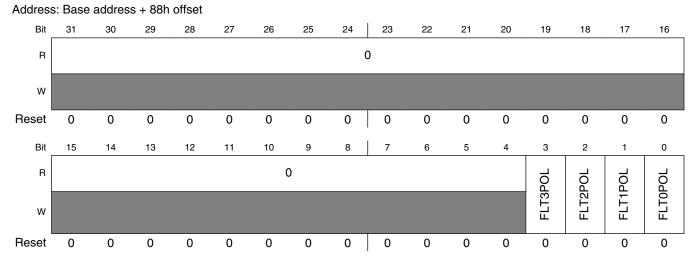
35.3.22 Configuration (FTMx_CONF)

This register selects the number of times that the FTM counter overflow should occur before the TOF bit to be set, the FTM behavior in BDM modes, the use of an external global time base, and the global time base signal generation.

FTMx_CONF field descriptions

Field	Description
31–11 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
10 GTBEOUT	Global Time Base Output Enables the global time base signal generation to other FTMs.
	0 A global time base signal generation is disabled.
	¹ A global time base signal generation is enabled.
9 GTBEEN	Global Time Base EnableConfigures the FTM to use an external global time base signal that is generated by another FTM.0 Use of an external global time base is disabled.
	¹ Use of an external global time base is enabled.
8 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
7–6	BDM Mode
BDMMODE	Selects the FTM behavior in BDM mode. See BDM mode.
5 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

Table continues on the next page...



FTMx_CONF field descriptions (continued)

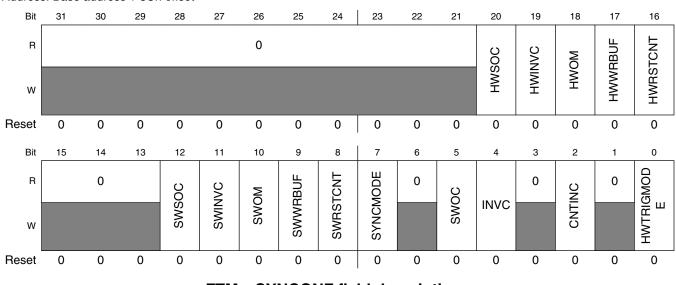
Field	Description
4-0	TOF Frequency
NUMTOF	Selects the ratio between the number of counter overflows to the number of times the TOF bit is set.
	NUMTOF = 0: The TOF bit is set for each counter overflow.
	NUMTOF = 1: The TOF bit is set for the first counter overflow but not for the next overflow.
	NUMTOF = 2: The TOF bit is set for the first counter overflow but not for the next 2 overflows.
	NUMTOF = 3: The TOF bit is set for the first counter overflow but not for the next 3 overflows.
	This pattern continues up to a maximum of 31.

35.3.23 FTM Fault Input Polarity (FTMx_FLTPOL)

This register defines the fault inputs polarity.

FTMx_FLTPOL field descriptions

Field	Description
31–4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3	Fault Input 3 Polarity
FLT3POL	Defines the polarity of the fault input.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The fault input polarity is active high. A 1 at the fault input indicates a fault.
	1 The fault input polarity is active low. A 0 at the fault input indicates a fault.
2 FLT2POL	Fault Input 2 Polarity
	Defines the polarity of the fault input.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.


Table continues on the next page ...

Field	Description
	0 The fault input polarity is active high. A 1 at the fault input indicates a fault.
	1 The fault input polarity is active low. A 0 at the fault input indicates a fault.
1	Fault Input 1 Polarity
FLT1POL	Defines the polarity of the fault input.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The fault input polarity is active high. A 1 at the fault input indicates a fault.
	1 The fault input polarity is active low. A 0 at the fault input indicates a fault.
0 FLT0POL	Fault Input 0 Polarity
	Defines the polarity of the fault input.
	This field is write protected. It can be written only when MODE[WPDIS] = 1.
	0 The fault input polarity is active high. A 1 at the fault input indicates a fault.
	1 The fault input polarity is active low. A 0 at the fault input indicates a fault.

FTMx_FLTPOL field descriptions (continued)

35.3.24 Synchronization Configuration (FTMx_SYNCONF)

This register selects the PWM synchronization configuration, SWOCTRL, INVCTRL and CNTIN registers synchronization, if FTM clears the TRIGj bit, where j = 0, 1, 2, when the hardware trigger j is detected.

Address: Base address + 8Ch offset

FTMx_SYNCONF field descriptions

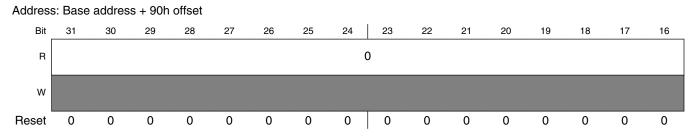
Field	Description
-	This field is reserved. This read-only field is reserved and always has the value 0.

Table continues on the next page...

FTMx_SYNCONF field descriptions (continued)

Field	Description
20 HWSOC	Software output control synchronization is activated by a hardware trigger.
	0 A hardware trigger does not activate the SWOCTRL register synchronization.
	1 A hardware trigger activates the SWOCTRL register synchronization.
19 HWINVC	Inverting control synchronization is activated by a hardware trigger.
	0 A hardware trigger does not activate the INVCTRL register synchronization.
	1 A hardware trigger activates the INVCTRL register synchronization.
18 HWOM	Output mask synchronization is activated by a hardware trigger.
	0 A hardware trigger does not activate the OUTMASK register synchronization.
	1 A hardware trigger activates the OUTMASK register synchronization.
17 HWWRBUF	MOD, CNTIN, and CV registers synchronization is activated by a hardware trigger.
	0 A hardware trigger does not activate MOD, CNTIN, and CV registers synchronization.
	1 A hardware trigger activates MOD, CNTIN, and CV registers synchronization.
16 HWRSTCNT	FTM counter synchronization is activated by a hardware trigger.
	0 A hardware trigger does not activate the FTM counter synchronization.
	1 A hardware trigger activates the FTM counter synchronization.
15–13 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
12 SWSOC	Software output control synchronization is activated by the software trigger.
	0 The software trigger does not activate the SWOCTRL register synchronization.
	1 The software trigger activates the SWOCTRL register synchronization.
11 SWINVC	Inverting control synchronization is activated by the software trigger.
	0 The software trigger does not activate the INVCTRL register synchronization.
	1 The software trigger activates the INVCTRL register synchronization.
10 SWOM	Output mask synchronization is activated by the software trigger.
	0 The software trigger does not activate the OUTMASK register synchronization.
	1 The software trigger activates the OUTMASK register synchronization.
9 SWWRBUF	MOD, CNTIN, and CV registers synchronization is activated by the software trigger.
	0 The software trigger does not activate MOD, CNTIN, and CV registers synchronization.
	1 The software trigger activates MOD, CNTIN, and CV registers synchronization.
8 SWRSTCNT	FTM counter synchronization is activated by the software trigger.
	0 The software trigger does not activate the FTM counter synchronization.
7	The software trigger activates the FTM counter synchronization. Synchronization Mode
SYNCMODE	Selects the PWM Synchronization mode.
	0 Legacy PWM synchronization is selected.
	1 Enhanced PWM synchronization is selected.

Table continues on the next page...


Field	Description
6 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
5 SWOC	SWOCTRL Register SynchronizationSWOCTRL register is updated with its buffer value at all rising edges of system clock.
	1 SWOCTRL register is updated with its buffer value by the PWM synchronization.
4 INVC	INVCTRL Register Synchronization
	0 INVCTRL register is updated with its buffer value at all rising edges of system clock.
	1 INVCTRL register is updated with its buffer value by the PWM synchronization.
3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
2 CNTINC	CNTIN Register Synchronization
Civinite -	0 CNTIN register is updated with its buffer value at all rising edges of system clock.
	1 CNTIN register is updated with its buffer value by the PWM synchronization.
1	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
0 HWTRIGMODE	Hardware Trigger Mode
	0 FTM clears the TRIGj bit when the hardware trigger j is detected, where $j = 0, 1, 2$.
	1 FTM does not clear the TRIGj bit when the hardware trigger j is detected, where $j = 0, 1, 2$.

FTMx_SYNCONF field descriptions (continued)

35.3.25 FTM Inverting Control (FTMx_INVCTRL)

This register controls when the channel (n) output becomes the channel (n+1) output, and channel (n+1) output becomes the channel (n) output. Each INVmEN bit enables the inverting operation for the corresponding pair channels m.

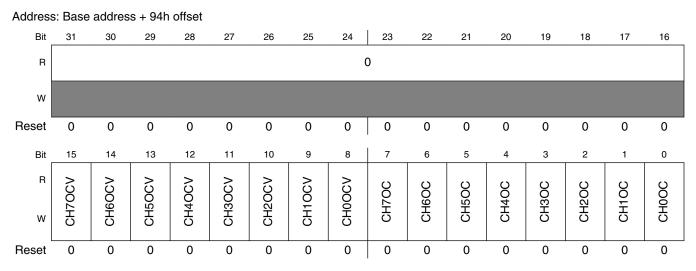
This register has a write buffer. The INVmEN bit is updated by the INVCTRL register

synchronization.

FTMx_INVCTRL field descriptions

Field	Description
31–4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3 INV3EN	Pair Channels 3 Inverting Enable
	0 Inverting is disabled.
	1 Inverting is enabled.
2 INV2EN	Pair Channels 2 Inverting Enable
	0 Inverting is disabled.
	1 Inverting is enabled.
1 INV1EN	Pair Channels 1 Inverting Enable
	0 Inverting is disabled.
	1 Inverting is enabled.
0	Pair Channels 0 Inverting Enable
INVOEN	0 Inverting is disabled.
	1 Inverting is enabled.

35.3.26 FTM Software Output Control (FTMx_SWOCTRL)


This register enables software control of channel (n) output and defines the value forced to the channel (n) output:

- The CHnOC bits enable the control of the corresponding channel (n) output by software.
- The CHnOCV bits select the value that is forced at the corresponding channel (n) output.

This register has a write buffer. The fields are updated by the SWOCTRL register synchronization.

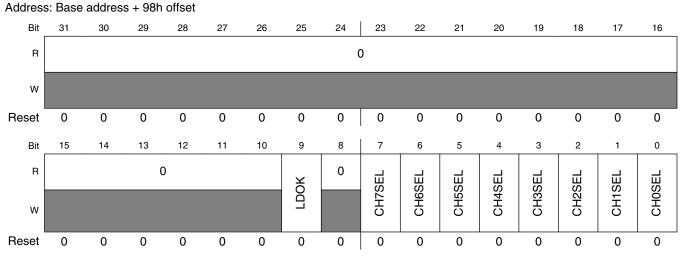
KV10 Sub-Family Reference Manual, Rev. 7, September 2014

memory map and register definition

FTMx_SWOCTRL field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15 CH7OCV	Channel 7 Software Output Control Value
011/001	0 The software output control forces 0 to the channel output.
	1 The software output control forces 1 to the channel output.
14 CH6OCV	Channel 6 Software Output Control Value
	0 The software output control forces 0 to the channel output.
	1 The software output control forces 1 to the channel output.
13 CH5OCV	Channel 5 Software Output Control Value
	0 The software output control forces 0 to the channel output.
	1 The software output control forces 1 to the channel output.
12 CH4OCV	Channel 4 Software Output Control Value
	0 The software output control forces 0 to the channel output.
	1 The software output control forces 1 to the channel output.
11 CH3OCV	Channel 3 Software Output Control Value
	0 The software output control forces 0 to the channel output.
	1 The software output control forces 1 to the channel output.
10 CH2OCV	Channel 2 Software Output Control Value
	0 The software output control forces 0 to the channel output.
	1 The software output control forces 1 to the channel output.
9 CH1OCV	Channel 1 Software Output Control Value
	0 The software output control forces 0 to the channel output.
	1 The software output control forces 1 to the channel output.
8 CH0OCV	Channel 0 Software Output Control Value

Table continues on the next page ...


FTMx_SWOCTRL field descriptions (continued)

Field	Description
	0 The software output control forces 0 to the channel output.
	1 The software output control forces 1 to the channel output.
7	Channel 7 Software Output Control Enable
CH7OC	0 The channel output is not affected by software output control.
	 0 The channel output is not affected by software output control. 1 The channel output is affected by software output control.
6	Channel 6 Software Output Control Enable
CH6OC	
011000	0 The channel output is not affected by software output control.
	1 The channel output is affected by software output control.
5 CH5OC	Channel 5 Software Output Control Enable
	0 The channel output is not affected by software output control.
	1 The channel output is affected by software output control.
4 CH4OC	Channel 4 Software Output Control Enable
	0 The channel output is not affected by software output control.
	1 The channel output is affected by software output control.
3 CH3OC	Channel 3 Software Output Control Enable
	0 The channel output is not affected by software output control.
	1 The channel output is affected by software output control.
2 CH2OC	Channel 2 Software Output Control Enable
	0 The channel output is not affected by software output control.
	1 The channel output is affected by software output control.
1 CH1OC	Channel 1 Software Output Control Enable
	0 The channel output is not affected by software output control.
	1 The channel output is affected by software output control.
0 CH0OC	Channel 0 Software Output Control Enable
	0 The channel output is not affected by software output control.
	1 The channel output is affected by software output control.

35.3.27 FTM PWM Load (FTMx_PWMLOAD)

Enables the loading of the MOD, CNTIN, C(n)V, and C(n+1)V registers with the values of their write buffers when the FTM counter changes from the MOD register value to its next value or when a channel (j) match occurs. A match occurs for the channel (j) when FTM counter = C(j)V.

FTMx_PWMLOAD field descriptions

Field	Description							
31–10	This field is reserved.							
Reserved	This read-only field is reserved and always has the value 0.							
9 LDOK	Load Enable							
	Enables the loading of the MOD, CNTIN, and CV registers with the values of their write buffers.							
	0 Loading updated values is disabled.							
	1 Loading updated values is enabled.							
8	This field is reserved.							
Reserved	This read-only field is reserved and always has the value 0.							
7 CH7SEL	Channel 7 Select							
	0 Do not include the channel in the matching process.							
	1 Include the channel in the matching process.							
6 CH6SEL	Channel 6 Select							
	0 Do not include the channel in the matching process.							
	1 Include the channel in the matching process.							
5 CH5SEL	Channel 5 Select							
	0 Do not include the channel in the matching process.							
	1 Include the channel in the matching process.							

Table continues on the next page...

FTMx_PWMLOAD field description	s (continued)
--------------------------------	---------------

Field	Description							
4 CH4SEL	Channel 4 Select							
	0 Do not include the channel in the matching process.							
	1 Include the channel in the matching process.							
3 CH3SEL	Channel 3 Select							
	0 Do not include the channel in the matching process.							
	1 Include the channel in the matching process.							
2 CH2SEL	Channel 2 Select							
	0 Do not include the channel in the matching process.							
	1 Include the channel in the matching process.							
1 CH1SEL	Channel 1 Select							
	0 Do not include the channel in the matching process.							
	1 Include the channel in the matching process.							
0 CH0SEL	Channel 0 Select							
	0 Do not include the channel in the matching process.							
	1 Include the channel in the matching process.							

35.4 Functional description

The notation used in this document to represent the counters and the generation of the signals is shown in the following figure.

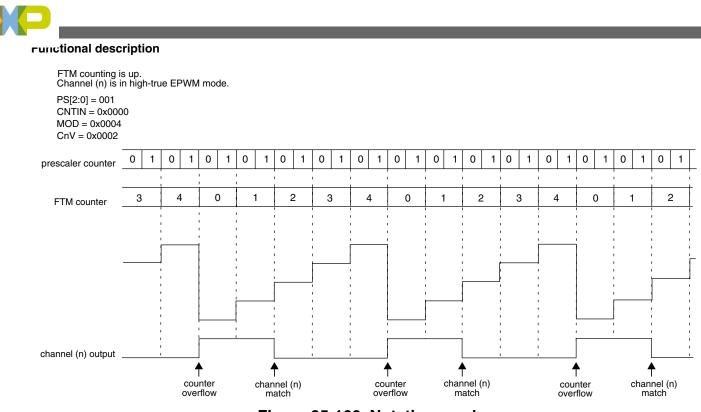


Figure 35-166. Notation used

35.4.1 Clock source

The FTM has only one clock domain: the system clock.

35.4.1.1 Counter clock source

The CLKS[1:0] bits in the SC register select one of three possible clock sources for the FTM counter or disable the FTM counter. After any MCU reset, CLKS[1:0] = 0:0 so no clock source is selected.

The CLKS[1:0] bits may be read or written at any time. Disabling the FTM counter by writing 0:0 to the CLKS[1:0] bits does not affect the FTM counter value or other registers.

The fixed frequency clock is an alternative clock source for the FTM counter that allows the selection of a clock other than the system clock or an external clock. This clock input is defined by chip integration. Refer to the chip specific documentation for further information. Due to FTM hardware implementation limitations, the frequency of the fixed frequency clock must not exceed 1/2 of the system clock frequency.

The external clock passes through a synchronizer clocked by the system clock to assure that counter transitions are properly aligned to system clock transitions. Therefore, to meet Nyquist criteria considering also jitter, the frequency of the external clock source must not exceed 1/4 of the system clock frequency.

35.4.2 Prescaler

The selected counter clock source passes through a prescaler that is a 7-bit counter. The value of the prescaler is selected by the PS[2:0] bits. The following figure shows an example of the prescaler counter and FTM counter.

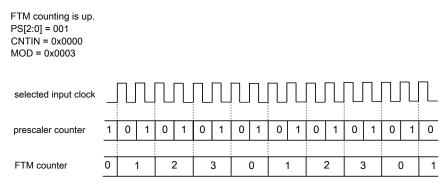


Figure 35-167. Example of the prescaler counter

35.4.3 Counter

The FTM has a 16-bit counter that is used by the channels either for input or output modes. The FTM counter clock is the selected clock divided by the prescaler.

The FTM counter has these modes of operation:

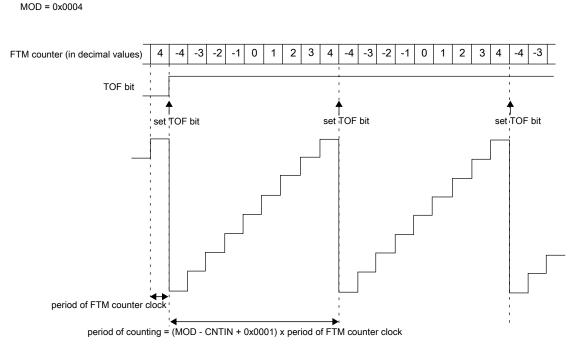
- Up counting
- Up-down counting
- Quadrature Decoder mode

35.4.3.1 Up counting

Up counting is selected when:

- QUADEN = 0, and
- CPWMS = 0

runctional description


FTM counting is up.

CNTIN = 0xFFFC (in two's complement is equal to -4)

CNTIN defines the starting value of the count and MOD defines the final value of the count, see the following figure. The value of CNTIN is loaded into the FTM counter, and the counter increments until the value of MOD is reached, at which point the counter is reloaded with the value of CNTIN.

The FTM period when using up counting is $(MOD - CNTIN + 0x0001) \times$ period of the FTM counter clock.

The TOF bit is set when the FTM counter changes from MOD to CNTIN.

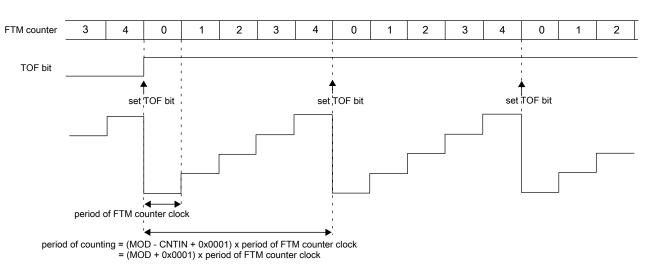

Figure 35-168. Example of FTM up and signed counting

Table 35-242. FTM counting based on CNTIN value

When	Then
CNTIN = 0x0000	The FTM counting is equivalent to TPM up counting, that is, up and unsigned counting. See the following figure.
CNTIN[15] = 1	The initial value of the FTM counter is a negative number in two's complement, so the FTM counting is up and signed.
CNTIN[15] = 0 and CNTIN ≠ 0x0000	The initial value of the FTM counter is a positive number, so the FTM counting is up and unsigned.

FTM counting is up CNTIN = 0x0000 MOD = 0x0004

Figure 35-169. Example of FTM up counting with CNTIN = 0x0000

Note

- FTM operation is only valid when the value of the CNTIN register is less than the value of the MOD register, either in the unsigned counting or signed counting. It is the responsibility of the software to ensure that the values in the CNTIN and MOD registers meet this requirement. Any values of CNTIN and MOD that do not satisfy this criteria can result in unpredictable behavior.
- MOD = CNTIN is a redundant condition. In this case, the FTM counter is always equal to MOD and the TOF bit is set in each rising edge of the FTM counter clock.
- When MOD = 0x0000, CNTIN = 0x0000, for example after reset, and FTMEN = 1, the FTM counter remains stopped at 0x0000 until a non-zero value is written into the MOD or CNTIN registers.
- Setting CNTIN to be greater than the value of MOD is not recommended as this unusual setting may make the FTM operation difficult to comprehend. However, there is no restriction on this configuration, and an example is shown in the following figure.

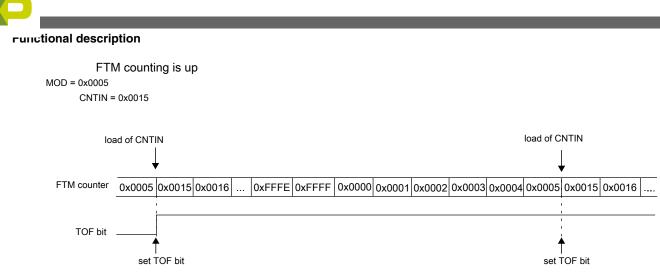


Figure 35-170. Example of up counting when the value of CNTIN is greater than the value of MOD

35.4.3.2 Up-down counting

Up-down counting is selected when:

- QUADEN = 0, and
- CPWMS = 1

CNTIN defines the starting value of the count and MOD defines the final value of the count. The value of CNTIN is loaded into the FTM counter, and the counter increments until the value of MOD is reached, at which point the counter is decremented until it returns to the value of CNTIN and the up-down counting restarts.

The FTM period when using up-down counting is $2 \times (MOD - CNTIN) \times$ period of the FTM counter clock.

The TOF bit is set when the FTM counter changes from MOD to (MOD - 1).

If (CNTIN = 0x0000), the FTM counting is equivalent to TPM up-down counting, that is, up-down and unsigned counting. See the following figure.

FTM counting is up-down CNTIN = 0x0000 MOD = 0x0004

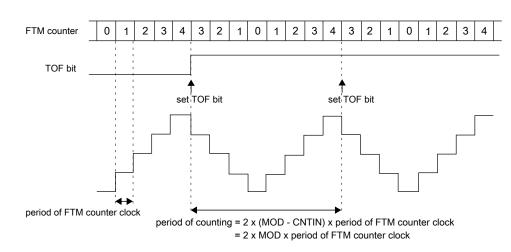
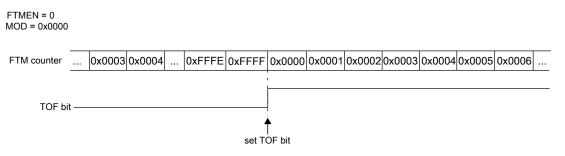


Figure 35-171. Example of up-down counting when CNTIN = 0x0000


Note

When CNTIN is different from zero in the up-down counting, a valid CPWM signal is generated:

- if CnV > CNTIN, or
- if CnV = 0 or if CnV[15] = 1. In this case, 0% CPWM is generated.

35.4.3.3 Free running counter

If (FTMEN = 0) and (MOD = 0x0000 or MOD = 0xFFFF), the FTM counter is a free running counter. In this case, the FTM counter runs free from 0x0000 through 0xFFFF and the TOF bit is set when the FTM counter changes from 0xFFFF to 0x0000. See the following figure.

The FTM counter is also a free running counter when:

unctional description

- FTMEN = 1
- QUADEN = 0
- CPWMS = 0
- CNTIN = 0x0000, and
- MOD = 0xFFFF

35.4.3.4 Counter reset

Any one of the following cases resets the FTM counter to the value in the CNTIN register and the channels output to its initial value, except for channels in Output Compare mode.

- Any write to CNT.
- FTM counter synchronization.
- A channel in Input Capture mode with ICRST = 1 (FTM Counter Reset in Input Capture Mode).

35.4.3.5 When the TOF bit is set

The NUMTOF[4:0] bits define the number of times that the FTM counter overflow should occur before the TOF bit to be set. If NUMTOF[4:0] = 0x00, then the TOF bit is set at each FTM counter overflow.

Initialize the FTM counter, by writing to CNT, after writing to the NUMTOF[4:0] bits to avoid confusion about when the first counter overflow will occur.

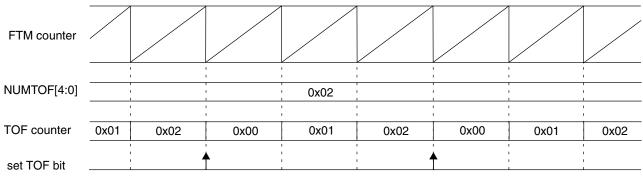


Figure 35-173. Periodic TOF when NUMTOF = 0x02

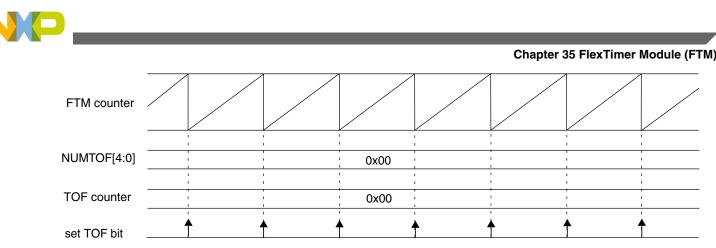


Figure 35-174. Periodic TOF when NUMTOF = 0x00

35.4.4 Input Capture mode

The Input Capture mode is selected when:

- DECAPEN = 0
- COMBINE = 0
- CPWMS = 0
- MSnB:MSnA = 0:0, and
- ELSnB:ELSnA \neq 0:0

When a selected edge occurs on the channel input, the current value of the FTM counter is captured into the CnV register, at the same time the CHnF bit is set and the channel interrupt is generated if enabled by CHnIE = 1. See the following figure.

When a channel is configured for input capture, the FTMxCHn pin is an edge-sensitive input. ELSnB:ELSnA control bits determine which edge, falling or rising, triggers input-capture event. Note that the maximum frequency for the channel input signal to be detected correctly is system clock divided by 4, which is required to meet Nyquist criteria for signal sampling.

Writes to the CnV register is ignored in Input Capture mode.

While in BDM, the input capture function works as configured. When a selected edge event occurs, the FTM counter value, which is frozen because of BDM, is captured into the CnV register and the CHnF bit is set.

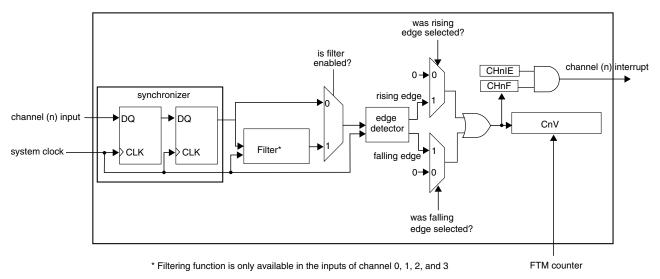


Figure 35-175. Input Capture mode

If the channel input does not have a filter enabled, then the input signal is always delayed 3 rising edges of the system clock, that is, two rising edges to the synchronizer plus one more rising edge to the edge detector. In other words, the CHnF bit is set on the third rising edge of the system clock after a valid edge occurs on the channel input.

35.4.4.1 Filter for Input Capture mode

The filter function is only available on channels 0, 1, 2, and 3.

First, the input signal is synchronized by the system clock. Following synchronization, the input signal enters the filter block. See the following figure.

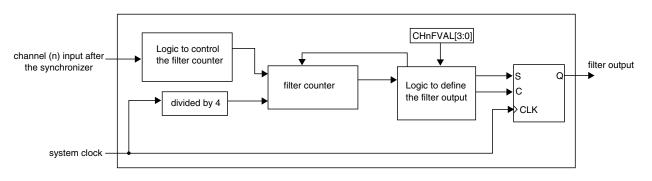


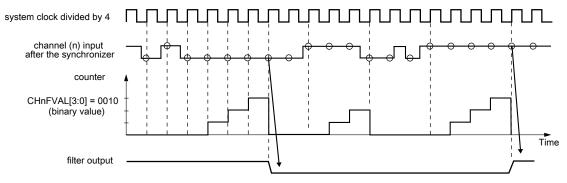
Figure 35-176. Channel input filter

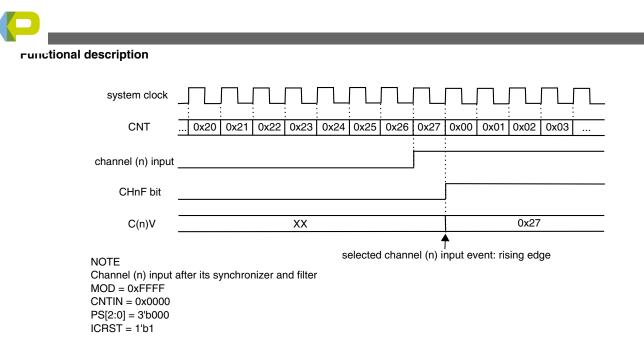
When there is a state change in the input signal, the counter is reset and starts counting up. As long as the new state is stable on the input, the counter continues to increment. When the counter is equal to CHnFVAL[3:0], the state change of the input signal is validated. It is then transmitted as a pulse edge to the edge detector.

If the opposite edge appears on the input signal before it can be validated, the counter is reset. At the next input transition, the counter starts counting again. Any pulse that is shorter than the minimum value selected by CHnFVAL[3:0] (× 4 system clocks) is regarded as a glitch and is not passed on to the edge detector. A timing diagram of the input filter is shown in the following figure.

The filter function is disabled when CHnFVAL[3:0] bits are zero. In this case, the input signal is delayed 3 rising edges of the system clock. If (CHnFVAL[3:0] \neq 0000), then the input signal is delayed by the minimum pulse width (CHnFVAL[3:0] × 4 system clocks) plus a further 4 rising edges of the system clock: two rising edges to the synchronizer, one rising edge to the filter output, plus one more to the edge detector. In other words, CHnF is set (4 + 4 × CHnFVAL[3:0]) system clock periods after a valid edge occurs on the channel input.

The clock for the counter in the channel input filter is the system clock divided by 4.




Figure 35-177. Channel input filter example

35.4.4.2 FTM Counter Reset in Input Capture Mode

If the channel (n) is in input capture mode and $FTMx_CnSC$ [ICRST = 1], then when the selected input capture event occurs in the channel (n) input signal, the current value of the FTM counter is captured into the CnV register, the CHnF bit is set, the channel (n) interrupt is generated (if CHnIE = 1) and the FTM counter is reset to the CNTIN register value.

This allows the FTM to measure a period/pulse being applied to FTM_CHn (counts of the FTM clock input) without having to implement a subtraction calculation in software subsequent to the event occurring.

The figure below shows the FTM counter reset when the selected input capture event is detected in a channel in input capture mode with ICRST = 1.

Figure 35-178. Example of the Input Capture mode with ICRST = 1

NOTE

- It is expected that the ICRST bit be set only when the channel is in input capture mode.
- In this case, if the FTM counter is reset, then the prescaler counter (Prescaler) and the TOF counter (When the TOF bit is set) also are reset.

35.4.5 Output Compare mode

The Output Compare mode is selected when:

- DECAPEN = 0
- COMBINE = 0
- CPWMS = 0, and
- MSnB:MSnA = 0:1

In Output Compare mode, the FTM can generate timed pulses with programmable position, polarity, duration, and frequency. When the counter matches the value in the CnV register of an output compare channel, the channel (n) output can be set, cleared, or toggled.

When a channel is initially configured to Toggle mode, the previous value of the channel output is held until the first output compare event occurs.

The CHnF bit is set and the channel (n) interrupt is generated if CHnIE = 1 at the channel (n) match (FTM counter = CnV).

MOD = 0x0005 CnV = 0x0003												
	counter overflow ↓		channel (n) match ↓		counter overflow ↓		channel (n) match ↓		coun overf			
CNT	0	1 2	3 4	5 0	1	2	3	4	5	0	1	
channel (n) output	previous	value										
CHnF bit	previous	/alue										
TOF bit												

Figure 35-179. Example of the Output Compare mode when the match toggles the channel output

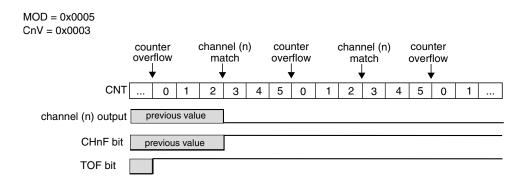
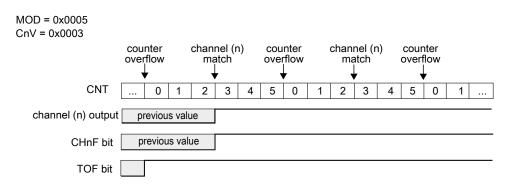



Figure 35-180. Example of the Output Compare mode when the match clears the channel output

Figure 35-181. Example of the Output Compare mode when the match sets the channel output

If (ELSnB:ELSnA = 0:0) when the counter reaches the value in the CnV register, the CHnF bit is set and the channel (n) interrupt is generated if CHnIE = 1, however the channel (n) output is not modified and controlled by FTM.

35.4.6 Edge-Aligned PWM (EPWM) mode

The Edge-Aligned mode is selected when:

• QUADEN = 0

- unctional description
 - DECAPEN = 0
 - COMBINE = 0
 - CPWMS = 0, and
 - MSnB = 1

The EPWM period is determined by (MOD - CNTIN + 0x0001) and the pulse width (duty cycle) is determined by (CnV - CNTIN).

The CHnF bit is set and the channel (n) interrupt is generated if CHnIE = 1 at the channel (n) match (FTM counter = CnV), that is, at the end of the pulse width.

This type of PWM signal is called edge-aligned because the leading edges of all PWM signals are aligned with the beginning of the period, which is the same for all channels within an FTM.

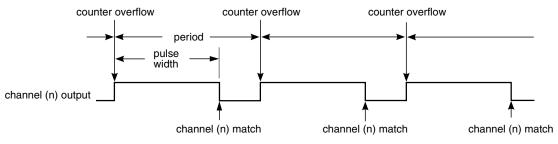


Figure 35-182. EPWM period and pulse width with ELSnB:ELSnA = 1:0

If (ELSnB:ELSnA = 0:0) when the counter reaches the value in the CnV register, the CHnF bit is set and the channel (n) interrupt is generated if CHnIE = 1, however the channel (n) output is not controlled by FTM.

If (ELSnB:ELSnA = 1:0), then the channel (n) output is forced high at the counter overflow when the CNTIN register value is loaded into the FTM counter, and it is forced low at the channel (n) match (FTM counter = CnV). See the following figure.

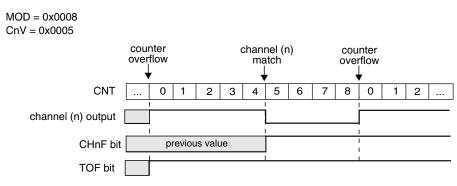


Figure 35-183. EPWM signal with ELSnB:ELSnA = 1:0

If (ELSnB:ELSnA = X:1), then the channel (n) output is forced low at the counter overflow when the CNTIN register value is loaded into the FTM counter, and it is forced high at the channel (n) match (FTM counter = CnV). See the following figure.

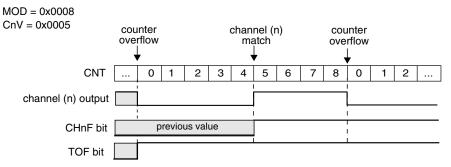


Figure 35-184. EPWM signal with ELSnB:ELSnA = X:1

If (CnV = 0x0000), then the channel (n) output is a 0% duty cycle EPWM signal and CHnF bit is not set even when there is the channel (n) match. If (CnV > MOD), then the channel (n) output is a 100% duty cycle EPWM signal and CHnF bit is not set even when there is the channel (n) match. Therefore, MOD must be less than 0xFFFF in order to get a 100% duty cycle EPWM signal.

Note

When CNTIN is different from zero the following EPWM signals can be generated:

- 0% EPWM signal if CnV = CNTIN,
- EPWM signal between 0% and 100% if CNTIN < CnV <= MOD,
- 100% EPWM signal when CNTIN > CnV or CnV > MOD.

35.4.7 Center-Aligned PWM (CPWM) mode

The Center-Aligned mode is selected when:

- QUADEN = 0
- DECAPEN = 0
- COMBINE = 0, and
- CPWMS = 1

The CPWM pulse width (duty cycle) is determined by $2 \times (CnV - CNTIN)$ and the period is determined by $2 \times (MOD - CNTIN)$. See the following figure. MOD must be kept in the range of 0x0001 to 0x7FFF because values outside this range can produce ambiguous results.

In the CPWM mode, the FTM counter counts up until it reaches MOD and then counts down until it reaches CNTIN.

runctional description

The CHnF bit is set and channel (n) interrupt is generated (if CHnIE = 1) at the channel (n) match (FTM counter = CnV) when the FTM counting is down (at the begin of the pulse width) and when the FTM counting is up (at the end of the pulse width).

This type of PWM signal is called center-aligned because the pulse width centers for all channels are aligned with the value of CNTIN.

The other channel modes are not compatible with the up-down counter (CPWMS = 1). Therefore, all FTM channels must be used in CPWM mode when (CPWMS = 1).

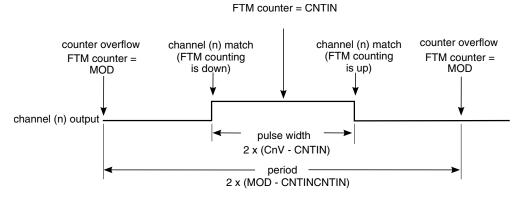


Figure 35-185. CPWM period and pulse width with ELSnB:ELSnA = 1:0

If (ELSnB:ELSnA = 0:0) when the FTM counter reaches the value in the CnV register, the CHnF bit is set and the channel (n) interrupt is generated (if CHnIE = 1), however the channel (n) output is not controlled by FTM.

If (ELSnB:ELSnA = 1:0), then the channel (n) output is forced high at the channel (n) match (FTM counter = CnV) when counting down, and it is forced low at the channel (n) match when counting up. See the following figure.

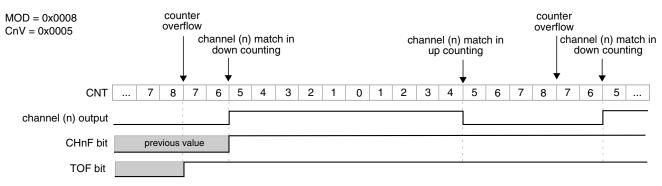


Figure 35-186. CPWM signal with ELSnB:ELSnA = 1:0

If (ELSnB:ELSnA = X:1), then the channel (n) output is forced low at the channel (n) match (FTM counter = CnV) when counting down, and it is forced high at the channel (n) match when counting up. See the following figure.

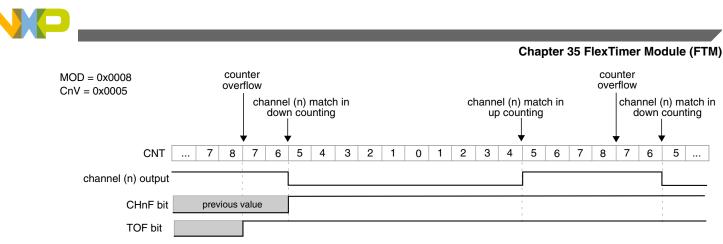


Figure 35-187. CPWM signal with ELSnB:ELSnA = X:1

If (CnV = 0x0000) or CnV is a negative value, that is (CnV[15] = 1), then the channel (n) output is a 0% duty cycle CPWM signal and CHnF bit is not set even when there is the channel (n) match.

If CnV is a positive value, that is (CnV[15] = 0), $(CnV \ge MOD)$, and $(MOD \ne 0x0000)$, then the channel (n) output is a 100% duty cycle CPWM signal and CHnF bit is not set even when there is the channel (n) match. This implies that the usable range of periods set by MOD is 0x0001 through 0x7FFE, 0x7FFF if you do not need to generate a 100% duty cycle CPWM signal. This is not a significant limitation because the resulting period is much longer than required for normal applications.

The CPWM mode must not be used when the FTM counter is a free running counter.

35.4.8 Combine mode

The Combine mode is selected when:

- QUADEN = 0
- $\overrightarrow{DECAPEN} = 0$
- COMBINE = 1, and
- CPWMS = 0

In Combine mode, an even channel (n) and adjacent odd channel (n+1) are combined to generate a PWM signal in the channel (n) output.

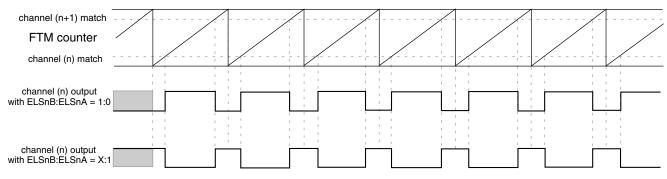
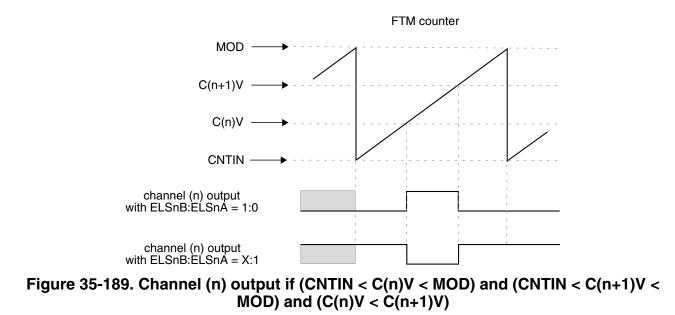
In the Combine mode, the PWM period is determined by (MOD - CNTIN + 0x0001) and the PWM pulse width (duty cycle) is determined by (|C(n+1)V - C(n)V|).

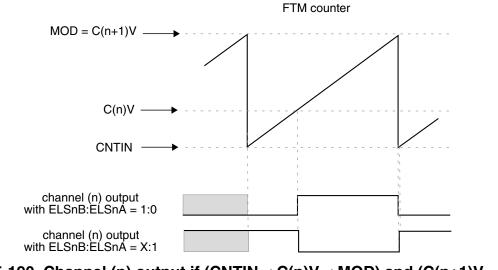
The CHnF bit is set and the channel (n) interrupt is generated (if CHnIE = 1) at the channel (n) match (FTM counter = C(n)V). The CH(n+1)F bit is set and the channel (n +1) interrupt is generated, if CH(n+1)IE = 1, at the channel (n+1) match (FTM counter = C(n+1)V).

If (ELSnB:ELSnA = 1:0), then the channel (n) output is forced low at the beginning of the period (FTM counter = CNTIN) and at the channel (n+1) match (FTM counter = C(n +1)V). It is forced high at the channel (n) match (FTM counter = C(n)V). See the following figure.

If (ELSnB:ELSnA = X:1), then the channel (n) output is forced high at the beginning of the period (FTM counter = CNTIN) and at the channel (n+1) match (FTM counter = C(n +1)V). It is forced low at the channel (n) match (FTM counter = C(n)V). See the following figure.

In Combine mode, the ELS(n+1)B and ELS(n+1)A bits are not used in the generation of the channels (n) and (n+1) output. However, if (ELSnB:ELSnA = 0:0) then the channel (n) output is not controlled by FTM, and if (ELS(n+1)B:ELS(n+1)A = 0:0) then the channel (n+1) output is not controlled by FTM.


Figure 35-188. Combine mode

The following figures illustrate the PWM signals generation using Combine mode.

Chapter 35 FlexTimer Module (FTM)

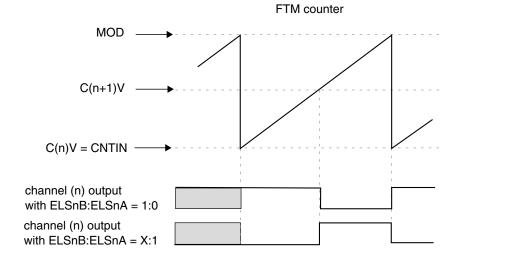
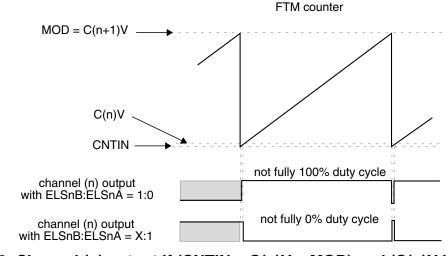
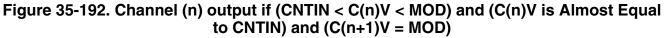




Figure 35-191. Channel (n) output if (C(n)V = CNTIN) and (CNTIN < C(n+1)V < MOD)

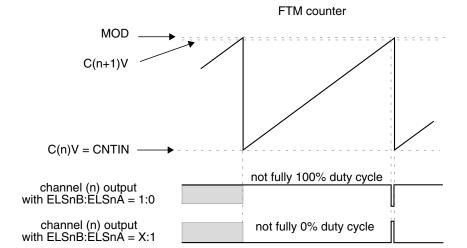


Figure 35-193. Channel (n) output if (C(n)V = CNTIN) and (CNTIN < C(n+1)V < MOD) and (C(n+1)V is Almost Equal to MOD)

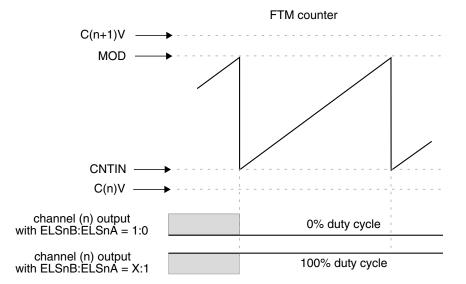


Figure 35-194. Channel (n) output if C(n)V and C(n+1)V are not between CNTIN and MOD

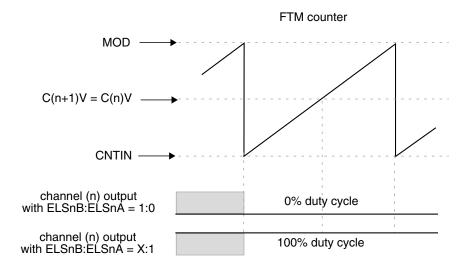


Figure 35-195. Channel (n) output if (CNTIN < C(n)V < MOD) and (CNTIN < C(n+1)V < MOD) and (C(n)V = C(n+1)V)

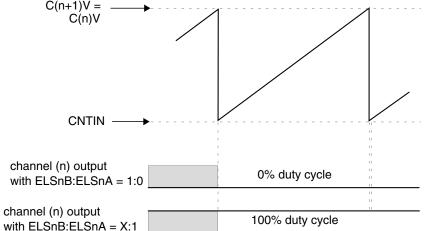
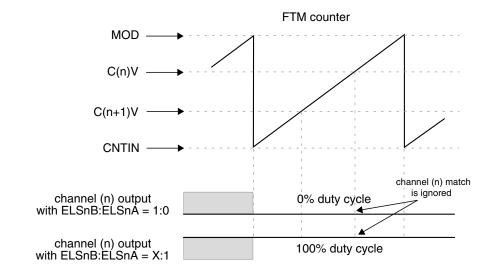
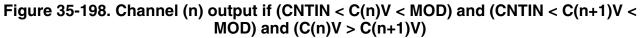




Figure 35-197. Channel (n) output if (C(n)V = C(n+1)V = MOD)

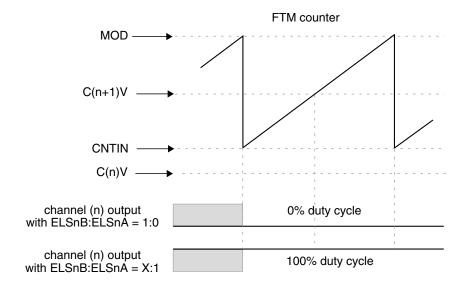
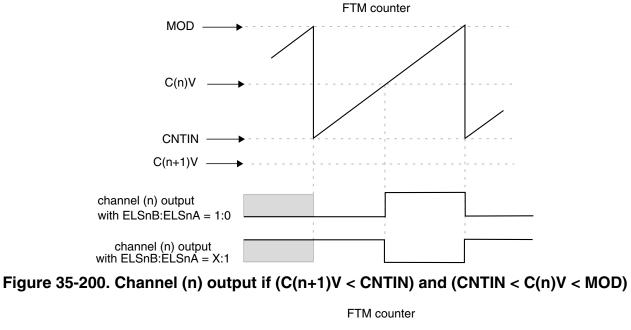



Figure 35-199. Channel (n) output if (C(n)V < CNTIN) and (CNTIN < C(n+1)V < MOD)

Chapter 35 FlexTimer Module (FTM)

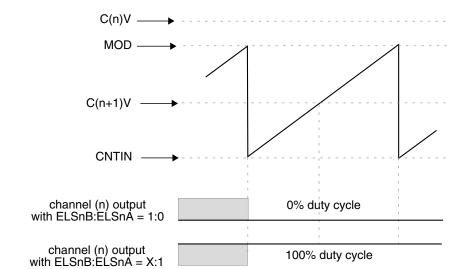
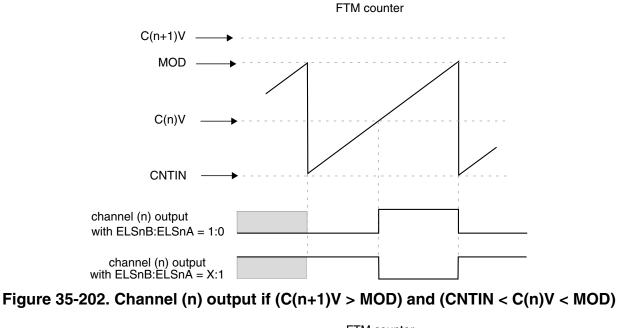



Figure 35-201. Channel (n) output if (C(n)V > MOD) and (CNTIN < C(n+1)V < MOD)

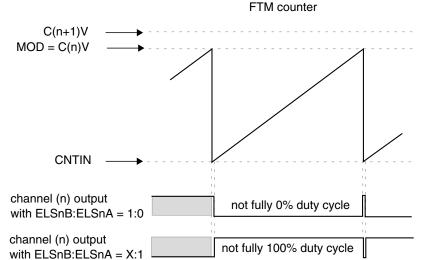


Figure 35-203. Channel (n) output if (C(n+1)V > MOD) and (CNTIN < C(n)V = MOD)

35.4.8.1 Asymmetrical PWM

In Combine mode, the control of the PWM signal first edge, when the channel (n) match occurs, that is, FTM counter = C(n)V, is independent of the control of the PWM signal second edge, when the channel (n+1) match occurs, that is, FTM counter = C(n+1)V. So, Combine mode allows the generation of asymmetrical PWM signals.

35.4.9 Complementary mode

The Complementary mode is selected when:

- QUADEN = 0
- DECAPEN = 0
- COMP = 1

In Complementary mode, the channel (n+1) output is the inverse of the channel (n) output.

So, the channel (n+1) output is the same as the channel (n) output when:

- QUADEN = 0
- DECAPEN = 0
- COMP = 0

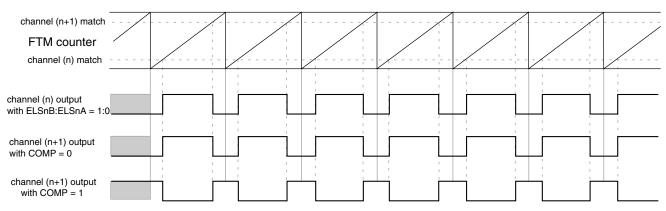


Figure 35-204. Channel (n+1) output in Complementary mode with (ELSnB:ELSnA = 1:0)

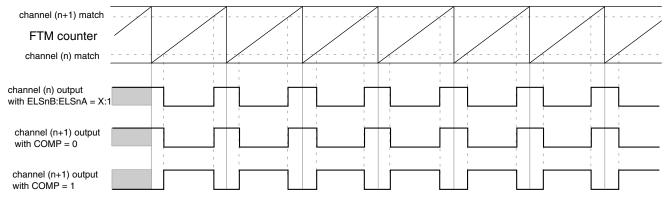


Figure 35-205. Channel (n+1) output in Complementary mode with (ELSnB:ELSnA = X:1)

NOTE

The complementary mode is not available in Output Compare mode.

35.4.10 Registers updated from write buffers

35.4.10.1 CNTIN register update

The following table describes when CNTIN register is updated:

Table 35-243. CNTIN register update

When	Then CNTIN register is updated	
CLKS[1:0] = 0:0	When CNTIN register is written, independent of FTMEN bit.	
 FTMEN = 0, or CNTINC = 0 	At the next system clock after CNTIN was written.	
 FTMEN = 1, SYNCMODE = 1, and CNTINC = 1 	By the CNTIN register synchronization.	

35.4.10.2 MOD register update

The following table describes when MOD register is updated:

When	Then MOD register is updated
CLKS[1:0] = 0:0	When MOD register is written, independent of FTMEN bit.
 CLKS[1:0] ≠ 0:0, and FTMEN = 0 	 According to the CPWMS bit, that is: If the selected mode is not CPWM then MOD register is updated after MOD register was written and the FTM counter changes from MOD to CNTIN. If the FTM counter is at free-running counter mode then this update occurs when the FTM counter changes from 0xFFFF to 0x0000.
	 If the selected mode is CPWM then MOD register is updated after MOD register was written and the FTM counter changes from MOD to (MOD – 0x0001).
 CLKS[1:0] ≠ 0:0, and FTMEN = 1 	By the MOD register synchronization.

Table 35-244. MOD register update

35.4.10.3 CnV register update

The following table describes when CnV register is updated:

Table 35-245. CnV register update

When	Then CnV register is updated	
CLKS[1:0] = 0:0	When CnV register is written, independent of FTMEN bit.	

Table continues on the next page ...

When	Then CnV register is updated
 CLKS[1:0] ≠ 0:0, and FTMEN = 0 	 According to the selected mode, that is: If the selected mode is Output Compare, then CnV register is updated on the next FTM counter change, end of the prescaler counting, after CnV register
	 was written. If the selected mode is EPWM, then CnV register is updated after CnV register was written and the FTM counter changes from MOD to CNTIN. If the FTM counter is at free-running counter mode then this update occurs when the FTM counter changes from 0xFFFF to 0x0000. If the selected mode is CPWM, then CnV register is updated after CnV register was written and the FTM counter changes from MOD to (MOD – 0x0001).
 CLKS[1:0] ≠ 0:0, and FTMEN = 1 	 According to the selected mode, that is: If the selected mode is output compare then CnV register is updated according to the SYNCEN bit. If (SYNCEN = 0) then CnV register is updated after CnV register was written at the next change of the FTM counter, the end of the prescaler counting. If (SYNCEN = 1) then CnV register is updated by the C(n)V and C(n+1)V register synchronization. If the selected mode is not output compare and (SYNCEN = 1) then CnV register is updated by the C(n)V and by the C(n)V and C(n+1)V register synchronization.

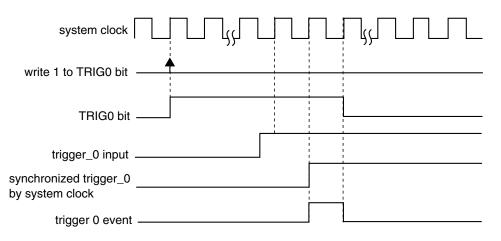
Table 35-245. CnV register update (continued)

35.4.11 PWM synchronization

The PWM synchronization provides an opportunity to update the MOD, CNTIN, CnV, OUTMASK, INVCTRL and SWOCTRL registers with their buffered value and force the FTM counter to the CNTIN register value.

Note

The legacy PWM synchronization (SYNCMODE = 0) is a subset of the enhanced PWM synchronization (SYNCMODE = 1). Thus, only the enhanced PWM synchronization must be used.


35.4.11.1 Hardware trigger

Three hardware trigger signal inputs of the FTM module are enabled when TRIGn = 1, where n = 0, 1 or 2 corresponding to each one of the input signals, respectively. The hardware trigger input n is synchronized by the system clock. The PWM synchronization with hardware trigger is initiated when a rising edge is detected at the enabled hardware trigger inputs.

If (HWTRIGMODE = 0) then the TRIGn bit is cleared when 0 is written to it or when the trigger n event is detected.

In this case, if two or more hardware triggers are enabled (for example, TRIG0 and TRIG1 = 1) and only trigger 1 event occurs, then only TRIG1 bit is cleared. If a trigger n event occurs together with a write setting TRIGn bit, then the synchronization is initiated, but TRIGn bit remains set due to the write operation.

Note

All hardware trigger inputs have the same behavior.

Figure 35-206. Hardware trigger event with HWTRIGMODE = 0

If HWTRIGMODE = 1, then the TRIGn bit is only cleared when 0 is written to it.

NOTE

The HWTRIGMODE bit must be 1 only with enhanced PWM synchronization (SYNCMODE = 1).

35.4.11.2 Software trigger

A software trigger event occurs when 1 is written to the SYNC[SWSYNC] bit. The SWSYNC bit is cleared when 0 is written to it or when the PWM synchronization, initiated by the software event, is completed.

If another software trigger event occurs (by writing another 1 to the SWSYNC bit) at the same time the PWM synchronization initiated by the previous software trigger event is ending, a new PWM synchronization is started and the SWSYNC bit remains equal to 1.

If SYNCMODE = 0 then the SWSYNC bit is also cleared by FTM according to PWMSYNC and REINIT bits. In this case if (PWMSYNC = 1) or (PWMSYNC = 0 and REINIT = 0) then SWSYNC bit is cleared at the next selected loading point after that the

software trigger event occurred; see Boundary cycle and loading points and the following figure. If (PWMSYNC = 0) and (REINIT = 1) then SWSYNC bit is cleared when the software trigger event occurs.

If SYNCMODE = 1 then the SWSYNC bit is also cleared by FTM according to the SWRSTCNT bit. If SWRSTCNT = 0 then SWSYNC bit is cleared at the next selected loading point after that the software trigger event occurred; see the following figure. If SWRSTCNT = 1 then SWSYNC bit is cleared when the software trigger event occurs.

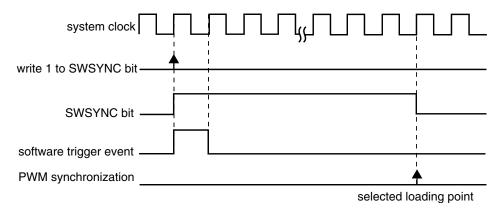


Figure 35-207. Software trigger event

35.4.11.3 Boundary cycle and loading points

The boundary cycle definition is important for the loading points for the registers MOD, CNTIN, and C(n)V.

In Up counting mode, the boundary cycle is defined as when the counter wraps to its initial value (CNTIN). If in Up-down counting mode, then the boundary cycle is defined as when the counter turns from down to up counting and when from up to down counting.

The following figure shows the boundary cycles and the loading points for the registers. In the Up Counting mode, the loading points are enabled if one of CNTMIN or CTMAX bits are 1. In the Up-Down Counting mode, the loading points are selected by CNTMIN and CNTMAX bits, as indicated in the figure. These loading points are safe places for register updates thus allowing a smooth transitions in PWM waveform generation.

For both counting modes, if neither CNTMIN nor CNTMAX are 1, then the boundary cycles are not used as loading points for registers updates. See the register synchronization descriptions in the following sections for details.

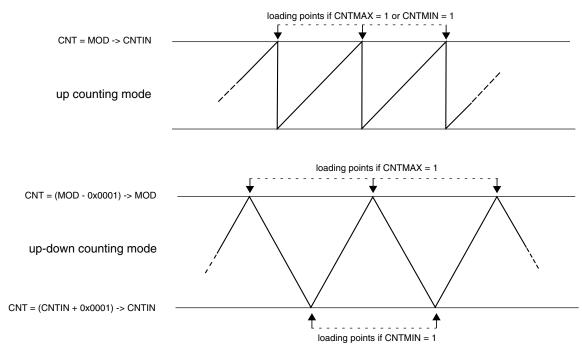


Figure 35-208. Boundary cycles and loading points

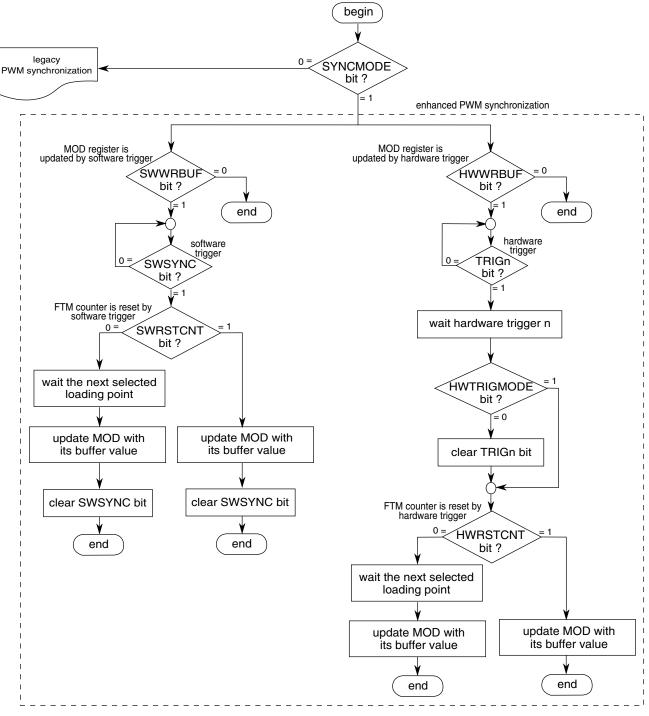
35.4.11.4 MOD register synchronization

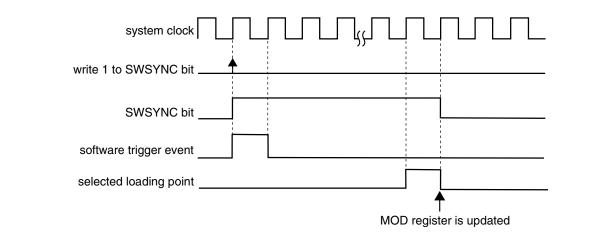
The MOD register synchronization updates the MOD register with its buffer value. This synchronization is enabled if (FTMEN = 1).

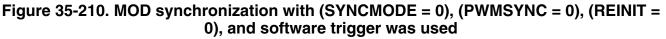
The MOD register synchronization can be done by either the enhanced PWM synchronization (SYNCMODE = 1) or the legacy PWM synchronization (SYNCMODE = 0). However, it is expected that the MOD register be synchronized only by the enhanced PWM synchronization.

In the case of enhanced PWM synchronization, the MOD register synchronization depends on SWWRBUF, SWRSTCNT, HWWRBUF, and HWRSTCNT bits according to this flowchart:

Chapter 35 FlexTimer Module (FTM)

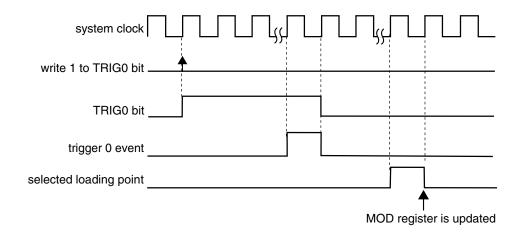
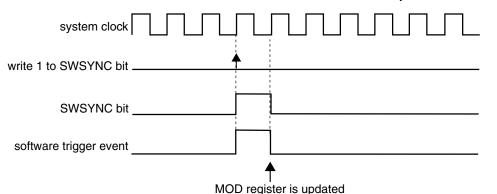


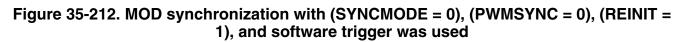

Figure 35-209. MOD register synchronization flowchart

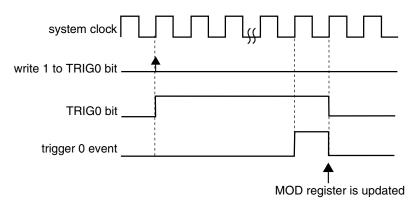

In the case of legacy PWM synchronization, the MOD register synchronization depends on PWMSYNC and REINIT bits according to the following description.

If (SYNCMODE = 0), (PWMSYNC = 0), and (REINIT = 0), then this synchronization is made on the next selected loading point after an enabled trigger event takes place. If the trigger event was a software trigger, then the SWSYNC bit is cleared on the next selected

loading point. If the trigger event was a hardware trigger, then the trigger enable bit (TRIGn) is cleared according to Hardware trigger. Examples with software and hardware triggers follow.


Figure 35-211. MOD synchronization with (SYNCMODE = 0), (HWTRIGMODE = 0), (PWMSYNC = 0), (REINIT = 0), and a hardware trigger was used


If (SYNCMODE = 0), (PWMSYNC = 0), and (REINIT = 1), then this synchronization is made on the next enabled trigger event. If the trigger event was a software trigger, then the SWSYNC bit is cleared according to the following example. If the trigger event was a hardware trigger, then the TRIGn bit is cleared according to Hardware trigger. Examples with software and hardware triggers follow.

Chapter 35 FlexTimer Module (FTM)

Figure 35-213. MOD synchronization with (SYNCMODE = 0), (HWTRIGMODE = 0), (PWMSYNC = 0), (REINIT = 1), and a hardware trigger was used

If (SYNCMODE = 0) and (PWMSYNC = 1), then this synchronization is made on the next selected loading point after the software trigger event takes place. The SWSYNC bit is cleared on the next selected loading point:

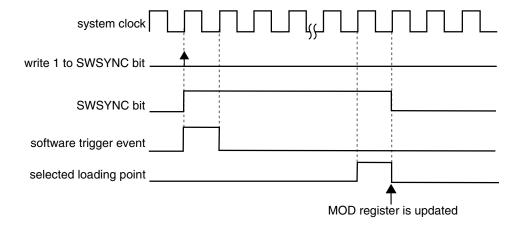


Figure 35-214. MOD synchronization with (SYNCMODE = 0) and (PWMSYNC = 1)

35.4.11.5 CNTIN register synchronization

The CNTIN register synchronization updates the CNTIN register with its buffer value.

This synchronization is enabled if (FTMEN = 1), (SYNCMODE = 1), and (CNTINC = 1). The CNTIN register synchronization can be done only by the enhanced PWM synchronization (SYNCMODE = 1). The synchronization mechanism is the same as the MOD register synchronization done by the enhanced PWM synchronization; see MOD register synchronization.

35.4.11.6 C(n)V and C(n+1)V register synchronization

The C(n)V and C(n+1)V registers synchronization updates the C(n)V and C(n+1)V registers with their buffer values.

This synchronization is enabled if (FTMEN = 1) and (SYNCEN = 1). The synchronization mechanism is the same as the MOD register synchronization. However, it is expected that the C(n)V and C(n+1)V registers be synchronized only by the enhanced PWM synchronization (SYNCMODE = 1).

35.4.11.7 OUTMASK register synchronization

The OUTMASK register synchronization updates the OUTMASK register with its buffer value.

The OUTMASK register can be updated at each rising edge of system clock (SYNCHOM = 0), by the enhanced PWM synchronization (SYNCHOM = 1 and SYNCMODE = 1) or by the legacy PWM synchronization (SYNCHOM = 1 and SYNCMODE = 0). However, it is expected that the OUTMASK register be synchronized only by the enhanced PWM synchronization.

In the case of enhanced PWM synchronization, the OUTMASK register synchronization depends on SWOM and HWOM bits. See the following flowchart:

Chapter 35 FlexTimer Module (FTM)

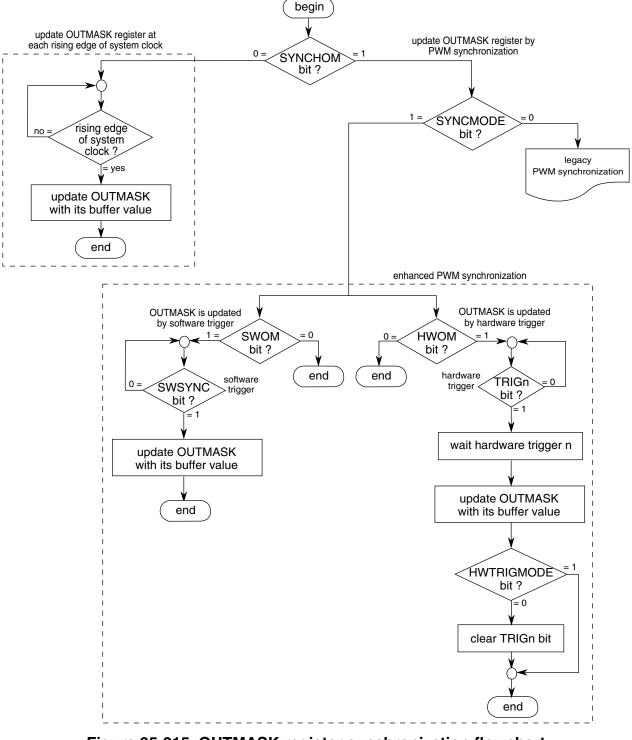


Figure 35-215. OUTMASK register synchronization flowchart

In the case of legacy PWM synchronization, the OUTMASK register synchronization depends on PWMSYNC bit according to the following description.

If (SYNCMODE = 0), (SYNCHOM = 1), and (PWMSYNC = 0), then this synchronization is done on the next enabled trigger event. If the trigger event was a software trigger, then the SWSYNC bit is cleared on the next selected loading point. If the trigger event was a hardware trigger, then the TRIGn bit is cleared according to Hardware trigger. Examples with software and hardware triggers follow.

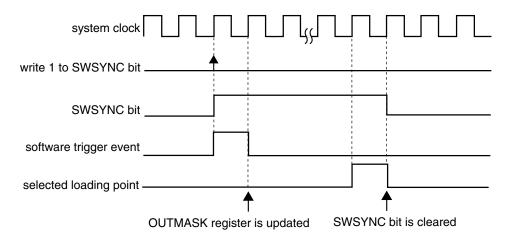
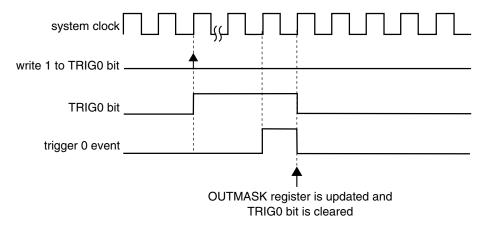



Figure 35-216. OUTMASK synchronization with (SYNCMODE = 0), (SYNCHOM = 1), (PWMSYNC = 0) and software trigger was used

Figure 35-217. OUTMASK synchronization with (SYNCMODE = 0), (HWTRIGMODE = 0), (SYNCHOM = 1), (PWMSYNC = 0), and a hardware trigger was used

If (SYNCMODE = 0), (SYNCHOM = 1), and (PWMSYNC = 1), then this synchronization is made on the next enabled hardware trigger. The TRIGN bit is cleared according to Hardware trigger. An example with a hardware trigger follows.

Chapter 35 FlexTimer Module (FTM)

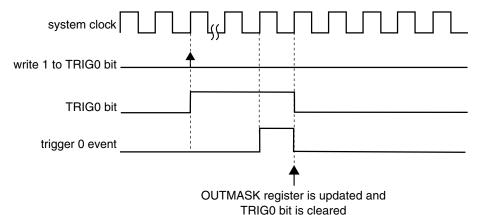
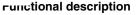


Figure 35-218. OUTMASK synchronization with (SYNCMODE = 0), (HWTRIGMODE = 0), (SYNCHOM = 1), (PWMSYNC = 1), and a hardware trigger was used


35.4.11.8 INVCTRL register synchronization

The INVCTRL register synchronization updates the INVCTRL register with its buffer value.

The INVCTRL register can be updated at each rising edge of system clock (INVC = 0) or by the enhanced PWM synchronization (INVC = 1 and SYNCMODE = 1) according to the following flowchart.

In the case of enhanced PWM synchronization, the INVCTRL register synchronization depends on SWINVC and HWINVC bits.

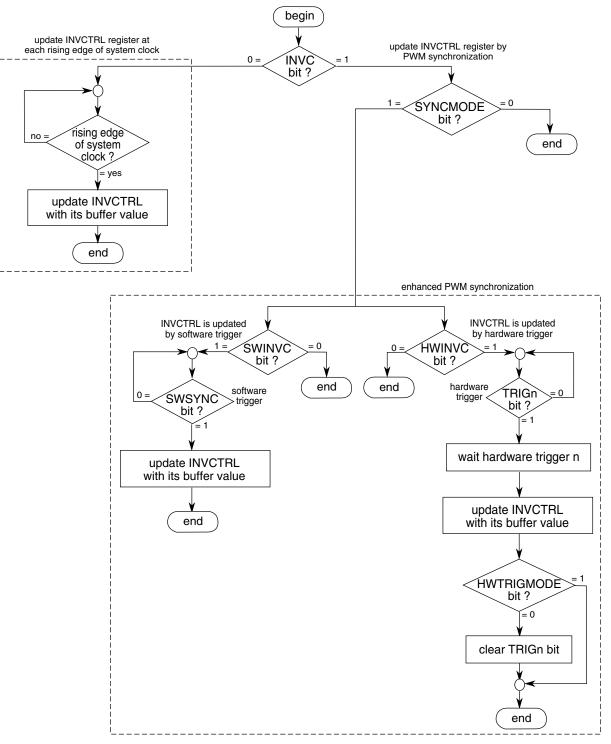


Figure 35-219. INVCTRL register synchronization flowchart

35.4.11.9 SWOCTRL register synchronization

The SWOCTRL register synchronization updates the SWOCTRL register with its buffer value.

The SWOCTRL register can be updated at each rising edge of system clock (SWOC = 0) or by the enhanced PWM synchronization (SWOC = 1 and SYNCMODE = 1) according to the following flowchart.

In the case of enhanced PWM synchronization, the SWOCTRL register synchronization depends on SWSOC and HWSOC bits.

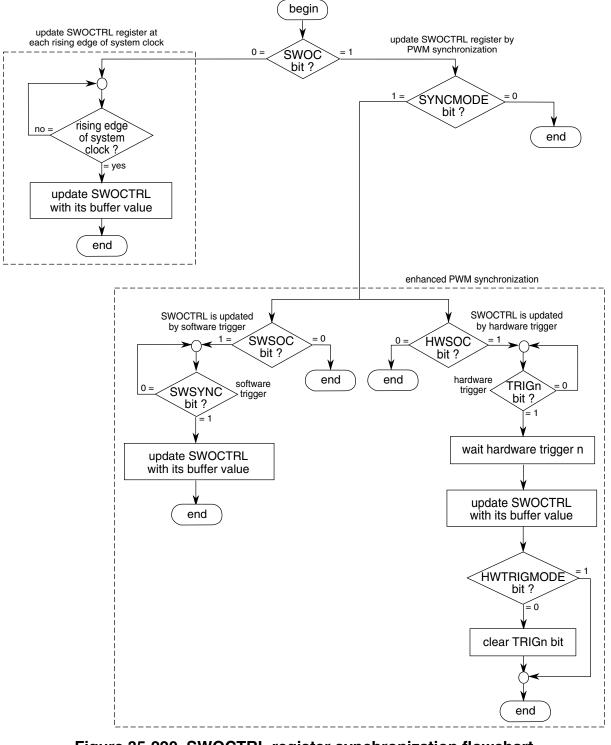


Figure 35-220. SWOCTRL register synchronization flowchart

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

35.4.11.10 FTM counter synchronization

The FTM counter synchronization is a mechanism that allows the FTM to restart the PWM generation at a certain point in the PWM period. The channels outputs are forced to their initial value, except for channels in Output Compare mode, and the FTM counter is forced to its initial counting value defined by CNTIN register.

The following figure shows the FTM counter synchronization. Note that after the synchronization event occurs, the channel (n) is set to its initial value and the channel (n +1) is not set to its initial value due to a specific timing of this figure in which the deadtime insertion prevents this channel output from transitioning to 1. If no deadtime insertion is selected, then the channel (n+1) transitions to logical value 1 immediately after the synchronization event occurs.

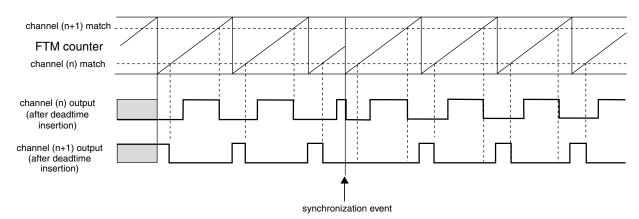


Figure 35-221. FTM counter synchronization

The FTM counter synchronization can be done by either the enhanced PWM synchronization (SYNCMODE = 1) or the legacy PWM synchronization (SYNCMODE = 0). However, the FTM counter must be synchronized only by the enhanced PWM synchronization.

In the case of enhanced PWM synchronization, the FTM counter synchronization depends on SWRSTCNT and HWRSTCNT bits according to the following flowchart.

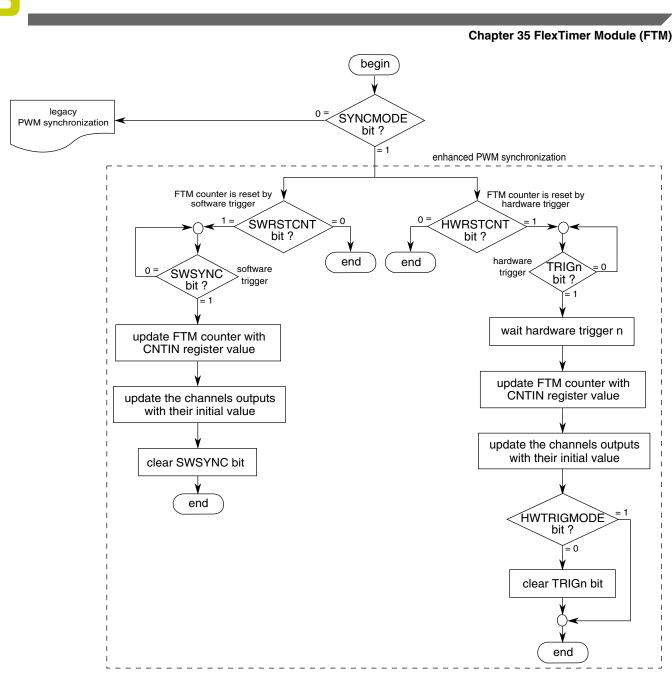
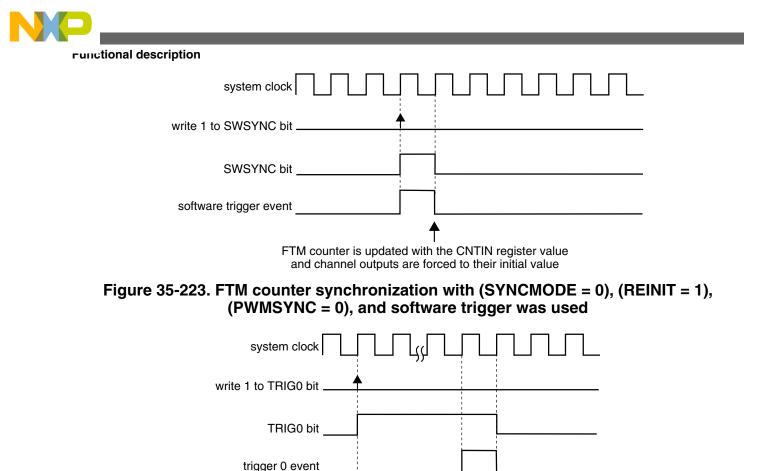



Figure 35-222. FTM counter synchronization flowchart

In the case of legacy PWM synchronization, the FTM counter synchronization depends on REINIT and PWMSYNC bits according to the following description.

If (SYNCMODE = 0), (REINIT = 1), and (PWMSYNC = 0) then this synchronization is made on the next enabled trigger event. If the trigger event was a software trigger then the SWSYNC bit is cleared according to the following example. If the trigger event was a hardware trigger then the TRIGn bit is cleared according to Hardware trigger. Examples with software and hardware triggers follow.

If (SYNCMODE = 0), (REINIT = 1), and (PWMSYNC = 1) then this synchronization is made on the next enabled hardware trigger. The TRIGN bit is cleared according to Hardware trigger.

Figure 35-224. FTM counter synchronization with (SYNCMODE = 0), (HWTRIGMODE = 0), (REINIT = 1), (PWMSYNC = 0), and a hardware trigger was used

FTM counter is updated with the CNTIN register value and channel outputs are forced to their initial value

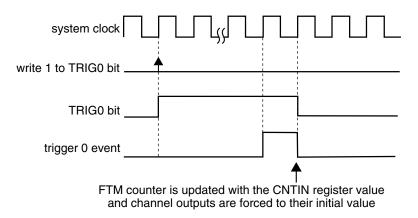
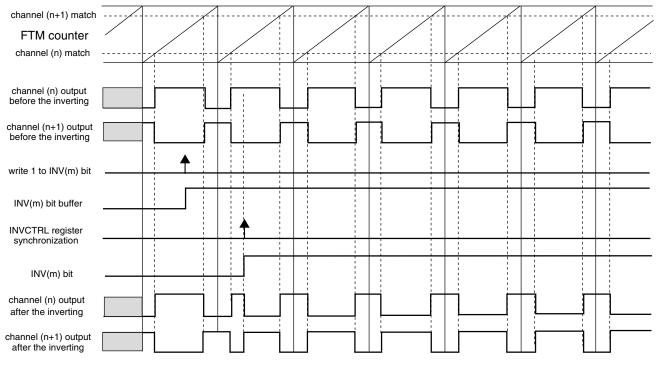


Figure 35-225. FTM counter synchronization with (SYNCMODE = 0), (HWTRIGMODE = 0), (REINIT = 1), (PWMSYNC = 1), and a hardware trigger was used

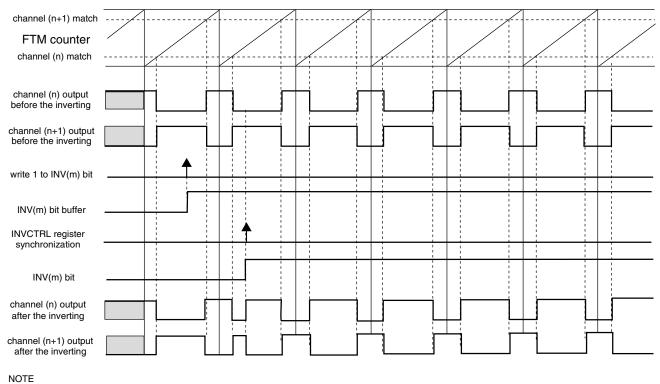

35.4.12 Inverting

The invert functionality swaps the signals between channel (n) and channel (n+1) outputs. The inverting operation is selected when:

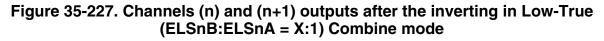
- QUADEN = 0
- DECAPEN = 0
- COMP = 1, and
- INVm = 1 (where m represents a channel pair)

The INVm bit in INVCTRL register is updated with its buffer value according to INVCTRL register synchronization

In High-True (ELSnB:ELSnA = 1:0) Combine mode, the channel (n) output is forced low at the beginning of the period (FTM counter = CNTIN), forced high at the channel (n) match and forced low at the channel (n+1) match. If the inverting is selected, the channel (n) output behavior is changed to force high at the beginning of the PWM period, force low at the channel (n) match and force high at the channel (n+1) match. See the following figure.


NOTE

 $\ensuremath{\mathsf{INV}}(m)$ bit selects the inverting to the pair channels (n) and (n+1).


Figure 35-226. Channels (n) and (n+1) outputs after the inverting in High-True (ELSnB:ELSnA = 1:0) Combine mode

Note that the ELSnB:ELSnA bits value should be considered because they define the active state of the channels outputs. In Low-True (ELSnB:ELSnA = X:1) Combine mode, the channel (n) output is forced high at the beginning of the period, forced low at the channel (n) match and forced high at the channel (n+1) match. When inverting is selected, the channels (n) and (n+1) present waveforms as shown in the following figure.

INV(m) bit selects the inverting to the pair channels (n) and (n+1).

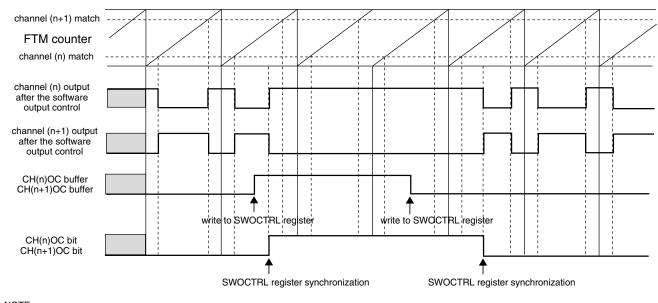
Note

The inverting feature is not available in Output Compare mode.

35.4.13 Software output control

The software output control forces the channel output according to software defined values at a specific time in the PWM generation.

The software output control is selected when:


- QUADEN = 0
- DECAPEN = 0, and
- CHnOC = 1

The CHnOC bit enables the software output control for a specific channel output and the CHnOCV selects the value that is forced to this channel output.

Both CHnOC and CHnOCV bits in SWOCTRL register are buffered and updated with their buffer value according to SWOCTRL register synchronization.

The following figure shows the channels (n) and (n+1) outputs signals when the software output control is used. In this case the channels (n) and (n+1) are set to Combine and Complementary mode.

NOTE CH(n)OCV = 1 and CH(n+1)OCV = 0.

Figure 35-228. Example of software output control in Combine and Complementary mode

Software output control forces the following values on channels (n) and (n+1) when the COMP bit is zero.

Table 35-246.	Software ouput control behavior when	n (COMP = 0)
---------------	--------------------------------------	--------------

CH(n)OC	CH(n+1)OC	CH(n)OCV	CH(n+1)OCV	Channel (n) Output	Channel (n+1) Output
0	0	Х	Х	is not modified by SWOC	is not modified by SWOC
1	1	0	0	is forced to zero	is forced to zero
1	1	0	1	is forced to zero	is forced to one
1	1	1	0	is forced to one	is forced to zero
1	1	1	1	is forced to one	is forced to one

Software output control forces the following values on channels (n) and (n+1) when the COMP bit is one.

CH(n)OC	CH(n+1)OC	CH(n)OCV	CH(n+1)OCV	Channel (n) Output	Channel (n+1) Output
0	0	Х	Х	is not modified by SWOC	is not modified by SWOC
1	1	0	0	is forced to zero	is forced to zero
1	1	0	1	is forced to zero	is forced to one
1	1	1	0	is forced to one	is forced to zero
1	1	1	1	is forced to one	is forced to zero

 Table 35-247.
 Software ouput control behavior when (COMP = 1)

Note

- The CH(n)OC and CH(n+1)OC bits should be equal.
- The COMP bit must not be modified when software output control is enabled, that is, CH(n)OC = 1 and/or CH(n +1)OC = 1.
- Software output control has the same behavior with disabled or enabled FTM counter (see the CLKS field description in the Status and Control register).

35.4.14 Deadtime insertion

The deadtime insertion is enabled when (DTEN = 1) and (DTVAL[5:0] is non-zero).

DEADTIME register defines the deadtime delay that can be used for all FTM channels. The DTPS[1:0] bits define the prescaler for the system clock and the DTVAL[5:0] bits define the deadtime modulo, that is, the number of the deadtime prescaler clocks.

The deadtime delay insertion ensures that no two complementary signals (channels (n) and (n+1)) drive the active state at the same time.

If POL(n) = 0, POL(n+1) = 0, and the deadtime is enabled, then when the channel (n) match (FTM counter = C(n)V) occurs, the channel (n) output remains at the low value until the end of the deadtime delay when the channel (n) output is set. Similarly, when the channel (n+1) match (FTM counter = C(n+1)V) occurs, the channel (n+1) output remains at the low value until the end of the deadtime delay when the channel (n+1) output remains at the low value until the end of the deadtime delay when the channel (n+1) output remains at the low value until the end of the deadtime delay when the channel (n+1) output is set. See the following figures.

If POL(n) = 1, POL(n+1) = 1, and the deadtime is enabled, then when the channel (n) match (FTM counter = C(n)V) occurs, the channel (n) output remains at the high value until the end of the deadtime delay when the channel (n) output is cleared. Similarly,

when the channel (n+1) match (FTM counter = C(n+1)V) occurs, the channel (n+1) output remains at the high value until the end of the deadtime delay when the channel (n + 1) output is cleared.

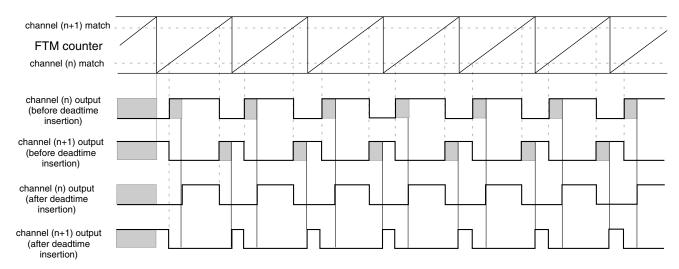


Figure 35-229. Deadtime insertion with ELSnB:ELSnA = 1:0, POL(n) = 0, and POL(n+1) = $\frac{1}{2}$

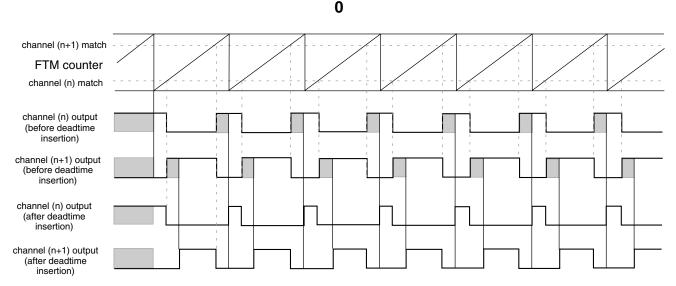


Figure 35-230. Deadtime insertion with ELSnB:ELSnA = X:1, POL(n) = 0, and POL(n+1) = 0

NOTE

- The deadtime feature must be used only in Complementary mode.
- The deadtime feature is not available in Output Compare mode.

35.4.14.1 Deadtime insertion corner cases

If (PS[2:0] is cleared), (DTPS[1:0] = 0:0 or DTPS[1:0] = 0:1):

- and the deadtime delay is greater than or equal to the channel (n) duty cycle ((C(n $+1)V C(n)V) \times$ system clock), then the channel (n) output is always the inactive value (POL(n) bit value).
- and the deadtime delay is greater than or equal to the channel (n+1) duty cycle $((MOD CNTIN + 1 (C(n+1)V C(n)V)) \times system clock)$, then the channel (n+1) output is always the inactive value (POL(n+1) bit value).

Although, in most cases the deadtime delay is not comparable to channels (n) and (n+1) duty cycle, the following figures show examples where the deadtime delay is comparable to the duty cycle.

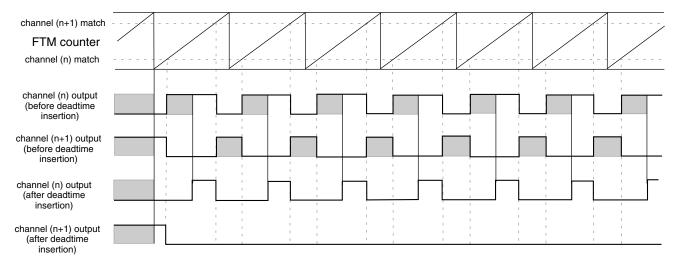


Figure 35-231. Example of the deadtime insertion (ELSnB:ELSnA = 1:0, POL(n) = 0, and POL(n+1) = 0) when the deadtime delay is comparable to channel (n+1) duty cycle

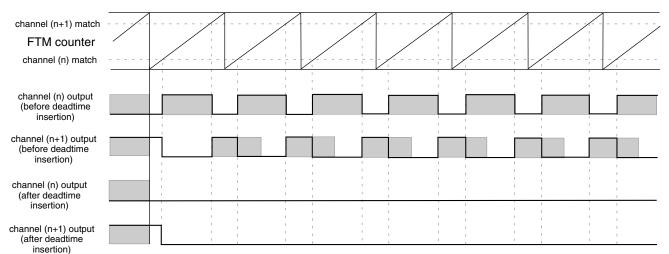


Figure 35-232. Example of the deadtime insertion (ELSnB:ELSnA = 1:0, POL(n) = 0, and POL(n+1) = 0) when the deadtime delay is comparable to channels (n) and (n+1) duty cycle

35.4.15 Output mask

The output mask can be used to force channels output to their inactive state through software. For example: to control a BLDC motor.

Any write to the OUTMASK register updates its write buffer. The OUTMASK register is updated with its buffer value by PWM synchronization; see OUTMASK register synchronization.

If CHnOM = 1, then the channel (n) output is forced to its inactive state (POLn bit value). If CHnOM = 0, then the channel (n) output is unaffected by the output mask. See the following figure.

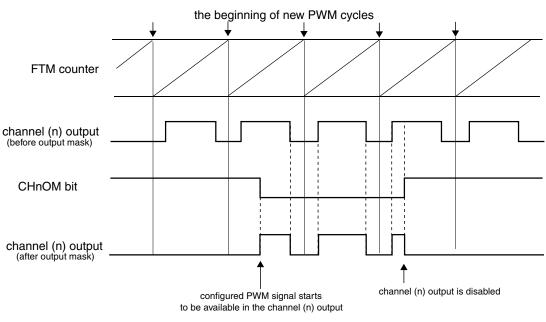


Figure 35-233. Output mask with POLn = 0

The following table shows the output mask result before the polarity control.

 Table 35-248. Output mask result for channel (n) before the polarity control

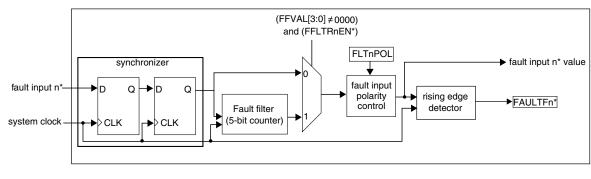
CHnOM	Output Mask Input	Output Mask Result
0	inactive state	inactive state
	active state	active state
1	inactive state	inactive state
	active state	

35.4.16 Fault control

The fault control is enabled if $(FAULTM[1:0] \neq 0:0)$.

FTM can have up to four fault inputs. FAULTnEN bit (where n = 0, 1, 2, 3) enables the fault input n and FFLTRnEN bit enables the fault input n filter. FFVAL[3:0] bits select the value of the enabled filter in each enabled fault input.

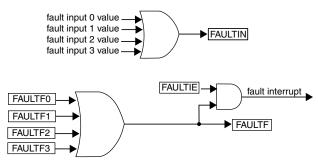
First, each fault input signal is synchronized by the system clock; see the synchronizer block in the following figure. Following synchronization, the fault input n signal enters the filter block. When there is a state change in the fault input n signal, the 5-bit counter is reset and starts counting up. As long as the new state is stable on the fault input n, the



counter continues to increment. If the 5-bit counter overflows, that is, the counter exceeds the value of the FFVAL[3:0] bits, the new fault input n value is validated. It is then transmitted as a pulse edge to the edge detector.

If the opposite edge appears on the fault input n signal before validation (counter overflow), the counter is reset. At the next input transition, the counter starts counting again. Any pulse that is shorter than the minimum value selected by FFVAL[3:0] bits (× system clock) is regarded as a glitch and is not passed on to the edge detector.

The fault input n filter is disabled when the FFVAL[3:0] bits are zero or when FAULTnEN = 0. In this case, the fault input n signal is delayed 2 rising edges of the system clock and the FAULTFn bit is set on 3th rising edge of the system clock after a rising edge occurs on the fault input n.

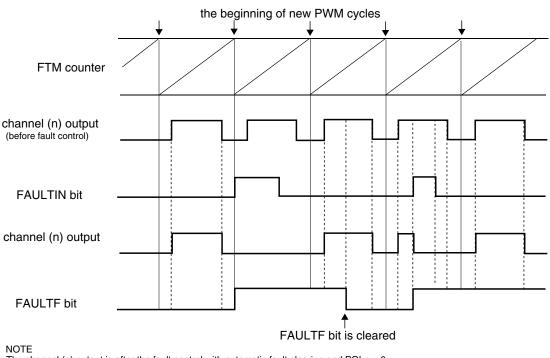

If FFVAL[3:0] \neq 0000 and FAULTnEN = 1, then the fault input n signal is delayed (3 + FFVAL[3:0]) rising edges of the system clock, that is, the FAULTFn bit is set (4 + FFVAL[3:0]) rising edges of the system clock after a rising edge occurs on the fault input n.

* where n = 3, 2, 1, 0

Figure 35-234. Fault input n control block diagram

If the fault control and fault input n are enabled and a rising edge at the fault input n signal is detected, a fault condition has occurred and the FAULTFn bit is set. The FAULTF bit is the logic OR of FAULTFn[3:0] bits. See the following figure.

If the fault control is enabled (FAULTM[1:0] \neq 0:0), a fault condition has occurred and (FAULTEN = 1), then outputs are forced to their safe values:


- Channel (n) output takes the value of POL(n)
- Channel (n+1) takes the value of POL(n+1)

The fault interrupt is generated when (FAULTF = 1) and (FAULTIE = 1). This interrupt request remains set until:

- Software clears the FAULTF bit by reading FAULTF bit as 1 and writing 0 to it
- Software clears the FAULTIE bit
- A reset occurs

35.4.16.1 Automatic fault clearing

If the automatic fault clearing is selected (FAULTM[1:0] = 1:1), then the channels output disabled by fault control is again enabled when the fault input signal (FAULTIN) returns to zero and a new PWM cycle begins. See the following figure.

The channel (n) output is after the fault control with automatic fault clearing and POLn = 0.

Figure 35-236. Fault control with automatic fault clearing

35.4.16.2 Manual fault clearing

If the manual fault clearing is selected (FAULTM[1:0] = 0:1 or 1:0), then the channels output disabled by fault control is again enabled when the FAULTF bit is cleared and a new PWM cycle begins. See the following figure.

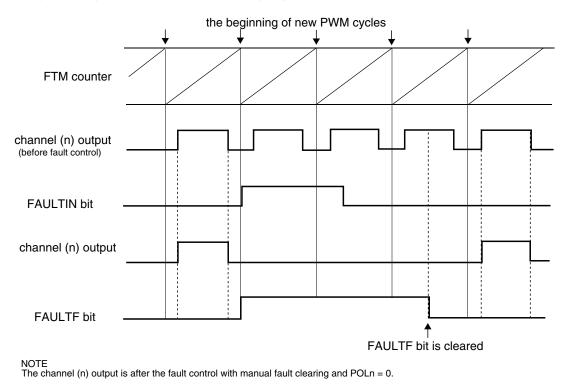


Figure 35-237. Fault control with manual fault clearing

35.4.16.3 Fault inputs polarity control

The FLTjPOL bit selects the fault input j polarity, where j = 0, 1, 2, 3:

- If FLTjPOL = 0, the fault j input polarity is high, so the logical one at the fault input j indicates a fault.
- If FLTjPOL = 1, the fault j input polarity is low, so the logical zero at the fault input j indicates a fault.

35.4.17 Polarity control

The POLn bit selects the channel (n) output polarity:

runctional description

- If POLn = 0, the channel (n) output polarity is high, so the logical one is the active state and the logical zero is the inactive state.
- If POLn = 1, the channel (n) output polarity is low, so the logical zero is the active state and the logical one is the inactive state.

35.4.18 Initialization

The initialization forces the CHnOI bit value to the channel (n) output when a one is written to the INIT bit.

The initialization depends on COMP and DTEN bits. The following table shows the values that channels (n) and (n+1) are forced by initialization when the COMP and DTEN bits are zero.

CH(n)OI	CH(n+1)OI	Channel (n) Output	Channel (n+1) Output
0	0	is forced to zero	is forced to zero
0	1	is forced to zero	is forced to one
1	0	is forced to one	is forced to zero
1	1	is forced to one	is forced to one

 Table 35-249.
 Initialization behavior when (COMP = 0 and DTEN = 0)

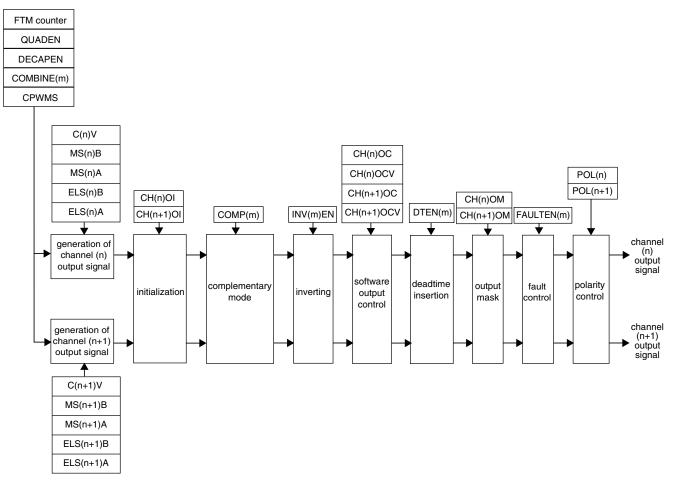
The following table shows the values that channels (n) and (n+1) are forced by initialization when (COMP = 1) or (DTEN = 1).

Table 35-250. Initialization behavior when (COMP = 1 or DTEN = 1)

CH(n)OI	CH(n+1)OI	Channel (n) Output	Channel (n+1) Output
0	Х	is forced to zero	is forced to one
1	Х	is forced to one	is forced to zero

Note

The initialization feature must be used only with disabled FTM counter. See the description of the CLKS field in the Status and Control register.


35.4.19 Features priority

The following figure shows the priority of the features used at the generation of channels (n) and (n+1) outputs signals.

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

pair channels (m) - channels (n) and (n+1)

NOTE

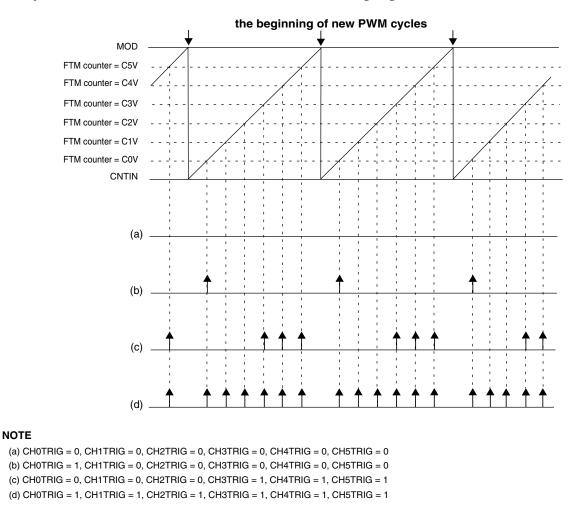
The channels (n) and (n+1) are in output compare, EPWM, CPWM or combine modes.

Figure 35-238. Priority of the features used at the generation of channels (n) and (n+1) outputs signals

Note

The Initialization feature must not be used with Inverting and Software output control features.

35.4.20 Channel trigger output


If CHjTRIG = 1, where j = 0, 1, 2, 3, 4, or 5, then the FTM generates a trigger when the channel (j) match occurs (FTM counter = C(j)V).

The channel trigger output provides a trigger signal that is used for on-chip modules.

runctional description

The FTM is able to generate multiple triggers in one PWM period. Because each trigger is generated for a specific channel, several channels are required to implement this functionality. This behavior is described in the following figure.

Figure 35-239. Channel match trigger

35.4.21 Initialization trigger

If INITTRIGEN = 1, then the FTM generates a trigger when the FTM counter is updated with the CNTIN register value in the following cases.

- The FTM counter is automatically updated with the CNTIN register value by the selected counting mode.
- When there is a write to CNT register.
- When there is the FTM counter synchronization.

- If (CNT = CNTIN), (CLKS[1:0] = 0:0), and a value different from zero is written to CLKS[1:0] bits.
- If the channel (n) is in Input Capture mode, (ICRST = 1) and the selected input capture event occurs in the channel (n) input.

The following figures show these cases.

CNTIN = 0x0000 MOD = 0x000F CPWMS = 0										
system clock										
FTM counter	0x0C	0x0D	0x0E	0x0F	0x00	0x01	0x02	0x03	0x04	0x05
initialization trigger										

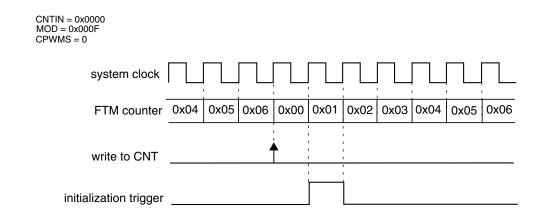
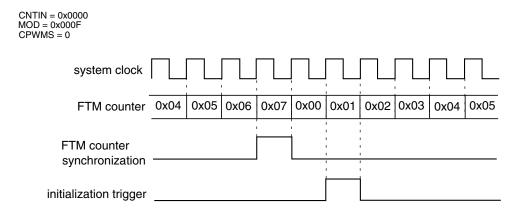



Figure 35-241. Initialization trigger is generated when there is a write to CNT register

·				_
unctional description				
CNTIN = 0x0000 MOD = 0x000F CPWMS = 0				
system cl				
FTM cou	unter 0x00	0x01 0x02	2 0x03 0x04 0x05	
CLKS[1:0]	bits 00		01	
initialization trig	igger			
Figure 35-243. Initialization a value d	on trigger is generate lifferent from zero is	ed if (CNT = CN written to CLK	TIN), (CLKS[1:0] S[1:0] bits] = 0:0),
system clock	0x21 0x22 0x23 0x24 0x2	5 0x26 0x27 0x00 0	Dx01 0x02 0x03	-
channel (n) input				-
CHnF bit				-
C(n)V	ХХ		0x27	-
initialization trigger				-
NOTE Channel (n) input after its s MOD = 0xFFFF CNTIN = 0x0000 PS[2:0] = 3'b000		T ted channel (n) input eve	nt: rising edge	

Figure 35-244. Initialization trigger is generated if the channel (n) is in Input Capture mode, ICRST = 1 and the selected input capture event occurs in the channel (n) input

The initialization trigger output provides a trigger signal that is used for on-chip modules.

35.4.22 Capture Test mode

The Capture Test mode allows to test the CnV registers, the FTM counter and the interconnection logic between the FTM counter and CnV registers.

In this test mode, all channels must be configured for Input Capture mode and FTM counter must be configured to the Up counting.

When the Capture Test mode is enabled (CAPTEST = 1), the FTM counter is frozen and any write to CNT register updates directly the FTM counter; see the following figure. After it was written, all CnV registers are updated with the written value to CNT register and CHnF bits are set. Therefore, the FTM counter is updated with its next value according to its configuration. Its next value depends on CNTIN, MOD, and the written value to FTM counter.

The next reads of CnV registers return the written value to the FTM counter and the next reads of CNT register return FTM counter next value.

NOTE

- FTM counter configuration: (FTMEN = 1), (QUADEN = 0), (CAPTEST = 1), (CPWMS = 0), (CNTIN = 0x0000), and

(MOD = 0xFFF)

- FTM channel n configuration: input capture mode - (DECAPEN = 0), (COMBINE = 0), and (MSnB:MSnA = 0:0)

Figure 35-245. Capture Test mode

35.4.23 DMA

The channel generates a DMA transfer request according to DMA and CHnIE bits. See the following table.

DMA	CHnIE	Channel DMA Transfer Request	Channel Interrupt
0	0	The channel DMA transfer request is not generated.	The channel interrupt is not generated.
0	1	The channel DMA transfer request is not generated.	The channel interrupt is generated if (CHnF = 1).
1	0	The channel DMA transfer request is not generated.	The channel interrupt is not generated.

Table 35-251. Channel DMA transfer request

Table continues on the next page ...

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

runctional description

1

DMA	CHnIE	Channel DMA Transfer Request	Channel Interrupt
1		The channel DMA transfer request is generated if $(CHnF = 1)$.	The channel interrupt is not generated.

 Table 35-251.
 Channel DMA transfer request (continued)

If DMA = 1, the CHnF bit is cleared either by channel DMA transfer done or reading CnSC while CHnF is set and then writing a zero to CHnF bit according to CHnIE bit. See the following table.

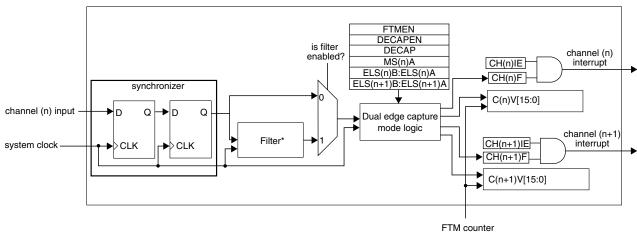

CHnIE	How CHnF Bit Can Be Cleared
0	CHnF bit is cleared either when the channel DMA transfer is done or by reading CnSC while CHnF is set and
	then writing a 0 to CHnF bit.

Table 35-252. Clear CHnF bit when DMA = 1

35.4.24 Dual Edge Capture mode

CHnF bit is cleared when the channel DMA transfer is done.

The Dual Edge Capture mode is selected if DECAPEN = 1. This mode allows to measure a pulse width or period of the signal on the input of channel (n) of a channel pair. The channel (n) filter can be active in this mode when n is 0 or 2.

* Filtering function for dual edge capture mode is only available in the channels 0 and 2

Figure 35-246. Dual Edge Capture mode block diagram

The MS(n)A bit defines if the Dual Edge Capture mode is one-shot or continuous.

The ELS(n)B:ELS(n)A bits select the edge that is captured by channel (n), and ELS(n +1)B:ELS(n+1)A bits select the edge that is captured by channel (n+1). If both ELS(n)B:ELS(n)A and ELS(n+1)B:ELS(n+1)A bits select the same edge, then it is the period measurement. If these bits select different edges, then it is a pulse width measurement.

In the Dual Edge Capture mode, only channel (n) input is used and channel (n+1) input is ignored.

If the selected edge by channel (n) bits is detected at channel (n) input, then CH(n)F bit is set and the channel (n) interrupt is generated (if CH(n)IE = 1). If the selected edge by channel (n+1) bits is detected at channel (n) input and (CH(n)F = 1), then CH(n+1)F bit is set and the channel (n+1) interrupt is generated (if CH(n+1)IE = 1).

The C(n)V register stores the value of FTM counter when the selected edge by channel (n) is detected at channel (n) input. The C(n+1)V register stores the value of FTM counter when the selected edge by channel (n+1) is detected at channel (n) input.

In this mode, a coherency mechanism ensures coherent data when the C(n)V and C(n + 1)V registers are read. The only requirement is that C(n)V must be read before C(n + 1)V.

Note

- The CH(n)F, CH(n)IE, MS(n)A, ELS(n)B, and ELS(n)A bits are channel (n) bits.
- The CH(n+1)F, CH(n+1)IE, MS(n+1)A, ELS(n+1)B, and ELS(n+1)A bits are channel (n+1) bits.
- The Dual Edge Capture mode must be used with ELS(n)B:ELS(n)A = 0:1 or 1:0, ELS(n+1)B:ELS(n+1)A = 0:1 or 1:0 and the FTM counter in Free running counter.

35.4.24.1 One-Shot Capture mode

The One-Shot Capture mode is selected when (DECAPEN = 1), and (MS(n)A = 0). In this capture mode, only one pair of edges at the channel (n) input is captured. The ELS(n)B:ELS(n)A bits select the first edge to be captured, and ELS(n+1)B:ELS(n+1)A bits select the second edge to be captured.

The edge captures are enabled while DECAP bit is set. For each new measurement in One-Shot Capture mode, first the CH(n)F and CH(n+1) bits must be cleared, and then the DECAP bit must be set.

runctional description

In this mode, the DECAP bit is automatically cleared by FTM when the edge selected by channel (n+1) is captured. Therefore, while DECAP bit is set, the one-shot capture is in process. When this bit is cleared, both edges were captured and the captured values are ready for reading in the C(n)V and C(n+1)V registers.

Similarly, when the CH(n+1)F bit is set, both edges were captured and the captured values are ready for reading in the C(n)V and C(n+1)V registers.

35.4.24.2 Continuous Capture mode

The Continuous Capture mode is selected when (DECAPEN = 1), and (MS(n)A = 1). In this capture mode, the edges at the channel (n) input are captured continuously. The ELS(n)B:ELS(n)A bits select the initial edge to be captured, and ELS(n+1)B:ELS(n+1)A bits select the final edge to be captured.

The edge captures are enabled while DECAP bit is set. For the initial use, first the CH(n)F and CH(n+1)F bits must be cleared, and then DECAP bit must be set to start the continuous measurements.

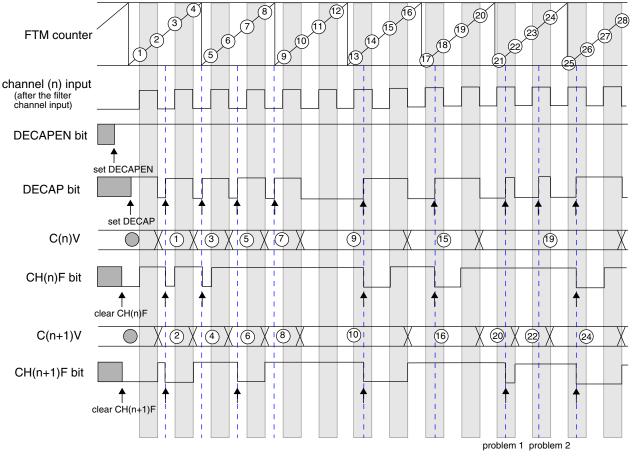
When the CH(n+1)F bit is set, both edges were captured and the captured values are ready for reading in the C(n)V and C(n+1)V registers. The latest captured values are always available in these registers even after the DECAP bit is cleared.

In this mode, it is possible to clear only the CH(n+1)F bit. Therefore, when the CH(n+1)F bit is set again, the latest captured values are available in C(n)V and C(n+1)V registers.

For a new sequence of the measurements in the Dual Edge Capture – Continuous mode, clear the CH(n)F and CH(n+1)F bits to start new measurements.

35.4.24.3 Pulse width measurement

If the channel (n) is configured to capture rising edges (ELS(n)B:ELS(n)A = 0:1) and the channel (n+1) to capture falling edges (ELS(n+1)B:ELS(n+1)A = 1:0), then the positive polarity pulse width is measured. If the channel (n) is configured to capture falling edges (ELS(n)B:ELS(n)A = 1:0) and the channel (n+1) to capture rising edges (ELS(n + 1)B:ELS(n+1)A = 0:1), then the negative polarity pulse width is measured.


The pulse width measurement can be made in One-Shot Capture mode or Continuous Capture mode.

The following figure shows an example of the Dual Edge Capture – One-Shot mode used to measure the positive polarity pulse width. The DECAPEN bit selects the Dual Edge Capture mode, so it remains set. The DECAP bit is set to enable the measurement of next

Chapter 35 FlexTimer Module (FTM)

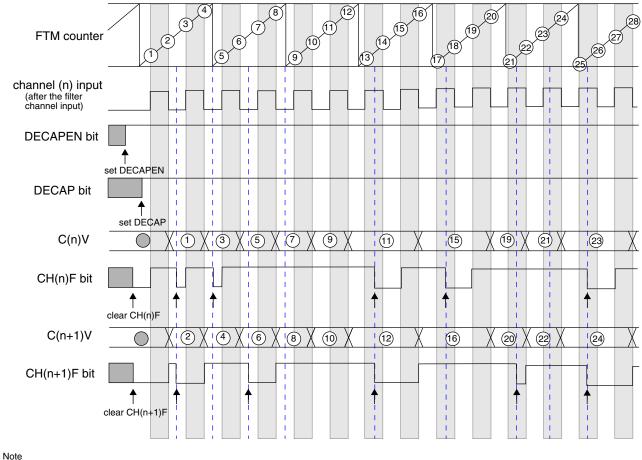
positive polarity pulse width. The CH(n)F bit is set when the first edge of this pulse is detected, that is, the edge selected by ELS(n)B:ELS(n)A bits. The CH(n+1)F bit is set and DECAP bit is cleared when the second edge of this pulse is detected, that is, the edge selected by ELS(n+1)B:ELS(n+1)A bits. Both DECAP and CH(n+1)F bits indicate when two edges of the pulse were captured and the C(n)V and C(n+1)V registers are ready for reading.

Note

- The commands set DECAPEN, set DECAP, clear CH(n)F, and clear CH(n+1)F are made by the user.

- Problem 1: channel (n) input = 1, set DECAP, not clear CH(n)F, and clear CH(n+1)F.

- Problem 2: channel (n) input = 1, set DECAP, not clear CH(n)F, and not clear CH(n+1)F.


Figure 35-247. Dual Edge Capture – One-Shot mode for positive polarity pulse width measurement

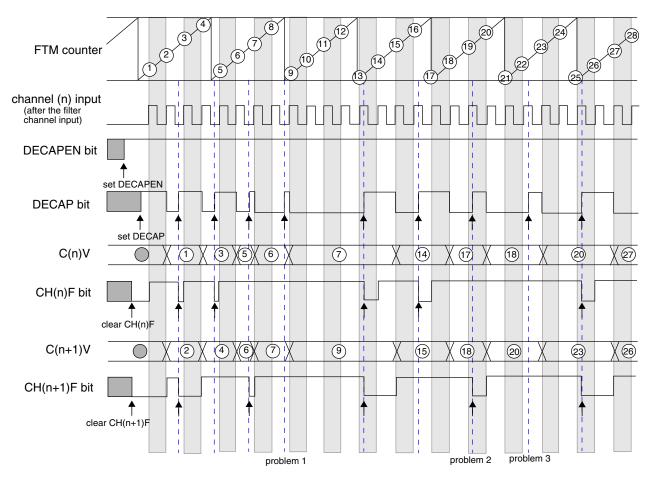
The following figure shows an example of the Dual Edge Capture – Continuous mode used to measure the positive polarity pulse width. The DECAPEN bit selects the Dual Edge Capture mode, so it remains set. While the DECAP bit is set the configured measurements are made. The CH(n)F bit is set when the first edge of the positive polarity pulse is detected, that is, the edge selected by ELS(n)B:ELS(n)A bits. The CH(n+1)F bit

-unctional description

is set when the second edge of this pulse is detected, that is, the edge selected by ELS(n + 1)B:ELS(n+1)A bits. The CH(n+1)F bit indicates when two edges of the pulse were captured and the C(n)V and C(n+1)V registers are ready for reading.

- The commands set DECAPEN, set DECAP, clear CH(n)F, and clear CH(n+1)F are made by the user.

Figure 35-248. Dual Edge Capture – Continuous mode for positive polarity pulse width measurement


35.4.24.4 Period measurement

If the channels (n) and (n+1) are configured to capture consecutive edges of the same polarity, then the period of the channel (n) input signal is measured. If both channels (n) and (n+1) are configured to capture rising edges (ELS(n)B:ELS(n)A = 0:1 and ELS(n +1)B:ELS(n+1)A = 0:1), then the period between two consecutive rising edges is measured. If both channels (n) and (n+1) are configured to capture falling edges (ELS(n)B:ELS(n)A = 1:0 and ELS(n+1)B:ELS(n+1)A = 1:0), then the period between two consecutive falling edges is measured.

The period measurement can be made in One-Shot Capture mode or Continuous Capture mode.

The following figure shows an example of the Dual Edge Capture – One-Shot mode used to measure the period between two consecutive rising edges. The DECAPEN bit selects the Dual Edge Capture mode, so it remains set. The DECAP bit is set to enable the measurement of next period. The CH(n)F bit is set when the first rising edge is detected, that is, the edge selected by ELS(n)B:ELS(n)A bits. The CH(n+1)F bit is set and DECAP bit is cleared when the second rising edge is detected, that is, the edge selected by ELS(n H^{+1})B:ELS(n+1)A bits. Both DECAP and CH(n+1)F bits indicate when two selected edges were captured and the C(n)V and C(n+1)V registers are ready for reading.

Note

- The commands set DECAPEN, set DECAP, clear CH(n)F, and clear CH(n+1)F are made by the user.

- Problem 1: channel (n) input = 0, set DECAP, not clear CH(n)F, and not clear CH(n+1)F.

- Problem 2: channel (n) input = 1, set DECAP, not clear CH(n)F, and clear CH(n+1)F.

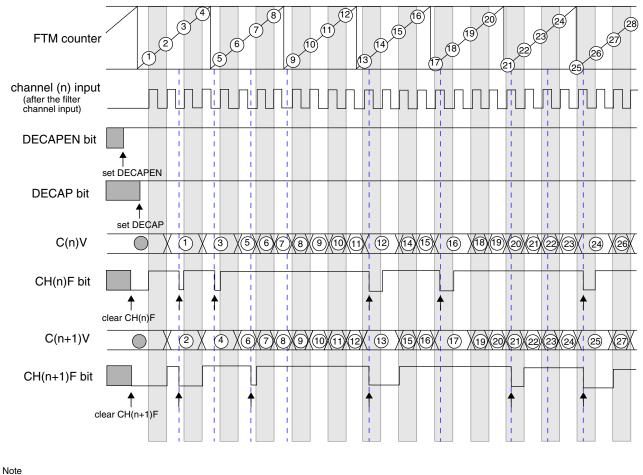

- Problem 3: channel (n) input = 1, set DECAP, not clear CH(n)F, and not clear CH(n+1)F.

Figure 35-249. Dual Edge Capture – One-Shot mode to measure of the period between two consecutive rising edges

runctional description

The following figure shows an example of the Dual Edge Capture – Continuous mode used to measure the period between two consecutive rising edges. The DECAPEN bit selects the Dual Edge Capture mode, so it remains set. While the DECAP bit is set the configured measurements are made. The CH(n)F bit is set when the first rising edge is detected, that is, the edge selected by ELS(n)B:ELS(n)A bits. The CH(n+1)F bit is set when the second rising edge is detected, that is, the edge selected by ELS(n)B:ELS(n+1)B:ELS(n+1)A bits. The CH(n+1)F bit indicates when two edges of the period were captured and the C(n)V and C(n+1)V registers are ready for reading.

- The commands set DECAPEN, set DECAP, clear CH(n)F, and clear CH(n+1)F are made by the user.

Figure 35-250. Dual Edge Capture – Continuous mode to measure of the period between two consecutive rising edges

35.4.24.5 Read coherency mechanism

The Dual Edge Capture mode implements a read coherency mechanism between the FTM counter value captured in C(n)V and C(n+1)V registers. The read coherency mechanism is illustrated in the following figure. In this example, the channels (n) and (n

+1) are in Dual Edge Capture – Continuous mode for positive polarity pulse width measurement. Thus, the channel (n) is configured to capture the FTM counter value when there is a rising edge at channel (n) input signal, and channel (n+1) to capture the FTM counter value when there is a falling edge at channel (n) input signal.

When a rising edge occurs in the channel (n) input signal, the FTM counter value is captured into channel (n) capture buffer. The channel (n) capture buffer value is transferred to C(n)V register when a falling edge occurs in the channel (n) input signal. C(n)V register has the FTM counter value when the previous rising edge occurred, and the channel (n) capture buffer has the FTM counter value when the last rising edge occurred.

When a falling edge occurs in the channel (n) input signal, the FTM counter value is captured into channel (n+1) capture buffer. The channel (n+1) capture buffer value is transferred to C(n+1)V register when the C(n)V register is read.

In the following figure, the read of C(n)V returns the FTM counter value when the event 1 occurred and the read of C(n+1)V returns the FTM counter value when the event 2 occurred.

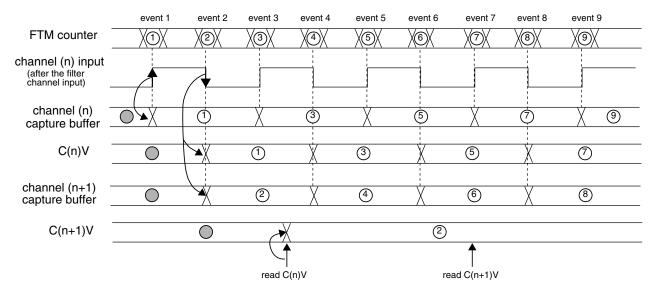


Figure 35-251. Dual Edge Capture mode read coherency mechanism

C(n)V register must be read prior to C(n+1)V register in dual edge capture one-shot and continuous modes for the read coherency mechanism works properly.

35.4.25 Quadrature Decoder mode

The Quadrature Decoder mode is selected if (QUADEN = 1). The Quadrature Decoder mode uses the input signals phase A and B to control the FTM counter increment and decrement. The following figure shows the quadrature decoder block diagram.

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

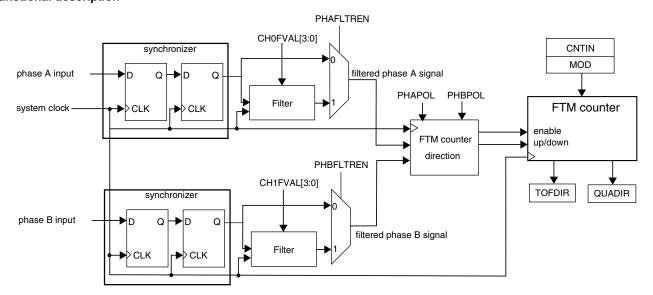


Figure 35-252. Quadrature Decoder block diagram

Each one of input signals phase A and B has a filter that is equivalent to the filter used in the channels input; Filter for Input Capture mode. The phase A input filter is enabled by PHAFLTREN bit and this filter's value is defined by CH0FVAL[3:0] bits (CH(n)FVAL[3:0] bits in FILTER0 register). The phase B input filter is enabled by PHBFLTREN bit and this filter's value is defined by CH1FVAL[3:0] bits (CH(n +1)FVAL[3:0] bits in FILTER0 register).

Except for CH0FVAL[3:0] and CH1FVAL[3:0] bits, no channel logic is used in Quadrature Decoder mode.

Note

Notice that the FTM counter is clocked by the phase A and B input signals when quadrature decoder mode is selected. Therefore it is expected that the Quadrature Decoder be used only with the FTM channels in input capture or output compare modes.

Note

An edge at phase A must not occur together an edge at phase B and vice-versa.

The PHAPOL bit selects the polarity of the phase A input, and the PHBPOL bit selects the polarity of the phase B input.

The QUADMODE selects the encoding mode used in the Quadrature Decoder mode. If QUADMODE = 1, then the count and direction encoding mode is enabled; see the following figure. In this mode, the phase B input value indicates the counting direction, and the phase A input defines the counting rate. The FTM counter is updated when there is a rising edge at phase A input signal.

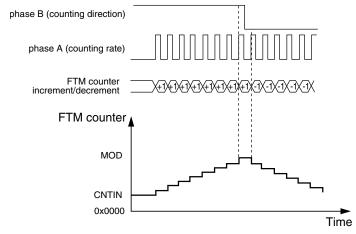


Figure 35-253. Quadrature Decoder – Count and Direction Encoding mode

If QUADMODE = 0, then the Phase A and Phase B Encoding mode is enabled; see the following figure. In this mode, the relationship between phase A and B signals indicates the counting direction, and phase A and B signals define the counting rate. The FTM counter is updated when there is an edge either at the phase A or phase B signals.

If PHAPOL = 0 and PHBPOL = 0, then the FTM counter increment happens when:

- there is a rising edge at phase A signal and phase B signal is at logic zero;
- there is a rising edge at phase B signal and phase A signal is at logic one;
- there is a falling edge at phase B signal and phase A signal is at logic zero;
- there is a falling edge at phase A signal and phase B signal is at logic one;

and the FTM counter decrement happens when:

- there is a falling edge at phase A signal and phase B signal is at logic zero;
- there is a falling edge at phase B signal and phase A signal is at logic one;
- there is a rising edge at phase B signal and phase A signal is at logic zero;
- there is a rising edge at phase A signal and phase B signal is at logic one.

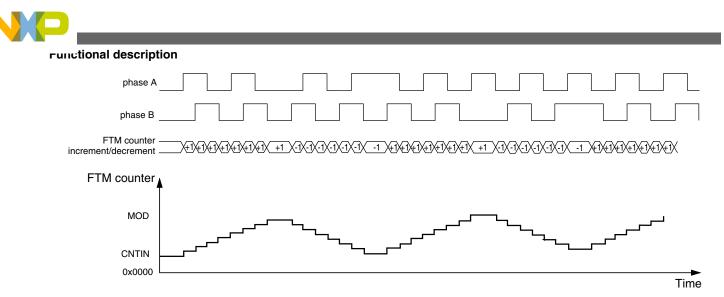


Figure 35-254. Quadrature Decoder – Phase A and Phase B Encoding mode

The following figure shows the FTM counter overflow in up counting. In this case, when the FTM counter changes from MOD to CNTIN, TOF and TOFDIR bits are set. TOF bit indicates the FTM counter overflow occurred. TOFDIR indicates the counting was up when the FTM counter overflow occurred.

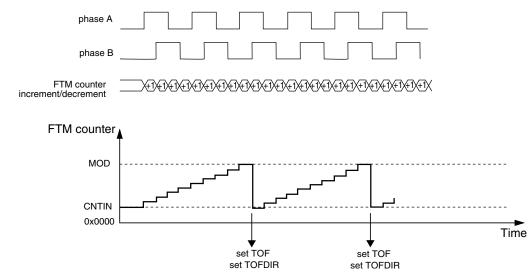


Figure 35-255. FTM Counter overflow in up counting for Quadrature Decoder mode

The following figure shows the FTM counter overflow in down counting. In this case, when the FTM counter changes from CNTIN to MOD, TOF bit is set and TOFDIR bit is cleared. TOF bit indicates the FTM counter overflow occurred. TOFDIR indicates the counting was down when the FTM counter overflow occurred.

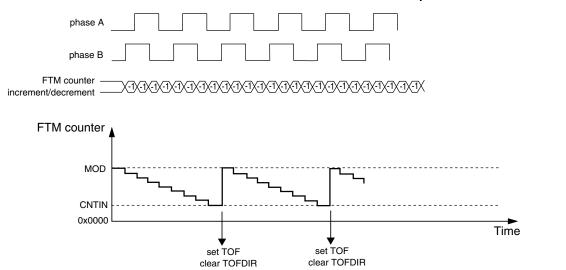
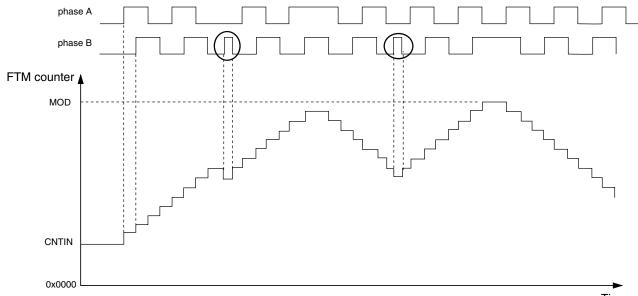



Figure 35-256. FTM counter overflow in down counting for Quadrature Decoder mode

35.4.25.1 Quadrature Decoder boundary conditions

The following figures show the FTM counter responding to motor jittering typical in motor position control applications.

Time

The following figure shows motor jittering produced by the phase B and A pulses respectively:

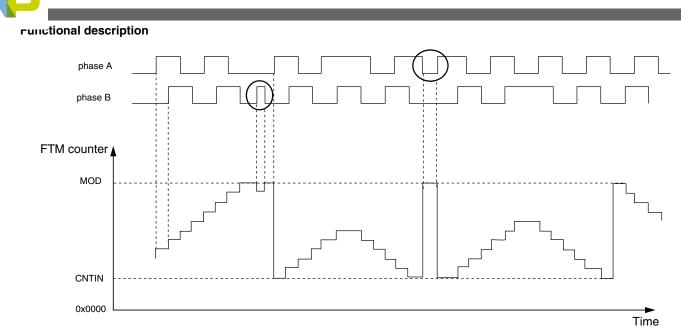


Figure 35-258. Motor position jittering near maximum and minimum count value

The first highlighted transition causes a jitter on the FTM counter value near the maximum count value (MOD). The second indicated transition occurs on phase A and causes the FTM counter transition between the maximum and minimum count values which are defined by MOD and CNTIN registers.

The appropriate settings of the phase A and phase B input filters are important to avoid glitches that may cause oscillation on the FTM counter value. The preceding figures show examples of oscillations that can be caused by poor input filter setup. Thus, it is important to guarantee a minimum pulse width to avoid these oscillations.

35.4.26 BDM mode

When the chip is in BDM mode, the BDMMODE[1:0] bits select the behavior of the FTM counter, the CH(n)F bit, the channels output, and the writes to the MOD, CNTIN, and C(n)V registers according to the following table.

BDMMODE	FTM Counter	CH(n)F Bit	FTM Channels Output	Writes to MOD, CNTIN, and C(n)V Registers
00	Stopped	can be set	Functional mode	Writes to these registers bypass the registers buffers
01	Stopped	is not set	The channels outputs are forced to their safe value according to POLn bit	Writes to these registers bypass the registers buffers
10	Stopped	is not set	The channels outputs are frozen when the chip enters in BDM mode	Writes to these registers bypass the registers buffers

Table 35-253. FTM behavior when the chip Is in BDM mode

Table continues on the next page...

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

Chapter 35 FlexTimer Module (FTM)

BDMMODE	FTM Counter	CH(n)F Bit	FTM Channels Output	Writes to MOD, CNTIN, and C(n)V Registers
11	Functional mode	can be set	Functional mode	Functional mode

Note that if BDMMODE[1:0] = 2'b00 then the channels outputs remain at the value when the chip enters in BDM mode, because the FTM counter is stopped. However, the following situations modify the channels outputs in this BDM mode.

- Write any value to CNT register; see Counter reset. In this case, the FTM counter is updated with the CNTIN register value and the channels outputs are updated to the initial value except for those channels set to Output Compare mode.
- FTM counter is reset by PWM Synchronization mode; see FTM counter synchronization. In this case, the FTM counter is updated with the CNTIN register value and the channels outputs are updated to the initial value except for channels in Output Compare mode.
- In the channels outputs initialization, the channel (n) output is forced to the CH(n)OI bit value when the value 1 is written to INIT bit. See Initialization.

Note

The BDMMODE[1:0] = 2'b00 must not be used with the Fault control. Even if the fault control is enabled and a fault condition exists, the channels outputs values are updated as above.

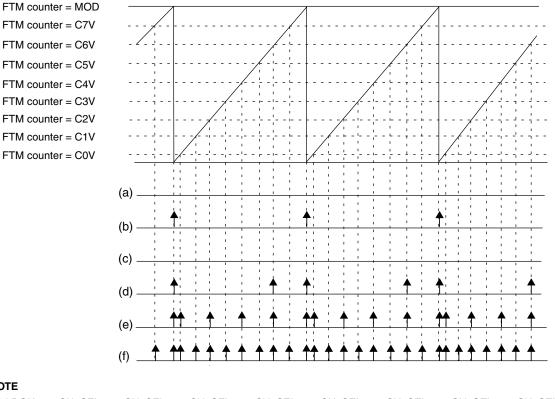
Note

If CLKS[1:0] = 2'b00 in BDM, a non-zero value is written to CLKS in BDM, and CnV = CNTIN when the BDM is disabled, then the CHnF bit is set (since if the channel is a 0% EPWM signal) when the BDM is disabled.

35.4.27 Intermediate load

The PWMLOAD register allows to update the MOD, CNTIN, and C(n)V registers with the content of the register buffer at a defined load point. In this case, it is not required to use the PWM synchronization.

There are multiple possible loading points for intermediate load:



unctional description

Loading point	Enabled
When the FTM counter wraps from MOD value to CNTIN value	Always
At the channel (j) match (FTM counter = $C(j)V$)	When CHjSEL = 1

Table 35-254. When possible loading points are enabled

The following figure shows some examples of enabled loading points.

NOTE

(a) LDOK = 0, CH0SEL = 0, CH1SEL = 0, CH2SEL = 0, CH3SEL = 0, CH4SEL = 0, CH5SEL = 0, CH6SEL = 0, CH7SEL = 0 (b) LDOK = 1, CH0SEL = 0, CH1SEL = 0, CH2SEL = 0, CH3SEL = 0, CH4SEL = 0, CH5SEL = 0, CH6SEL = 0, CH7SEL = 0 (c) LDOK = 0, CH0SEL = 0, CH1SEL = 0, CH2SEL = 0, CH3SEL = 1, CH4SEL = 0, CH5SEL = 0, CH6SEL = 0, CH7SEL = 0 (d) LDOK = 1, CH0SEL = 0, CH1SEL = 0, CH2SEL = 0, CH3SEL = 0, CH4SEL = 0, CH5SEL = 0, CH6SEL = 1, CH7SEL = 0 (e) LDOK = 1, CH0SEL = 1, CH1SEL = 0, CH2SEL = 1, CH3SEL = 0, CH4SEL = 1, CH5SEL = 0, CH6SEL = 1, CH7SEL = 0 (f) LDOK = 1, CH0SEL = 1, CH1SEL = 1, CH2SEL = 1, CH3SEL = 1, CH4SEL = 1, CH5SEL = 1, CH6SEL = 1, CH7SEL = 1

Figure 35-259. Loading points for intermediate load

After enabling the loading points, the LDOK bit must be set for the load to occur. In this case, the load occurs at the next enabled loading point according to the following conditions:

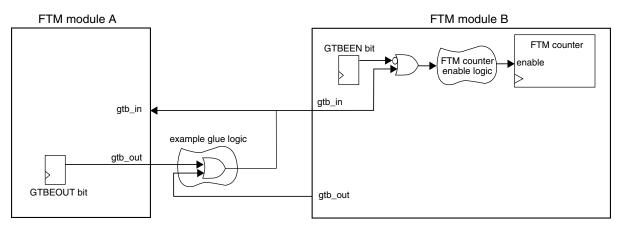
Table 35-255. Conditions for loads occurring at the next enabled loading point

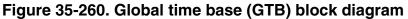
When a new value was written	Then
To the MOD register	The MOD register is updated with its write buffer value.

Table continues on the next page ...

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

Table 35-255. Conditions for loads occurring at the next enabled loading point (continued)


When a new value was written	Then
To the CNTIN register and CNTINC = 1	The CNTIN register is updated with its write buffer value.
To the C(n)V register and SYNCENm = $1 -$ where m indicates the pair channels (n) and (n+1)	The C(n)V register is updated with its write buffer value.
To the $C(n+1)V$ register and SYNCENm = 1 – where m indicates the pair channels (n) and (n+1)	The C(n+1)V register is updated with its write buffer value.


NOTE

- If ELSjB and ELSjA bits are different from zero, then the channel (j) output signal is generated according to the configured output mode. If ELSjB and ELSjA bits are zero, then the generated signal is not available on channel (j) output.
- If CHjIE = 1, then the channel (j) interrupt is generated when the channel (j) match occurs.
- At the intermediate load neither the channels outputs nor the FTM counter are changed. Software must set the intermediate load at a safe point in time.

35.4.28 Global time base (GTB)

The global time base (GTB) is a FTM function that allows the synchronization of multiple FTM modules on a chip. The following figure shows an example of the GTB feature used to synchronize two FTM modules. In this case, the FTM A and B channels can behave as if just one FTM module was used, that is, a global time base.

runctional description

The GTB functionality is implemented by the GTBEEN and GTBEOUT bits in the CONF register, the input signal *gtb_in*, and the output signal *gtb_out*. The GTBEEN bit enables gtb_in to control the FTM counter enable signal:

- If GTBEEN = 0, each one of FTM modules works independently according to their configured mode.
- If GTBEEN = 1, the FTM counter update is enabled only when gtb_in is 1.

In the configuration described in the preceding figure, FTM modules A and B have their FTM counters enabled if at least one of the gtb_out signals from one of the FTM modules is 1. There are several possible configurations for the interconnection of the gtb_in and gtb_out signals, represented by the example glue logic shown in the figure. Note that these configurations are chip-dependent and implemented outside of the FTM modules. See the chip-specific FTM information for the chip's specific implementation.

NOTE

- In order to use the GTB signals to synchronize the FTM counter of different FTM modules, the configuration of each FTM module should guarantee that its FTM counter starts counting as soon as the gtb_in signal is 1.
- The GTB feature does not provide continuous synchronization of FTM counters, meaning that the FTM counters may lose synchronization during FTM operation. The GTB feature only allows the FTM counters to *start* their operation synchronously.

35.4.28.1 Enabling the global time base (GTB)

To enable the GTB feature, follow these steps for each participating FTM module:

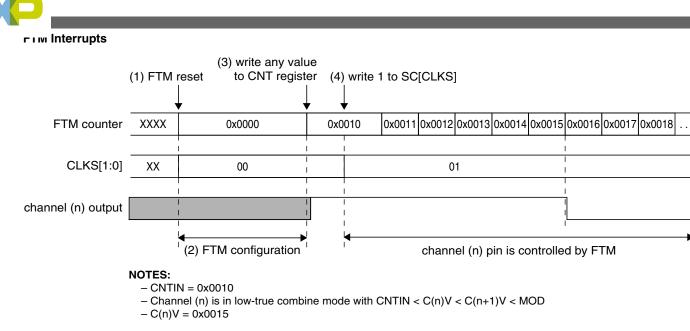
- 1. Stop the FTM counter: Write 00b to SC[CLKS].
- 2. Program the FTM to the intended configuration. The FTM counter mode needs to be consistent across all participating modules.
- 3. Write 1 to CONF[GTBEEN] and write 0 to CONF[GTBEOUT] at the same time.
- 4. Select the intended FTM counter clock source in SC[CLKS]. The clock source needs to be consistent across all participating modules.
- 5. Reset the FTM counter: Write any value to the CNT register.

To initiate the GTB feature in the configuration described in the preceding figure, write 1 to CONF[GTBEOUT] in the FTM module used as the time base.

35.5 Reset overview

The FTM is reset whenever any chip reset occurs.

When the FTM exits from reset:


- the FTM counter and the prescaler counter are zero and are stopped (CLKS[1:0] = 00b);
- the timer overflow interrupt is zero, see Timer Overflow Interrupt;
- the channels interrupts are zero, see Channel (n) Interrupt;
- the fault interrupt is zero, see Fault Interrupt;
- the channels are in input capture mode, see Input Capture mode;
- the channels outputs are zero;
- the channels pins are not controlled by FTM (ELS(n)B:ELS(n)A = 0:0) (See the table in the description of CnSC register).

The following figure shows the FTM behavior after the reset. At the reset (item 1), the FTM counter is disabled (see the description of the CLKS field in the Status and Control register), its value is updated to zero and the pins are not controlled by FTM (See the table in the description of CnSC register).

After the reset, the FTM should be configurated (item 2). It is necessary to define the FTM counter mode, the FTM counting limits (MOD and CNTIN registers value), the channels mode and CnV registers value according to the channels mode.

Thus, it is recommended to write any value to CNT register (item 3). This write updates the FTM counter with the CNTIN register value and the channels output with its initial value (except for channels in output compare mode) (Counter reset).

The next step is to select the FTM counter clock by the CLKS[1:0] bits (item 4). It is important to highlight that the pins are only controlled by FTM when CLKS[1:0] bits are different from zero (See the table in the description of CnSC register).

Figure 35-261. FTM behavior after reset when the channel (n) is in Combine mode

The following figure shows an example when the channel (n) is in Output Compare mode and the channel (n) output is toggled when there is a match. In the Output Compare mode, the channel output is not updated to its initial value when there is a write to CNT register (item 3). In this case, use the software output control (Software output control) or the initialization (Initialization) to update the channel output to the selected value (item 4).

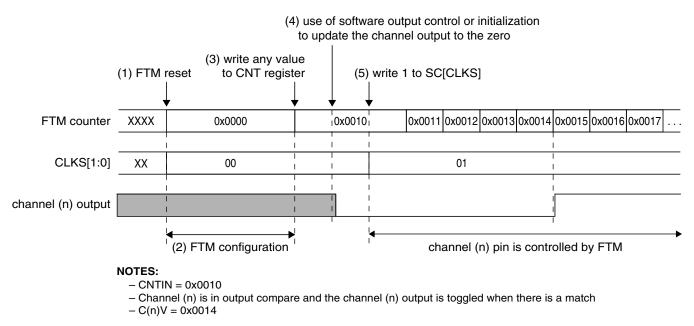


Figure 35-262. FTM behavior after reset when the channel (n) is in Output Compare mode

35.6 FTM Interrupts

35.6.1 Timer Overflow Interrupt

The timer overflow interrupt is generated when (TOIE = 1) and (TOF = 1).

35.6.2 Channel (n) Interrupt

The channel (n) interrupt is generated when (CHnIE = 1) and (CHnF = 1).

35.6.3 Fault Interrupt

The fault interrupt is generated when (FAULTIE = 1) and (FAULTF = 1).

35.7 Initialization Procedure

The following initialization procedure is recommended to configure the FlexTimer operation. This procedure can also be used to do a new configuration of the FlexTimer operation.

- Define the POL bits.
- Mask the channels outputs using SYNCHOM = 0. Two clocks after the write to OUTMASK, the channels output are in the safe value.
- (Re)Configuration FTM counter and channels to generation of periodic signals -Disable the clock. If the selected mode is Quadrature Decoder, then disable this mode. Examples of the (re)configuration:
 - Write to MOD.
 - Write to CNTIN.
 - Select OC, EPWM, CPWM, Combine, Complement modes for all channels that will be used
 - Select the high-true and low-true channels modes.
 - Write to CnV for all channels that will be used .
 - (Re)Configure deadtime and fault control.
 - Do not use the SWOC without SW synchronization (see item 6).
 - Do not use the Inverting without SW synchronization (see item 6).
 - Do not use the Initialization.
 - Do not change the polarity control.
 - Do not configure the HW synchronization

NP

mualization Procedure

- Write any value to CNT. The FTM Counter is reset and the channels output are updated according to new configuration.
- Enable the clock. Write to CLKS[1:0] bits a value different from zero. If in the Quadrature Decoder mode, enable this mode.
- Configure the SW synchronization for SWOC (if it is necessary), Inverting (if it is necessary) and Output Mask (always)
 - Select synchronization for Output Mask Write to SYNC (SWSYNC = 0, TRIG2 = 0, TRIG1 = 0, TRIG0 = 0, SYNCHOM = 1, REINIT = 0, CNTMAX = 0, CNTMIN = 0)
 - Write to SYNCONF.
 - HW Synchronization can not be enabled (HWSOC = 0, HWINVC = 0, HWOM = 0, HWWRBUF = 0, HWRSTCNT = 0, HWTRIGMODE = 0).
 - SW Synchronization for SWOC (if it is necessary): SWSOC = [0/1] and SWOC = [0/1].
 - SW Synchronization for Inverting (if it is necessary): SWINVC = [0/1] and INVC = [0/1].
 - SW Synchronization for SWOM (always): SWOM = 1. No enable the SW Synchronization for write buffers (because the writes to registers with write buffer are done using CLKS[1:0] = 2'b00): SWWRBUF = 0 and CNTINC = 0.
 - SW Synchronization for counter reset (always): SWRSTCNT = 1.
 - Enhanced synchronization (always): SYNCMODE = 1
 - If the SWOC is used (SWSOC = 1 and SWOC = 1), then write to SWOCTRL register.
 - If the Inverting is used (SWINVC = 1 and INVC = 1), then write to INVCTRL register.
 - Write to OUTMASK to enable the masked channels.
- Generate the Software Trigger Write to SYNC (SWSYNC = 1, TRIG2 = 0, TRIG1 = 0, TRIG0 = 0, SYNCHOM = 1, REINIT = 0, CNTMAX = 0, CNTMIN = 0)

Chapter 36 Low-Power Timer (LPTMR)

36.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The low-power timer (LPTMR) can be configured to operate as a time counter with optional prescaler, or as a pulse counter with optional glitch filter, across all power modes, including the low-leakage modes. It can also continue operating through most system reset events, allowing it to be used as a time of day counter.

36.1.1 Features

The features of the LPTMR module include:

- 16-bit time counter or pulse counter with compare
 - Optional interrupt can generate asynchronous wakeup from any low-power mode
 - Hardware trigger output
 - Counter supports free-running mode or reset on compare
- Configurable clock source for prescaler/glitch filter
- Configurable input source for pulse counter
 - Rising-edge or falling-edge

36.1.2 Modes of operation

The following table describes the operation of the LPTMR module in various modes.

Modes	Description					
Run	The LPTMR operates normally.					
Wait	The LPTMR continues to operate normally and may be configured to exit the low-power mode by generating an interrupt request.					
Stop	The LPTMR continues to operate normally and may be configured to exit the low-power mode by generating an interrupt request.					
Low-Leakage	The LPTMR continues to operate normally and may be configured to exit the low-power mode by generating an interrupt request.					
Debug	The LPTMR operates normally in Pulse Counter mode, but counter does not increment in Time Counter mode.					

Table 36-1. Modes of operation

36.2 LPTMR signal descriptions

Table 36-2. LPTMR signal descriptions

Signal	I/O	Description
LPTMR_ALTn	I	Pulse Counter Input pin

36.2.1 Detailed signal descriptions

Table 36-3. LPTMR interface—detailed signal descriptions

Signal	I/O		Description
LPTMR_ALT <i>n</i>	I	Pulse Counter Input	
		The LPTMR can select one	of the input pins to be used in Pulse Counter mode.
		State meaning	Assertion—If configured for pulse counter mode with active-high input, then assertion causes the CNR to increment.
			Deassertion—If configured for pulse counter mode with active-low input, then deassertion causes the CNR to increment.
		Timing	Assertion or deassertion may occur at any time; input may assert asynchronously to the bus clock.

36.3 Memory map and register definition

LPTMR memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4004_0000	Low Power Timer Control Status Register (LPTMR0_CSR)	32	R/W	0000_0000h	36.3.1/787
4004_0004	Low Power Timer Prescale Register (LPTMR0_PSR)	32	R/W	0000_0000h	36.3.2/788
4004_0008	Low Power Timer Compare Register (LPTMR0_CMR)	32	R/W	0000_0000h	36.3.3/790
4004_000C	Low Power Timer Counter Register (LPTMR0_CNR)	32	R/W	0000_0000h	36.3.4/790

36.3.1 Low Power Timer Control Status Register (LPTMRx_CSR)

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R								(C							
w																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R				()				TCF	TIE	TF	20	TPP	TFC	TMS	TEN
w									w1c	11		- 3			11/13	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Address: 4004_0000h base + 0h offset = 4004_0000h

LPTMRx_CSR field descriptions

Field	Description
31–8 Reserved	This field is reserved.
	This read-only field is reserved and always has the value 0.
7 TCF	Timer Compare Flag
ICF	TCF is set when the LPTMR is enabled and the CNR equals the CMR and increments. TCF is cleared when the LPTMR is disabled or a logic 1 is written to it.
	0 The value of CNR is not equal to CMR and increments.
	1 The value of CNR is equal to CMR and increments.
6 TIE	Timer Interrupt Enable
	When TIE is set, the LPTMR Interrupt is generated whenever TCF is also set.
	0 Timer interrupt disabled.
	1 Timer interrupt enabled.
5–4 TPS	Timer Pin Select
	Configures the input source to be used in Pulse Counter mode. TPS must be altered only when the LPTMR is disabled. The input connections vary by device. See the chip configuration details for information on the connections to these inputs.
	00 Pulse counter input 0 is selected.
	Table continues on the next page

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

LPTMRx_CSR field descriptions (continued)

Field	Description
	01 Pulse counter input 1 is selected.
	10 Pulse counter input 2 is selected.
	11 Pulse counter input 3 is selected.
3 TPP	Timer Pin Polarity
	Configures the polarity of the input source in Pulse Counter mode. TPP must be changed only when the LPTMR is disabled.
	0 Pulse Counter input source is active-high, and the CNR will increment on the rising-edge.
	1 Pulse Counter input source is active-low, and the CNR will increment on the falling-edge.
2 TFC	Timer Free-Running Counter
	When clear, TFC configures the CNR to reset whenever TCF is set. When set, TFC configures the CNR to reset on overflow. TFC must be altered only when the LPTMR is disabled.
	0 CNR is reset whenever TCF is set.
	1 CNR is reset on overflow.
1	Timer Mode Select
TMS	Configures the mode of the LPTMR. TMS must be altered only when the LPTMR is disabled.
	0 Time Counter mode.
	1 Pulse Counter mode.
0	Timer Enable
TEN	When TEN is clear, it resets the LPTMR internal logic, including the CNR and TCF. When TEN is set, the LPTMR is enabled. While writing 1 to this field, CSR[5:1] must not be altered.
	0 LPTMR is disabled and internal logic is reset.
	1 LPTMR is enabled.

36.3.2 Low Power Timer Prescale Register (LPTMRx_PSR)

Bit R W Reset Bit R PBYP PRESCALE PCS W Reset

Address: 4004_0000h base + 4h offset = 4004_0004h

LPTMRx_PSR field descriptions

Field	Description											
31–7 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.											
6–3 PRESCALE	Prescale Value											
FRESCALE	Configures the size of the Prescaler in Time Counter mode or width of the glitch filter in Pulse Counter mode. PRESCALE must be altered only when the LPTMR is disabled.											
	0000 Prescaler divides the prescaler clock by 2; glitch filter does not support this configuration.											
	0001 Prescaler divides the prescaler clock by 4; glitch filter recognizes change on input pin after 2 rising clock edges.											
	0010 Prescaler divides the prescaler clock by 8; glitch filter recognizes change on input pin after 4 rising clock edges.											
	0011 Prescaler divides the prescaler clock by 16; glitch filter recognizes change on input pin after 8 rising clock edges.											
	0100 Prescaler divides the prescaler clock by 32; glitch filter recognizes change on input pin after 16 rising clock edges.											
	0101 Prescaler divides the prescaler clock by 64; glitch filter recognizes change on input pin after 32 rising clock edges.											
	0110 Prescaler divides the prescaler clock by 128; glitch filter recognizes change on input pin after 64 rising clock edges.											
	0111 Prescaler divides the prescaler clock by 256; glitch filter recognizes change on input pin after 128 rising clock edges.											
	1000 Prescaler divides the prescaler clock by 512; glitch filter recognizes change on input pin after 256 rising clock edges.											
	1001 Prescaler divides the prescaler clock by 1024; glitch filter recognizes change on input pin after 512 rising clock edges.											
	1010 Prescaler divides the prescaler clock by 2048; glitch filter recognizes change on input pin after 1024 rising clock edges.											
	1011 Prescaler divides the prescaler clock by 4096; glitch filter recognizes change on input pin after 2048 rising clock edges.											
	1100 Prescaler divides the prescaler clock by 8192; glitch filter recognizes change on input pin after 4096 rising clock edges.											
	1101 Prescaler divides the prescaler clock by 16,384; glitch filter recognizes change on input pin after 8192 rising clock edges.											
	1110 Prescaler divides the prescaler clock by 32,768; glitch filter recognizes change on input pin after 16,384 rising clock edges.											
	1111 Prescaler divides the prescaler clock by 65,536; glitch filter recognizes change on input pin after 32,768 rising clock edges.											
2 PBYP	Prescaler Bypass											
1011	When PBYP is set, the selected prescaler clock in Time Counter mode or selected input source in Pulse Counter mode directly clocks the CNR. When PBYP is clear, the CNR is clocked by the output of the prescaler/glitch filter. PBYP must be altered only when the LPTMR is disabled.											
	0 Prescaler/glitch filter is enabled.											
4.0	1 Prescaler/glitch filter is bypassed.											
1–0 PCS	Prescaler Clock Select											
	Selects the clock to be used by the LPTMR prescaler/glitch filter. PCS must be altered only when the LPTMR is disabled. The clock connections vary by device.											
	NOTE: See the chip configuration details for information on the connections to these inputs.											

Table continues on the next page...

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

LPTMRx_PSR field descriptions (continued)

Field		Description								
	00	Prescaler/glitch filter clock 0 selected.								
	01	Prescaler/glitch filter clock 1 selected.								
	10	Prescaler/glitch filter clock 2 selected.								
	11	Prescaler/glitch filter clock 3 selected.								

36.3.3 Low Power Timer Compare Register (LPTMRx_CMR)

Address: 4004_0000h base + 8h offset = 4004_0008h

Address: 4004_0000h base + Ch offset = 4004_000Ch

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R								()														С	OMF		F						
w																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

LPTMRx_CMR field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 COMPARE	Compare Value When the LPTMR is enabled and the CNR equals the value in the CMR and increments, TCF is set and the hardware trigger asserts until the next time the CNR increments. If the CMR is 0, the hardware trigger will remain asserted until the LPTMR is disabled. If the LPTMR is enabled, the CMR must be altered only when TCF is set.

36.3.4 Low Power Timer Counter Register (LPTMRx_CNR)

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R								(0														С	ດບເ	NTF	R						
w																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

LPTMRx_CNR field descriptions

Field	Description								
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.								
15–0 COUNTER	Counter Value								

36.4 Functional description

36.4.1 LPTMR power and reset

The LPTMR remains powered in all power modes, including low-leakage modes. If the LPTMR is not required to remain operating during a low-power mode, then it must be disabled before entering the mode.

The LPTMR is reset only on global Power On Reset (POR) or Low Voltage Detect (LVD). When configuring the LPTMR registers, the CSR must be initially written with the timer disabled, before configuring the PSR and CMR. Then, CSR[TIE] must be set as the last step in the initialization. This ensures the LPTMR is configured correctly and the LPTMR counter is reset to zero following a warm reset.

36.4.2 LPTMR clocking

The LPTMR prescaler/glitch filter can be clocked by one of the four clocks. The clock source must be enabled before the LPTMR is enabled.

NOTE

The clock source selected need to be configured to remain enabled in low-power modes, otherwise the LPTMR will not operate during low-power modes.

In Pulse Counter mode with the prescaler/glitch filter bypassed, the selected input source directly clocks the CNR and no other clock source is required. To minimize power in this case, configure the prescaler clock source for a clock that is not toggling.

NOTE

The clock source or pulse input source selected for the LPTMR should not exceed the frequency f_{LPTMR} defined in the device datasheet.

36.4.3 LPTMR prescaler/glitch filter

The LPTMR prescaler and glitch filter share the same logic which operates as a prescaler in Time Counter mode and as a glitch filter in Pulse Counter mode.

NOTE

The prescaler/glitch filter configuration must not be altered when the LPTMR is enabled.

36.4.3.1 Prescaler enabled

In Time Counter mode, when the prescaler is enabled, the output of the prescaler directly clocks the CNR. When the LPTMR is enabled, the CNR will increment every 2^2 to 2^{16} prescaler clock cycles. After the LPTMR is enabled, the first increment of the CNR will take an additional one or two prescaler clock cycles due to synchronization logic.

36.4.3.2 Prescaler bypassed

In Time Counter mode, when the prescaler is bypassed, the selected prescaler clock increments the CNR on every clock cycle. When the LPTMR is enabled, the first increment will take an additional one or two prescaler clock cycles due to synchronization logic.

36.4.3.3 Glitch filter

In Pulse Counter mode, when the glitch filter is enabled, the output of the glitch filter directly clocks the CNR. When the LPTMR is first enabled, the output of the glitch filter is asserted, that is, logic 1 for active-high and logic 0 for active-low. The following table shows the change in glitch filter output with the selected input source.

lf	Then
The selected input source remains deasserted for at least 2 ¹ to 2 ¹⁵ consecutive prescaler clock rising edges	The glitch filter output will also deassert.
The selected input source remains asserted for at least 2 ¹ to 2 ¹⁵ consecutive prescaler clock rising-edges	The glitch filter output will also assert.

NOTE

The input is only sampled on the rising clock edge.

The CNR will increment each time the glitch filter output asserts. In Pulse Counter mode, the maximum rate at which the CNR can increment is once every 2^2 to 2^{16} prescaler clock edges. When first enabled, the glitch filter will wait an additional one or two prescaler clock edges due to synchronization logic.

36.4.3.4 Glitch filter bypassed

In Pulse Counter mode, when the glitch filter is bypassed, the selected input source increments the CNR every time it asserts. Before the LPTMR is first enabled, the selected input source is forced to be asserted. This prevents the CNR from incrementing if the selected input source is already asserted when the LPTMR is first enabled.

36.4.4 LPTMR compare

When the CNR equals the value of the CMR and increments, the following events occur:

- CSR[TCF] is set.
- LPTMR interrupt is generated if CSR[TIE] is also set.
- LPTMR hardware trigger is generated.
- CNR is reset if CSR[TFC] is clear.

When the LPTMR is enabled, the CMR can be altered only when CSR[TCF] is set. When updating the CMR, the CMR must be written and CSR[TCF] must be cleared before the LPTMR counter has incremented past the new LPTMR compare value.

36.4.5 LPTMR counter

The CNR increments by one on every:

- Prescaler clock in Time Counter mode with prescaler bypassed
- Prescaler output in Time Counter mode with prescaler enabled
- Input source assertion in Pulse Counter mode with glitch filter bypassed
- Glitch filter output in Pulse Counter mode with glitch filter enabled

The CNR is reset when the LPTMR is disabled or if the counter register overflows. If CSR[TFC] is cleared, then the CNR is also reset whenever CSR[TCF] is set.

The CNR continues incrementing when the core is halted in Debug mode when configured for Pulse Counter mode, the CNR will stop incrementing when the core is halted in Debug mode when configured for Time Counter mode.

The CNR cannot be initialized, but can be read at any time. On each read of the CNR, software must first write to the CNR with any value. This will synchronize and register the current value of the CNR into a temporary register. The contents of the temporary register are returned on each read of the CNR.

When reading the CNR, the bus clock must be at least two times faster than the rate at which the LPTMR counter is incrementing, otherwise incorrect data may be returned.

36.4.6 LPTMR hardware trigger

The LPTMR hardware trigger asserts at the same time the CSR[TCF] is set and can be used to trigger hardware events in other peripherals without software intervention. The hardware trigger is always enabled.

When	Then
The CMR is set to 0 with CSR[TFC] clear	The LPTMR hardware trigger will assert on the first compare and does not deassert.
	The LPTMR hardware trigger will assert on each compare and deassert on the following increment of the CNR.

36.4.7 LPTMR interrupt

The LPTMR interrupt is generated whenever CSR[TIE] and CSR[TCF] are set. CSR[TCF] is cleared by disabling the LPTMR or by writing a logic 1 to it.

CSR[TIE] can be altered and CSR[TCF] can be cleared while the LPTMR is enabled.

The LPTMR interrupt is generated asynchronously to the system clock and can be used to generate a wakeup from any low-power mode, including the low-leakage modes, provided the LPTMR is enabled as a wakeup source.

Chapter 37 Programmable Delay Block (PDB)

37.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The Programmable Delay Block (PDB) provides controllable delays from either an internal or an external trigger, or a programmable interval tick, to the hardware trigger inputs of ADCs and/or generates the interval triggers to DACs, so that the precise timing between ADC conversions and/or DAC updates can be achieved. The PDB can optionally provide pulse outputs (Pulse-Out's) that are used as the sample window in the CMP block.

37.1.1 Features

- Up to 15 trigger input sources and one software trigger source
- Up to 8 configurable PDB channels for ADC hardware trigger
 - One PDB channel is associated with one ADC
 - One trigger output for ADC hardware trigger and up to 8 pre-trigger outputs for ADC trigger select per PDB channel
 - Trigger outputs can be enabled or disabled independently
 - One 16-bit delay register per pre-trigger output
 - Optional bypass of the delay registers of the pre-trigger outputs
 - Operation in One-Shot or Continuous modes

nuroduction

- Optional back-to-back mode operation, which enables the ADC conversions complete to trigger the next PDB channel
- One programmable delay interrupt
- One sequence error interrupt
- One channel flag and one sequence error flag per pre-trigger
- DMA support
- Up to 8 DAC interval triggers
 - One interval trigger output per DAC
 - One 16-bit delay interval register per DAC trigger output
 - Optional bypass of the delay interval trigger registers
 - Optional external triggers
- Up to 8 pulse outputs (pulse-out's)
 - Pulse-out's can be enabled or disabled independently
 - Programmable pulse width

NOTE

The number of PDB input and output triggers are chip-specific. See the chip-specific PDB information for details.

37.1.2 Implementation

In this section, the following letters refer to the number of output triggers:

- N—Total available number of PDB channels.
- n—PDB channel number, valid from 0 to *N*-1.
- M—Total available pre-trigger per PDB channel.
- m—Pre-trigger number, valid from 0 to *M*-1.
- X—Total number of DAC interval triggers.
- x—DAC interval trigger output number, valid from 0 to *X*-1.

- Y—Total number of Pulse-Out's.
- y—Pulse-Out number, valid value is from 0 to *Y*-1.

NOTE

The number of module output triggers to core is chip-specific. For module to core output triggers implementation, see the chip configuration information.

37.1.3 Back-to-back acknowledgment connections

PDB back-to-back operation acknowledgment connections are chip-specific. For implementation, see the chip configuration information.

37.1.4 DAC External Trigger Input Connections

The implementation of DAC external trigger inputs is chip-specific. See the chip configuration information for details.

37.1.5 Block diagram

This diagram illustrates the major components of the PDB.

muroduction

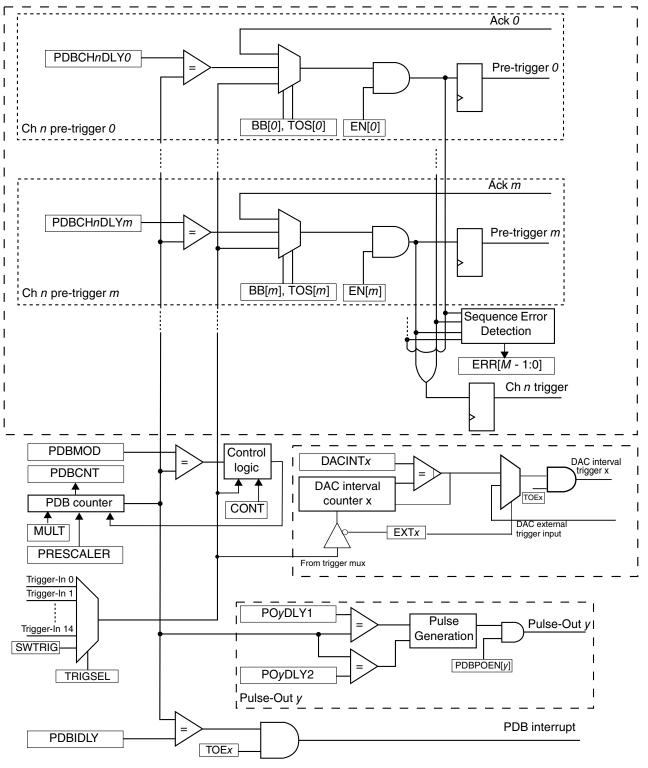


Figure 37-1. PDB block diagram

In this diagram, only one PDB channel *n*, one DAC interval trigger *x*, and one Pulse-Out *y* are shown. The PDB-enabled control logic and the sequence error interrupt logic are not shown.

37.1.6 Modes of operation

PDB ADC trigger operates in the following modes:

- Disabled—Counter is off, all pre-trigger and trigger outputs are low if PDB is not in back-to-back operation of Bypass mode.
- Debug—Counter is paused when processor is in Debug mode, and the counter for the DAC trigger is also paused in Debug mode.
- Enabled One-Shot—Counter is enabled and restarted at count zero upon receiving a positive edge on the selected trigger input source or software trigger is selected and SC[SWTRIG] is written with 1. In each PDB channel, an enabled pre-trigger asserts once per trigger input event. The trigger output asserts whenever any of the pre-triggers is asserted.
- Enabled Continuous—Counter is enabled and restarted at count zero. The counter is rolled over to zero again when the count reaches the value specified in the modulus register, and the counting is restarted. This enables a continuous stream of pre-triggers/trigger outputs as a result of a single trigger input event.
- Enabled Bypassed—The pre-trigger and trigger outputs assert immediately after a positive edge on the selected trigger input source or software trigger is selected and SC[SWTRIG] is written with 1, that is the delay registers are bypassed. It is possible to bypass any one or more of the delay registers; therefore, this mode can be used in conjunction with One-Shot or Continuous mode.

37.2 PDB signal descriptions

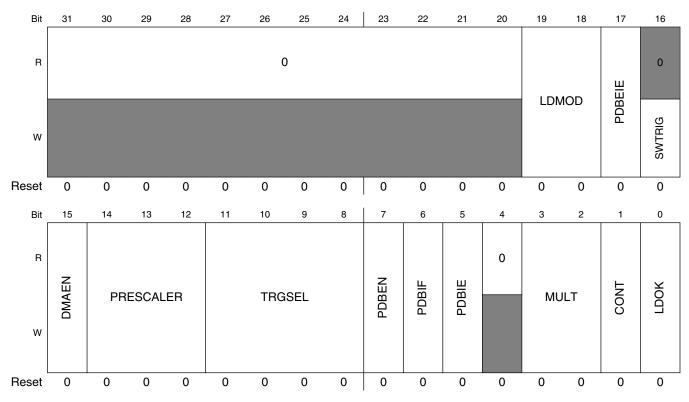
This table shows the detailed description of the external signal.

Signal	Description	I/O
EXTRG	External Trigger Input Source	I
	If the PDB is enabled and external trigger input source is selected, a positive edge on the EXTRG signal resets and starts the counter.	

 Table 37-1.
 PDB signal descriptions

37.3 Memory map and register definition

memory map and register definition


Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4003_6000	Status and Control register (PDB0_SC)	32	R/W	0000_0000h	37.3.1/801
4003_6004	Modulus register (PDB0_MOD)	32	R/W	0000_FFFFh	37.3.2/803
4003_6008	Counter register (PDB0_CNT)	32	R	0000_0000h	37.3.3/804
4003_600C	Interrupt Delay register (PDB0_IDLY)	32	R/W	0000_FFFFh	37.3.4/804
4003_6010	Channel n Control register 1 (PDB0_CH0C1)	32	R/W	0000_0000h	37.3.5/805
4003_6014	Channel n Status register (PDB0_CH0S)	32	R/W	0000_0000h	37.3.6/806
4003_6018	Channel n Delay 0 register (PDB0_CH0DLY0)	32	R/W	0000_0000h	37.3.7/806
4003_601C	Channel n Delay 1 register (PDB0_CH0DLY1)	32	R/W	0000_0000h	37.3.8/807
4003_6038	Channel n Control register 1 (PDB0_CH1C1)	32	R/W	0000_0000h	37.3.5/805
4003_603C	Channel n Status register (PDB0_CH1S)	32	R/W	0000_0000h	37.3.6/806
4003_6040	Channel n Delay 0 register (PDB0_CH1DLY0)	32	R/W	0000_0000h	37.3.7/806
4003_6044	Channel n Delay 1 register (PDB0_CH1DLY1)	32	R/W	0000_0000h	37.3.8/807
4003_6150	DAC Interval Trigger n Control register (PDB0_DACINTC0)	32	R/W	0000_0000h	37.3.9/807
4003_6154	DAC Interval n register (PDB0_DACINT0)	32	R/W	0000_0000h	37.3.10/ 808
4003_6190	Pulse-Out n Enable register (PDB0_POEN)	32	R/W	0000_0000h	37.3.11/ 808
4003_6194	Pulse-Out n Delay register (PDB0_PO0DLY)	32	R/W	0000_0000h	37.3.12/ 809
4003_6198	Pulse-Out n Delay register (PDB0_PO1DLY)	32	R/W	0000_0000h	37.3.12/ 809

PDB memory map

37.3.1 Status and Control register (PDBx_SC)

Address: 4003_6000h base + 0h offset = 4003_6000h

PDBx_SC field descriptions

Field	Description
31–20 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
19–18 LDMOD	Load Mode Select Selects the mode to load the MOD, IDLY, CHnDLYm, INTx, and POyDLY registers, after 1 is written to LDOK.
	 00 The internal registers are loaded with the values from their buffers immediately after 1 is written to LDOK. 01 The internal registers are loaded with the values from their buffers when the PDB counter reaches the MOD register value after 1 is written to LDOK. 10 The internal registers are loaded with the values from their buffers when a trigger input event is
	 detected after 1 is written to LDOK. The internal registers are loaded with the values from their buffers when either the PDB counter reaches the MOD register value or a trigger input event is detected, after 1 is written to LDOK.
17 PDBEIE	PDB Sequence Error Interrupt Enable Enables the PDB sequence error interrupt. When this field is set, any of the PDB channel sequence error flags generates a PDB sequence error interrupt.

Table continues on the next page...

PDBx_SC field descriptions (continued)

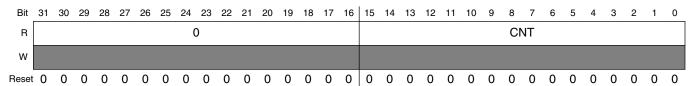
Field	Description
	0 PDB sequence error interrupt disabled.
	1 PDB sequence error interrupt enabled.
16 SWTRIG	Software Trigger
Swinic	When PDB is enabled and the software trigger is selected as the trigger input source, writing 1 to this field resets and restarts the counter. Writing 0 to this field has no effect. Reading this field results 0.
15 DMAEN	DMA Enable
	When DMA is enabled, the PDBIF flag generates a DMA request instead of an interrupt.
	0 DMA disabled.
	1 DMA enabled.
14–12 PRESCALER	Prescaler Divider Select
	000 Counting uses the peripheral clock divided by multiplication factor selected by MULT.
	001 Counting uses the peripheral clock divided by twice of the multiplication factor selected by MULT.
	010 Counting uses the peripheral clock divided by four times of the multiplication factor selected by MULT.
	011 Counting uses the peripheral clock divided by eight times of the multiplication factor selected by MULT.
	100 Counting uses the peripheral clock divided by 16 times of the multiplication factor selected by MULT.
	 101 Counting uses the peripheral clock divided by 32 times of the multiplication factor selected by MULT.
	 110 Counting uses the peripheral clock divided by 64 times of the multiplication factor selected by MULT.
	 111 Counting uses the peripheral clock divided by 128 times of the multiplication factor selected by MULT.
11–8	Trigger Input Source Select
TRGSEL	
	Selects the trigger input source for the PDB. The trigger input source can be internal or external (EXTRG pin), or the software trigger. Refer to chip configuration details for the actual PDB input trigger
	connections.
	0000 Trigger-In 0 is selected.
	0001 Trigger-In 1 is selected.
	0010 Trigger-In 2 is selected.
	0011 Trigger-In 3 is selected.
	0100 Trigger-In 4 is selected.
	0101 Trigger-In 5 is selected.
	0110 Trigger-In 6 is selected.
	0111 Trigger-In 7 is selected. 1000 Trigger-In 8 is selected.
	1000 Trigger-In 9 is selected.
	1010 Trigger-In 10 is selected.
	1011 Trigger-In 11 is selected.
	1100 Trigger-In 12 is selected.
	1101 Trigger-In 13 is selected.
	1110 Trigger-In 14 is selected.
	1111 Software trigger is selected.

Table continues on the next page...

PDBx_SC field descriptions (continued)

Field	Description
7 PDBEN	 PDB Enable 0 PDB disabled. Counter is off. 1 PDB enabled.
6 PDBIF	PDB Interrupt Flag This field is set when the counter value is equal to the IDLY register. Writing zero clears this field.
5 PDBIE	 PDB Interrupt Enable Enables the PDB interrupt. When this field is set and DMAEN is cleared, PDBIF generates a PDB interrupt. 0 PDB interrupt disabled. 1 PDB interrupt enabled.
4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
3–2 MULT	Multiplication Factor Select for Prescaler Selects the multiplication factor of the prescaler divider for the counter clock. 00 Multiplication factor is 1. 01 Multiplication factor is 10. 10 Multiplication factor is 20. 11 Multiplication factor is 40.
1 CONT	Continuous Mode Enable Enables the PDB operation in Continuous mode. 0 PDB operation in One-Shot mode 1 PDB operation in Continuous mode
0 LDOK	Load OK Writing 1 to this bit updates the internal registers of MOD, IDLY, CHnDLYm, DACINTx, and POyDLY with the values written to their buffers. The MOD, IDLY, CHnDLYm, DACINTx, and POyDLY will take effect according to the LDMOD. After 1 is written to the LDOK field, the values in the buffers of above registers are not effective and the buffers cannot be written until the values in buffers are loaded into their internal registers. LDOK can be written only when PDBEN is set or it can be written at the same time with PDBEN being written to 1. It is automatically cleared when the values in buffers are loaded into the internal registers or the PDBEN is cleared. Writing 0 to it has no effect.

37.3.2 Modulus register (PDBx_MOD)


KV10 Sub-Family Reference Manual, Rev. 7, September 2014

PDBx_MOD field descriptions

Field	Description
31–16	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
15–0	PDB Modulus
MOD	
	Specifies the period of the counter. When the counter reaches this value, it will be reset back to zero. If the PDB is in Continuous mode, the count begins anew. Reading this field returns the value of the internal register that is effective for the current cycle of PDB.

37.3.3 Counter register (PDBx_CNT)

Address: 4003_6000h base + 8h offset = 4003_6008h

PDBx_CNT field descriptions

Field	Description
31–16	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
15–0	PDB Counter
CNT	Contains the current value of the counter.

37.3.4 Interrupt Delay register (PDBx_IDLY)

Address: 4003_6000h base + Ch offset = 4003_600Ch

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R		0														IDI Y																
W																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

PDBx_IDLY field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 IDLY	PDB Interrupt Delay
	Specifies the delay value to schedule the PDB interrupt. It can be used to schedule an independent interrupt at some point in the PDB cycle. If enabled, a PDB interrupt is generated, when the counter is

Table continues on the next page ...

Chapter 37 Programmable Delay Block (PDB)

PDBx_IDLY field descriptions (continued)

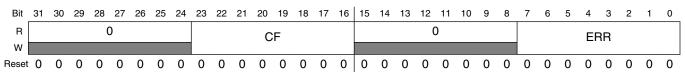
Field	Description
	equal to the IDLY. Reading this field returns the value of internal register that is effective for the current cycle of the PDB.

37.3.5 Channel n Control register 1 (PDBx_CHnC1)

Each PDB channel has one control register, CHnC1. The bits in this register control the functionality of each PDB channel operation.

Address: 4003_6000h base + 10h offset + (40d × i), where i=0d to 1d

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	R O BB											TOS								FN												
W																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


PDBx_CHnC1 field descriptions

Field	Description
31–24 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
23–16 BB	PDB Channel Pre-Trigger Back-to-Back Operation Enable
	These bits enable the PDB ADC pre-trigger operation as back-to-back mode. Only lower M pre-trigger bits are implemented in this MCU. Back-to-back operation enables the ADC conversions complete to trigger the next PDB channel pre-trigger and trigger output, so that the ADC conversions can be triggered on next set of configuration and results registers. Application code must only enable the back-to-back operation of the PDB pre-triggers at the leading of the back-to-back connection chain.
	0 PDB channel's corresponding pre-trigger back-to-back operation disabled.
	1 PDB channel's corresponding pre-trigger back-to-back operation enabled.
15–8 TOS	PDB Channel Pre-Trigger Output Select
	Selects the PDB ADC pre-trigger outputs. Only lower M pre-trigger fields are implemented in this MCU.
	0 PDB channel's corresponding pre-trigger is in bypassed mode. The pre-trigger asserts one peripheral clock cycle after a rising edge is detected on selected trigger input source or software trigger is selected and SWTRIG is written with 1.
	1 PDB channel's corresponding pre-trigger asserts when the counter reaches the channel delay register and one peripheral clock cycle after a rising edge is detected on selected trigger input source or software trigger is selected and SETRIG is written with 1.
7–0	PDB Channel Pre-Trigger Enable
EN	These bits enable the PDB ADC pre-trigger outputs. Only lower M pre-trigger bits are implemented in this MCU.
	0 PDB channel's corresponding pre-trigger disabled.
	1 PDB channel's corresponding pre-trigger enabled.

37.3.6 Channel n Status register (PDBx_CHnS)

Address: 4003_6000h base + 14h offset + (40d \times i), where i=0d to 1d

PDBx_CHnS field descriptions

Description
This field is reserved. This read-only field is reserved and always has the value 0.
PDB Channel Flags The CF[<i>m</i>] bit is set when the PDB counter matches the CH <i>n</i> DLY <i>m</i> . Write 0 to clear these bits.
This field is reserved. This read-only field is reserved and always has the value 0.
 PDB Channel Sequence Error Flags Only the lower M bits are implemented in this MCU. Sequence error not detected on PDB channel's corresponding pre-trigger. Sequence error detected on PDB channel's corresponding pre-trigger. ADCn block can be triggered for a conversion by one pre-trigger from PDB channel <i>n</i>. When one conversion, which is triggered by one of the pre-triggers from PDB channel <i>n</i>, is in progress, new trigger from PDB channel's corresponding pre-trigger from PDB channel s corresponding pre-trigger from PDB channel <i>n</i>.

37.3.7 Channel n Delay 0 register (PDBx_CHnDLY0)

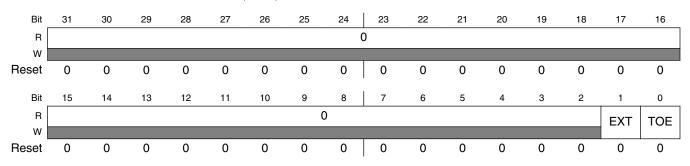
Address: 4003_{6000h} base + 18h offset + ($40d \times i$), where i=0d to 1d

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R								()															DI	v							
w																									- 1							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PDBx_CHnDLY0 field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 DLY	PDB Channel Delay
	Specifies the delay value for the channel's corresponding pre-trigger. The pre-trigger asserts when the counter is equal to DLY. Reading this field returns the value of internal register that is effective for the current PDB cycle.

37.3.8 Channel n Delay 1 register (PDBx_CHnDLY1)


Address: 4003_6000h base + 1Ch offset + (40d × i), where i=0d to 1d

PDBx_CHnDLY1 field descriptions

Description
ved. Id is reserved and always has the value 0.
lay y the delay value for the channel's corresponding pre-trigger. The pre-trigger asserts r is equal to DLY. Reading these bits returns the value of internal register that is effective

37.3.9 DAC Interval Trigger n Control register (PDBx_DACINTCn)

Address: 4003_6000h base + 150h offset + (8d \times i), where i=0d to 0d

PDBx_DACINTCn field descriptions

Field	Description
31–2 Becomical	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
1 EXT	DAC External Trigger Input Enable
	This bit enables the external trigger for DAC interval counter.
	0 DAC external trigger input disabled. DAC interval counter is reset and started counting when a rising edge is detected on selected trigger input source or software trigger is selected and SWTRIG is written with 1.
	1 DAC external trigger input enabled. DAC interval counter is bypassed and DAC external trigger input triggers the DAC interval trigger.

Table continues on the next page...

Field	Description
0 TOE	DAC Interval Trigger Enable Enables the DAC interval trigger.
	DAC interval trigger disabled.DAC interval trigger enabled.

PDBx_DACINTCn field descriptions (continued)

37.3.10 DAC Interval n register (PDBx_DACINTn)

Address: 4003_6000h base + 154h offset + (8d \times i), where i=0d to 0d

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R								()															IN	т							
w																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PDBx_DACINTn field descriptions

Field	Description
31–16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–0 INT	DAC Interval
	These bits specify the interval value for DAC interval trigger. DAC interval trigger triggers DAC[1:0] update when the DAC interval counter is equal to the DACINT. Reading these bits returns the value of internal register that is effective for the current PDB cycle.

37.3.11 Pulse-Out n Enable register (PDBx_POEN)

Address: 4003_6000h base + 190h offset = 4003_6190h

Bit	21	20	20	29	27	26	25	24	22	22	01	20	10	10	17	16	15	14	12	10	11	10	0	0	7	6	Б	4	2	2	1	0
Dit	51	30	29	20	21	20	20	24	23	22	21	20	19	10	17	10	15	14	15	12		10	9	0	'	0	5	4	3	2		0
R												()															PO	EN			
W																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PDBx_POEN field descriptions

Field	Description
31–8	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
7–0	PDB Pulse-Out Enable
POEN	Enables the pulse output. Only lower Y bits are implemented in this MCU.

Table continues on the next page ...

Chapter 37 Programmable Delay Block (PDB)

PDBx_POEN field descriptions (continued)

Field		Description
	0 P	PDB Pulse-Out disabled
	1 P	PDB Pulse-Out enabled

37.3.12 Pulse-Out n Delay register (PDBx_POnDLY)

Address: 4003_6000h base + 194h offset + (4d \times i), where i=0d to 1d

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R								וח	Y1															וח	Y2							
w								DL	. 1 1																.12							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PDBx_POnDLY field descriptions

Field	Description
31–16 DLY1	PDB Pulse-Out Delay 1
	Specifies the delay 1 value for the PDB Pulse-Out. Pulse-Out goes high when the PDB counter is equal to the DLY1. Reading this field returns the value of internal register that is effective for the current PDB cycle.
15–0 DLY2	PDB Pulse-Out Delay 2
	Specifies the delay 2 value for the PDB Pulse-Out. Pulse-Out goes low when the PDB counter is equal to the DLY2. Reading this field returns the value of internal register that is effective for the current PDB cycle.

37.4 Functional description

37.4.1 PDB pre-trigger and trigger outputs

The PDB contains a counter whose output is compared to several different digital values. If the PDB is enabled, then a trigger input event will reset the counter and make it start to count. A trigger input event is defined as a rising edge being detected on a selected trigger input source, or if a software trigger is selected and SC[SWTRIG] is written with 1. For each channel, a delay *m* determines the time between assertion of the trigger input event to the time at which changes in the pre-trigger *m* output signal are started. The time is defined as:

-unctional description

- Trigger input event to pre-trigger m = (prescaler X multiplication factor X delay m) + 2 peripheral clock cycles
- Add 1 additional peripheral clock cycle to determine the time when the channel trigger output changes.

Each channel is associated with 1 ADC block. PDB channel n pre-trigger outputs 0 to M; each pre-trigger output is connected to ADC hardware trigger select and hardware trigger inputs. The pre-triggers are used to precondition the ADC block before the actual trigger occurs. When the ADC receives the rising edge of the trigger, the ADC will start the conversion according to the precondition determined by the pre-triggers. The ADC contains M sets of configuration and result registers, allowing it to alternate conversions between M different analog sources (like a ping-pong game). The pre-trigger outputs are used to specify which signal will be sampled next. When a pre-trigger m is asserted, the ADC conversion is triggered with set m of the configuration and result registers.

The waveforms shown in the following diagram show the pre-trigger and trigger outputs of PDB channel *n*. The delays can be independently set using the CHnDLYm registers, and the pre-triggers can be enabled or disabled in CHnC1[EN[m]].

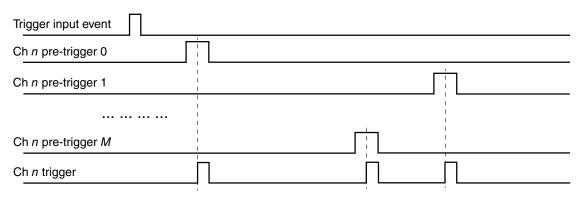


Figure 37-50. Pre-trigger and trigger outputs

The delay in CHnDLYm register can be optionally bypassed, if CHnC1[TOS[m]] is cleared. In this case, when the trigger input event occurs, the pre-trigger *m* is asserted after 2 peripheral clock cycles.

The PDB can be configured for back-to-back operation. Back-to-back operation enables the ADC conversion completions to trigger the next PDB channel pre-trigger and trigger outputs, so that the ADC conversions can be triggered on the next set of configuration and results registers. When back-to-back operation is enabled by setting CHnC1[BB[m]], then the delay *m* is ignored and the pre-trigger *m* is asserted 2 peripheral cycles after the acknowledgment *m* is received. The acknowledgment connections in this MCU are described in Back-to-back acknowledgment connections.

When a pre-trigger from a PDB channel *n* is asserted, the associated lock of the pretrigger becomes active. The associated lock is released by the rising edge of the corresponding ADC*n*SC1[COCO]; the ADC*n*SC1[COCO] should be cleared after the conversion result is read, so that the next rising edge of ADC*n*SC1[COCO] can be generated to clear the lock later. The lock becomes inactive when:

- the rising edge of corresponding ADCnSC1[COCO] occurs,
- or the corresponding PDB pre-trigger is disabled,
- or the PDB is disabled

The channel *n* trigger output is suppressed when any of the locks of the pre-triggers in channel *n* is active. If a new pre-trigger *m* asserts when there is active lock in the PDB channel *n*, then a register flag bit CHnS[ERR[m]] (associated with the pre-trigger *m*) is set. If SC[PDBEIE] is set, then the sequence error interrupt is generated. A sequence error typically happens because the delay *m* is set too short and the pre-trigger *m* asserts before the previously triggered ADC conversion finishes.

When the PDB counter reaches the value set in IDLY register, the SC[PDBIF] flag is set. A PDB interrupt can be generated if SC[PDBIE] is set and SC[DMAEN] is cleared. If SC[DMAEN] is set, then the PDB requests a DMA transfer when the SC[PDBIF] flag is set.

The modulus value in the MOD register is used to reset the counter back to zero at the end of the count. If SC[CONT] is set, then the counter will then resume a new count; otherwise, the counter operation will stop until the next trigger input event occurs.

37.4.2 PDB trigger input source selection

The PDB has up to 15 trigger input sources, namely Trigger-In 14. They are connected to on-chip or off-chip event sources. The PDB can be triggered by software through SC[SWTRIG]. SC[TRIGSEL] selects the active trigger input source or software trigger.

For the trigger input sources implemented in this MCU, see chip configuration information.

37.4.3 DAC interval trigger outputs

PDB can generate the interval triggers for DACs to update their outputs periodically. DAC interval counter x is reset and started when a trigger input event occurs if DACINTCx[EXT] is cleared. When the interval counter x is equal to the value set in DACINTx register, the DAC interval trigger x output generates a pulse of one peripheral clock cycle width to update the DACx. If DACINTCx[EXT] is set, the DAC interval

runctional description

counter is bypassed and the interval trigger output x generates a pulse following the detection of a rising edge on the DAC external trigger input. The counter and interval trigger can be disabled by clearing the DACINTCx[TOE].

DAC interval counters are also reset when the PDB counter reaches the MOD register value; therefore, when the PDB counter rolls over to zero, the DAC interval counters starts anew.

The DAC interval trigger pulse and the ADC pre-trigger/trigger pulses together allow precise timing of DAC updates and ADC measurements. This is outlined in the typical use case described in the following diagram.

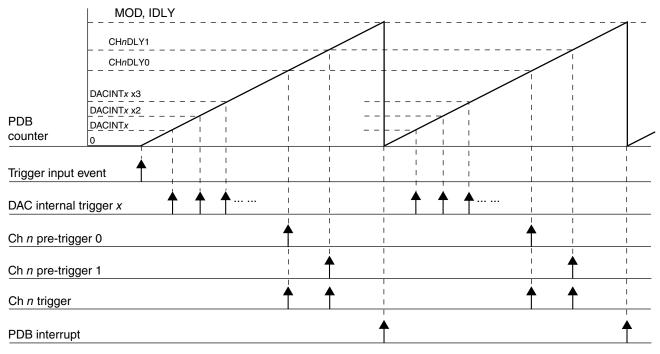


Figure 37-51. PDB ADC triggers and DAC interval triggers use case

NOTE

Because the DAC interval counters share the prescaler with PDB counter, PDB must be enabled if the DAC interval trigger outputs are used in the applications.

37.4.4 Pulse-Out's

PDB can generate pulse outputs of configurable width. When PDB counter reaches the value set in POyDLY[DLY1], the Pulse-Out goes high; when the counter reaches POyDLY[DLY2], it goes low. POyDLY[DLY2] can be set either greater or less than POyDLY[DLY1].

ADC pre-trigger/trigger outputs and Pulse-Out generation have the same time base, because they both share the PDB counter.

The pulse-out connections implemented in this MCU are described in the device's chip configuration details.

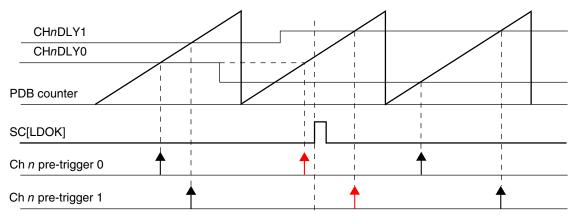
37.4.5 Updating the delay registers

The following registers control the timing of the PDB operation; and in some of the applications, they may need to become effective at the same time.

- PDB Modulus register (MOD)
- PDB Interrupt Delay register (IDLY)
- PDB Channel *n* Delay *m* register (CH*n*DLY*m*)
- DAC Interval *x* register (DACINT*x*)
- PDB Pulse-Out *y* Delay register (POyDLY)

The internal registers of them are buffered and any values written to them are written first to their buffers. The circumstances that cause their internal registers to be updated with the values from the buffers are summarized as shown in the table below.

 Table 37-52.
 Circumstances of update to the delay registers


SC[LDMOD]	Update to the delay registers
00	The internal registers are loaded with the values from their buffers immediately after 1 is written to SC[LDOK].
01	The PDB counter reaches the MOD register value after 1 is written to SC[LDOK].
10	A trigger input event is detected after 1 is written to SC[LDOK].
11	Either the PDB counter reaches the MOD register value, or a trigger input event is detected, after 1 is written to SC[LDOK].

After 1 is written to SC[LDOK], the buffers cannot be written until the values in buffers are loaded into their internal registers. SC[LDOK] is self-cleared when the internal registers are loaded, so the application code can read it to determine the updates to the internal registers.

The following diagrams show the cases of the internal registers being updated with SC[LDMOD] is 00 and x1.

unctional description

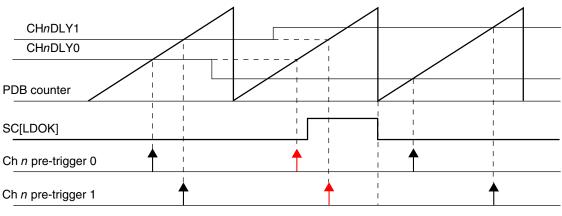


Figure 37-53. Registers update with SC[LDMOD] = x1

37.4.6 Interrupts


PDB can generate two interrupts: PDB interrupt and PDB sequence error interrupt. The following table summarizes the interrupts.

Table 37-53. PDB interrupt summary

Interrupt	Flags	Enable bit
PDB Interrupt	SC[PDBIF]	SC[PDBIE] = 1 and SC[DMAEN] = 0
PDB Sequence Error Interrupt	CHnS[ERRm]	SC[PDBEIE] = 1

37.4.7 DMA

If SC[DMAEN] is set, PDB can generate a DMA transfer request when SC[PDBIF] is set. When DMA is enabled, the PDB interrupt is not issued.

37.5 Application information

37.5.1 Impact of using the prescaler and multiplication factor on timing resolution

Use of prescaler and multiplication factor greater than 1 limits the count/delay accuracy in terms of peripheral clock cycles (to the modulus of the prescaler X multiplication factor). If the multiplication factor is set to 1 and the prescaler is set to 2 then the only values of total peripheral clocks that can be detected are even values; if prescaler is set to 4 then the only values of total peripheral clocks that can be decoded as detected are mod(4) and so forth. If the applications need a really long delay value and use a prescaler set to 128, then the resolution would be limited to 128 peripheral clock cycles.

Therefore, use the lowest possible prescaler and multiplication factor for a given application.

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

Chapter 38 Serial Peripheral Interface (SPI)

38.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The serial peripheral interface (SPI) module provides a synchronous serial bus for communication between an MCU and an external peripheral device.

38.1.1 Block Diagram

The block diagram of this module is as follows:

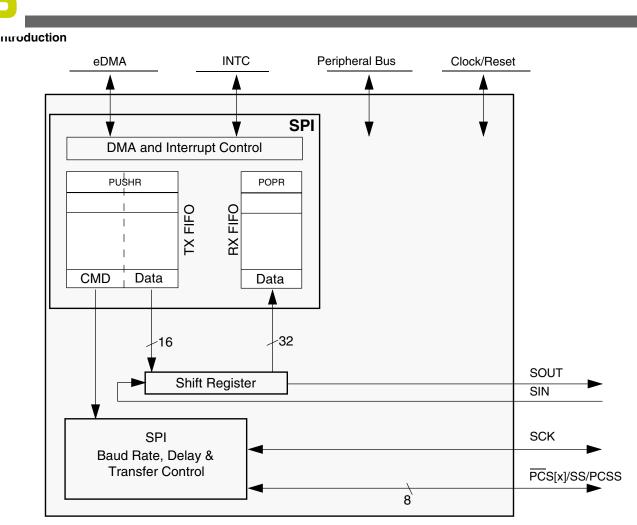


Figure 38-1. SPI Block Diagram

38.1.2 Features

The module supports the following features:

- Full-duplex, three-wire synchronous transfers
- Master mode
- Slave mode
- Data streaming operation in Slave mode with continuous slave selection
- Buffered transmit operation using the transmit first in first out (TX FIFO) with depth of 4 entries
- Buffered receive operation using the receive FIFO (RX FIFO) with depth of 4 entries
- Asynchronous clocking scheme for Register and Protocol Interfaces

- TX and RX FIFOs can be disabled individually for low-latency updates to SPI queues
- Visibility into TX and RX FIFOs for ease of debugging
- Programmable transfer attributes on a per-frame basis:
 - two transfer attribute registers
 - Serial clock (SCK) with programmable polarity and phase
 - Various programmable delays
 - Programmable serial frame size: 4 to 16 bits
 - SPI frames longer than 16 bits can be supported using the continuous selection format.
 - Continuously held chip select capability
- 5 peripheral chip selects (PCSes), expandable to 32 with external demultiplexer
- Deglitching support for up to 16 peripheral chip selects (PCSes) with external demultiplexer
- DMA support for adding entries to TX FIFO and removing entries from RX FIFO:
 - TX FIFO is not full (TFFF)
 - RX FIFO is not empty (RFDF)
- Interrupt conditions:
 - End of Queue reached (EOQF)
 - TX FIFO is not full (TFFF)
 - Transfer of current frame complete (TCF)
 - Attempt to transmit with an empty Transmit FIFO (TFUF)
 - RX FIFO is not empty (RFDF)
 - Frame received while Receive FIFO is full (RFOF)
- Global interrupt request line
- Modified SPI transfer formats for communication with slower peripheral devices
- Power-saving architectural features:

meriace configurations

- Support for Stop mode
- Support for Doze mode

38.1.3 Interface configurations

38.1.3.1 SPI configuration

The Serial Peripheral Interface (SPI) configuration allows the module to send and receive serial data. This configuration allows the module to operate as a basic SPI block with internal FIFOs supporting external queue operation. Transmitted data and received data reside in separate FIFOs. The host CPU or a DMA controller read the received data from the Receive FIFO and write transmit data to the Transmit FIFO.

For queued operations, the SPI queues can reside in system RAM, external to the module. Data transfers between the queues and the module FIFOs are accomplished by a DMA controller or host CPU. The following figure shows a system example with DMA, SPI, and external queues in system RAM.

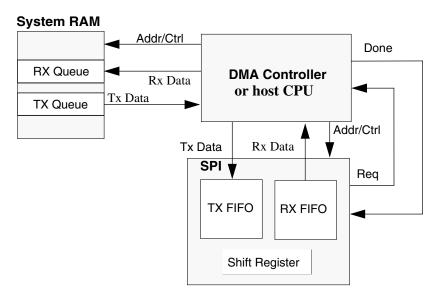


Figure 38-2. SPI with queues and DMA

38.1.4 Modes of Operation

The module supports the following modes of operation that can be divided into two categories:

• Module-specific modes:

- Master mode
- Slave mode
- Module Disable mode
- MCU-specific modes:
 - External Stop mode
 - Debug mode

The module enters module-specific modes when the host writes a module register. The MCU-specific modes are controlled by signals external to the module. The MCU-specific modes are modes that an MCU may enter in parallel to the block-specific modes.

38.1.4.1 Master Mode

Master mode allows the module to initiate and control serial communication. In this mode, these signals are controlled by the module and configured as outputs:

- SCK
- SOUT
- PCS[x]

38.1.4.2 Slave Mode

Slave mode allows the module to communicate with SPI bus masters. In this mode, the module responds to externally controlled serial transfers. The SCK signal and the $PCS[0]/\overline{SS}$ signals are configured as inputs and driven by an SPI bus master.

38.1.4.3 Module Disable Mode

The Module Disable mode can be used for MCU power management. The clock to the non-memory mapped logic in the module can be stopped while in the Module Disable mode.

woule signal descriptions

38.1.4.4 External Stop Mode

External Stop mode is used for MCU power management. The module supports the Peripheral Bus Stop mode mechanism. When a request is made to enter External Stop mode, it acknowledges the request and completes the transfer that is in progress. When the module reaches the frame boundary, it signals that the protocol clock to the module may be shut off.

38.1.4.5 Debug Mode

Debug mode is used for system development and debugging. The MCR[FRZ] bit controls module behavior in the Debug mode:

- If the bit is set, the module stops all serial transfers, when the MCU is in debug mode.
- If the bit is cleared, the MCU debug mode has no effect on the module.

38.2 Module signal descriptions

This table describes the signals on the boundary of the module that may connect off chip (in alphabetical order).

Signal	Master mode	Slave mode	I/O
PCS0/SS	Peripheral Chip Select 0 (O)	Slave Select (I)	I/O
PCS[1:3]	Peripheral Chip Selects 1–3	(Unused)	0
SCK	Serial Clock (O)	Serial Clock (I)	I/O
SIN	Serial Data In	Serial Data In	I
SOUT	Serial Data Out	Serial Data Out	0

 Table 38-1.
 Module signal descriptions

38.2.1 PCS0/SS—Peripheral Chip Select/Slave Select

Master mode: Peripheral Chip Select 0 (O)—Selects an SPI slave to receive data transmitted from the module.

Slave mode: Slave Select (I)—Selects the module to receive data transmitted from an SPI master.

38.2.2 PCS1–PCS3—Peripheral Chip Selects 1–3

Master mode: Peripheral Chip Selects 1–3 (O)—Select an SPI slave to receive data transmitted by the module.

Slave mode: Unused

38.2.3 SCK—Serial Clock

Master mode: Serial Clock (O)—Supplies a clock signal from the module to SPI slaves.

Slave mode: Serial Clock (I)—Supplies a clock signal to the module from an SPI master.

38.2.4 SIN—Serial Input

Master mode: Serial Input (I)-Receives serial data.

Slave mode: Serial Input (I)-Receives serial data.

NOTE

Serial Data Out output buffers are controlled through SIU (or SIUL) and cannot be controlled through the module.

38.2.5 SOUT—Serial Output

Master mode: Serial Output (O)—Transmits serial data.

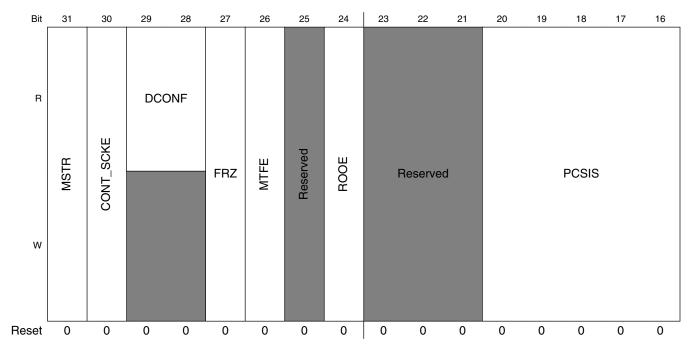
Slave mode: Serial Output (O)—Transmits serial data.

NOTE

Serial Data Out output buffers are controlled through SIU (or SIUL) and cannot be controlled through the module.

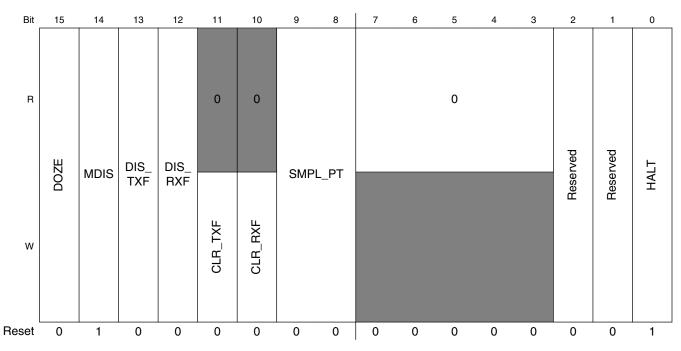
38.3 Memory Map/Register Definition

Register accesses to memory addresses that are reserved or undefined result in a transfer error. Write access to the POPR and RXFRn also results in a transfer error.


SPI memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4002_C000	Module Configuration Register (SPI0_MCR)	32	R/W	0000_4001h	38.3.1/825
4002_C008	Transfer Count Register (SPI0_TCR)	32	R/W	0000_0000h	38.3.2/829
4002_C00C	Clock and Transfer Attributes Register (In Master Mode) (SPI0_CTAR0)	32	R/W	7800_0000h	38.3.3/829
4002_C00C	Clock and Transfer Attributes Register (In Slave Mode) (SPI0_CTAR0_SLAVE)	32	R/W	7800_0000h	38.3.4/834
4002_C010	Clock and Transfer Attributes Register (In Master Mode) (SPI0_CTAR1)	32	R/W	7800_0000h	38.3.3/829
4002_C02C	Status Register (SPI0_SR)	32	R/W	See section	38.3.5/835
4002_C030	DMA/Interrupt Request Select and Enable Register (SPI0_RSER)	32	R/W	0000_0000h	38.3.6/838
4002_C034	PUSH TX FIFO Register In Master Mode (SPI0_PUSHR)	32	R/W	0000_0000h	38.3.7/840
4002_C034	PUSH TX FIFO Register In Slave Mode (SPI0_PUSHR_SLAVE)	32	R/W	0000_0000h	38.3.8/842
4002_C038	POP RX FIFO Register (SPI0_POPR)	32	R	0000_0000h	38.3.9/843
4002_C03C	Transmit FIFO Registers (SPI0_TXFR0)	32	R	0000_0000h	38.3.10/ 843
4002_C040	Transmit FIFO Registers (SPI0_TXFR1)	32	R	0000_0000h	38.3.10/ 843
4002_C044	Transmit FIFO Registers (SPI0_TXFR2)	32	R	0000_0000h	38.3.10/ 843
4002_C048	Transmit FIFO Registers (SPI0_TXFR3)	32	R	0000_0000h	38.3.10/ 843
4002_C07C	Receive FIFO Registers (SPI0_RXFR0)	32	R	0000_0000h	38.3.11/ 844
4002_C080	Receive FIFO Registers (SPI0_RXFR1)	32	R	0000_0000h	38.3.11/ 844
4002_C084	Receive FIFO Registers (SPI0_RXFR2)	32	R	0000_0000h	38.3.11/ 844
4002_C088	Receive FIFO Registers (SPI0_RXFR3)	32	R	0000_0000h	38.3.11/ 844
4002_C13C	Status Register Extended (SPI0_SREX)	32	R	0000_0000h	38.3.12/ 845

38.3.1 Module Configuration Register (SPIx_MCR)


Contains bits to configure various attributes associated with the module operations. The HALT and MDIS bits can be changed at any time, but the effect takes place only on the next frame boundary. Only the HALT and MDIS bits in the MCR can be changed, while the module is in the Running state.

Address: 4002_C000h base + 0h offset = 4002_C000h

wemory Map/Register Definition

SPIx_MCR field descriptions

Field	Description
31 MSTR	Master/Slave Mode Select
-	Enables either Master mode (if supported) or Slave mode (if supported) operation.
	0 Enables Slave mode
	1 Enables Master mode
30 CONT_SCKE	Continuous SCK Enable
	Enables the Serial Communication Clock (SCK) to run continuously.
	0 Continuous SCK disabled.
	1 Continuous SCK enabled.
29–28 DCONF	SPI Configuration.
	Selects among the different configurations of the module.
	00 SPI
	01 Reserved
	10 Reserved
	11 Reserved
27 FRZ	Freeze
	Enables transfers to be stopped on the next frame boundary when the device enters Debug mode.
	0 Do not halt serial transfers in Debug mode.
	1 Halt serial transfers in Debug mode.
26 MTFE	Modified Timing Format Enable
	Enables a modified transfer format to be used.

Table continues on the next page ...

SPIx_MCR field descriptions (continued)

Field	Description
	0 Modified SPI transfer format disabled.
	1 Modified SPI transfer format enabled.
25 Reserved	This field is reserved.
24 ROOE	Receive FIFO Overflow Overwrite Enable
	In the RX FIFO overflow condition, configures the module to ignore the incoming serial data or overwrite existing data. If the RX FIFO is full and new data is received, the data from the transfer, generating the overflow, is ignored or shifted into the shift register.
	0 Incoming data is ignored.
	1 Incoming data is shifted into the shift register.
23–21	Reserved.
Reserved	This field is reserved.
20–16 PCSIS	Peripheral Chip Select x Inactive State
	Determines the inactive state of PCSx. Refer to the chip-specific SPI information for the number of PCS signals used in this MCU.
	0 The inactive state of PCSx is low.
	1 The inactive state of PCSx is high.
15	Doze Enable
DOZE	Provides support for an externally controlled Doze mode power-saving mechanism.
	0 Doze mode has no effect on the module.
	1 Doze mode disables the module.
14	Module Disable
MDIS	Allows the clock to be stopped to the non-memory mapped logic in the module effectively putting it in a software-controlled power-saving state. The reset value of the MDIS bit is parameterized, with a default reset value of 0. When the module is used in Slave Mode, it is recommended to leave this bit 0, because a slave doesn't have control over master transactions.
	0 Enables the module clocks.
	1 Allows external logic to disable the module clocks.
13 DIO TYF	Disable Transmit FIFO
DIS_TXF	When the TX FIFO is disabled, the transmit part of the module operates as a simplified double-buffered SPI. This bit can be written only when the MDIS bit is cleared.
	0 TX FIFO is enabled.
	1 TX FIFO is disabled.
12 DIS_RXF	Disable Receive FIFO
	When the RX FIFO is disabled, the receive part of the module operates as a simplified double-buffered SPI. This bit can only be written when the MDIS bit is cleared.
	0 RX FIFO is enabled.
1	

Table continues on the next page ...

Field	Description
11 CLR_TXF	Clear TX FIFO Flushes the TX FIFO. Writing a 1 to CLR_TXF clears the TX FIFO Counter. The CLR_TXF bit is always read as zero. 0 Do not clear the TX FIFO counter. 1 Clear the TX FIFO counter.
10 CLR_RXF	CLR_RXF Flushes the RX FIFO. Writing a 1 to CLR_RXF clears the RX Counter. The CLR_RXF bit is always read as zero. 0 Do not clear the RX FIFO counter. 1 Clear the RX FIFO counter.
9–8 SMPL_PT	Sample Point Controls when the module master samples SIN in Modified Transfer Format. This field is valid only when CPHA bit in CTARn[CPHA] is 0. 00 0 protocol clock cycles between SCK edge and SIN sample 01 1 protocol clock cycle between SCK edge and SIN sample 10 2 protocol clock cycles between SCK edge and SIN sample 11 Reserved
7–3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
2 Reserved	This field is reserved.
1 Reserved	This field is reserved.
0 HALT	 Halt The HALT bit starts and stops frame transfers. See Start and Stop of Module transfers 0 Start transfers. 1 Stop transfers.

SPIx_MCR field descriptions (continued)

38.3.2 Transfer Count Register (SPIx_TCR)

TCR contains a counter that indicates the number of SPI transfers made. The transfer counter is intended to assist in queue management. Do not write the TCR when the module is in the Running state.

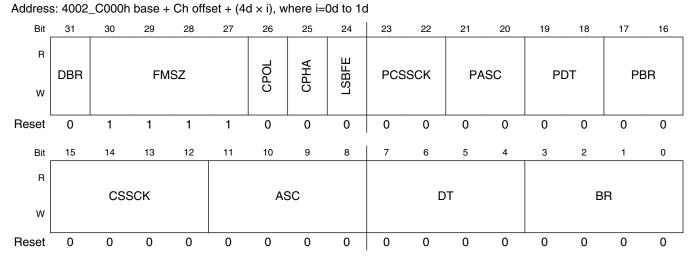
Address: 4002_C000h base + 8h offset = 4002_C008h

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R							S	PI -	TCN	т														()							
w								· ·																								
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Field	Description
31–16 SPI_TCNT	SPI Transfer Counter Counts the number of SPI transfers the module makes. The SPI_TCNT field increments every time the last bit of an SPI frame is transmitted. A value written to SPI_TCNT presets the counter to that value. SPI_TCNT is reset to zero at the beginning of the frame when the CTCNT field is set in the executing SPI command. The Transfer Counter wraps around; incrementing the counter past 65535 resets the counter to zero.
15–0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

SPIx_TCR field descriptions

38.3.3 Clock and Transfer Attributes Register (In Master Mode) (SPIx_CTARn)


CTAR registers are used to define different transfer attributes. Do not write to the CTAR registers while the module is in the Running state.

In Master mode, the CTAR registers define combinations of transfer attributes such as frame size, clock phase and polarity, data bit ordering, baud rate, and various delays. In slave mode, a subset of the bitfields in CTAR0 are used to set the slave transfer attributes.

When the module is configured as an SPI master, the CTAS field in the command portion of the TX FIFO entry selects which of the CTAR registers is used. When the module is configured as an SPI bus slave, it uses the CTAR0 register.

wemory Map/Register Definition

SPIx_CTAR*n* field descriptions

Field	Description										
31 DBR	Double Baud Rate Doubles the effective bauc master mode. It effectively division ratios for the Seria Serial Communications Clo Phase bit as listed in the for baud rate.	halves the Baud Rate divis I Communications Clock (Sock (SCK) depends on the	sion ratio, supporting fas SCK). When the DBR bit value in the Baud Rate	ster frequencies, and odd t is set, the duty cycle of the Prescaler and the Clock							
	Table 38-41. SPI SCK Duty Cycle										
	DBR	СРНА	PBR	SCK Duty Cycle							
	0	any	any	50/50							
	1	0	00	50/50							
	1	0	01	33/66							
	1	0	10	40/60							
	1	0	11	43/57							
	1	1	00	50/50							
	1	1	01	66/33							
	1	1	10	60/40							
	1	1	11	57/43							
30–27 FMSZ 26			ending on the Baud Rate								
26 CPOL	Clock Polarity										

Table continues on the next page ...

SPIx_CTARn field descriptions (continued)

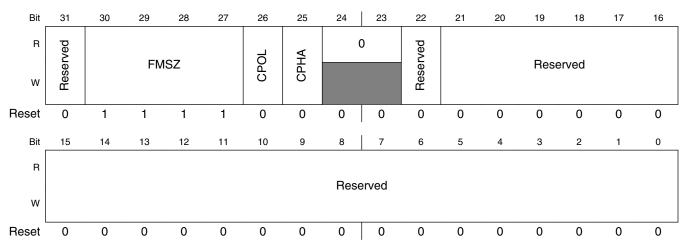
Field	Description
	Selects the inactive state of the Serial Communications Clock (SCK). This bit is used in both master and slave mode. For successful communication between serial devices, the devices must have identical clock polarities. When the Continuous Selection Format is selected, switching between clock polarities without stopping the module can cause errors in the transfer due to the peripheral device interpreting the switch of clock polarity as a valid clock edge.
	NOTE: In case of Continuous SCK mode, when the module goes in low power mode(disabled), inactive state of SCK is not guaranted.
	0 The inactive state value of SCK is low.
	1 The inactive state value of SCK is high.
25 CPHA	Clock Phase
	Selects which edge of SCK causes data to change and which edge causes data to be captured. This bit is used in both master and slave mode. For successful communication between serial devices, the devices must have identical clock phase settings. In Continuous SCK mode, the bit value is ignored and the transfers are done as if the CPHA bit is set to 1.
	0 Data is captured on the leading edge of SCK and changed on the following edge.
	1 Data is changed on the leading edge of SCK and captured on the following edge.
24 LSBFE	LSB First
	Specifies whether the LSB or MSB of the frame is transferred first.
	0 Data is transferred MSB first.
	1 Data is transferred LSB first.
23–22 PCSSCK	PCS to SCK Delay Prescaler
	Selects the prescaler value for the delay between assertion of PCS and the first edge of the SCK. See the CSSCK field description for information on how to compute the PCS to SCK Delay. Refer PCS to SCK Delay (t_{CSC}) for more details.
	00 PCS to SCK Prescaler value is 1.
	01 PCS to SCK Prescaler value is 3.
	10 PCS to SCK Prescaler value is 5.
	11 PCS to SCK Prescaler value is 7.
21–20 PASC	After SCK Delay Prescaler
	Selects the prescaler value for the delay between the last edge of SCK and the negation of PCS. See the ASC field description for information on how to compute the After SCK Delay. Refer After SCK Delay (t_{ASC}) for more details.
	00 Delay after Transfer Prescaler value is 1.
	01 Delay after Transfer Prescaler value is 3.
	10 Delay after Transfer Prescaler value is 5.
	11 Delay after Transfer Prescaler value is 7.
19–18 PDT	Delay after Transfer Prescaler
	Selects the prescaler value for the delay between the negation of the PCS signal at the end of a frame and the assertion of PCS at the beginning of the next frame. The PDT field is only used in master mode. See the DT field description for details on how to compute the Delay after Transfer. Refer Delay after Transfer (t_{DT}) for more details.

Table continues on the next page...

Field	Description									
	00 Delay after Transfer Prescaler value is 1.									
	01 Delay after Transfer Prescaler value is 3.									
	10 Delay after Transfer Prescaler value is 5.									
	11 Delay after Transfer Prescaler value is 7.									
17–16 PBR	Baud Rate Prescaler									
		field is used only in master mode. The baud rate is t d by the prescaler value before the baud rate selections s on how to compute the baud rate.								
	00 Baud Rate Prescaler value is 2.									
	01 Baud Rate Prescaler value is 3.									
	10 Baud Rate Prescaler value is 5.									
	11 Baud Rate Prescaler value is 7.									
15–12 CSSCK	PCS to SCK Delay Scaler									
	Schecks the scaler value for the PCS to SCK delay SCK Delay is the delay between the assertion of P multiple of the protocol clock period, and it is comp t _{CSC} = $(1/f_P)$ x PCSSCK x CSSCK. The following table lists the delay scaler values.									
	Table 38-40. Delay Scaler Encoding									
	Field Value	Delay Scaler Value								
	0000	2								
	0001	4								
	0010	8								
	0011	16								
	0100	32								
	0101	64								
	0110	128								
	0111	256								
	1000	512								
	1001	1024								
	1010	2048								
	1011	4096								
	1100	8192								
	1101	16384								
	1110	32768								
	1111	65536								
	Refer PCS to SCK Delay (t _{CSC}) for more details.									

SPIx_CTARn field descriptions (continued)

Table continues on the next page ...


SPIx_CTARn field descriptions (continued)

Field	Description									
	Selects the scaler value for the After SCK Delay. This field is used only in master mode. The After SCK Delay is the delay between the last edge of SCK and the negation of PCS. The delay is a multiple of the protocol clock period, and it is computed according to the following equation:									
	$t_{ASC} = (1/f_P) \times PASC \times ASC$									
	See Delay Scaler Encoding table in CTARn[CSSCH Delay (t_{ASC}) for more details.	[] bit field description for scaler values. Refer After SCK								
7–4	Delay After Transfer Scaler									
DT	Selects the Delay after Transfer Scaler. This field is the time between the negation of the PCS signal at beginning of the next frame.	used only in master mode. The Delay after Transfer is the end of a frame and the assertion of PCS at the								
	In the Continuous Serial Communications Clock operation, the DT value is fixed to one SCK clock period. The Delay after Transfer is a multiple of the protocol clock period, and it is computed according to the following equation:									
	$t_{DT} = (1/f_P) \times PDT \times DT$									
	See Delay Scaler Encoding table in CTARn[CSSCk	[] bit field description for scaler values.								
3–0	Baud Rate Scaler									
BR	Selects the scaler value for the baud rate. This field is used only in master mode. The presc clock is divided by the Baud Rate Scaler to generate the frequency of the SCK. The baud ra according to the following equation:									
	SCK baud rate = (f _P /PBR) x [(1+DBR)/BR]									
	SCK baud rate = (f_P /PBR) x [(1+DBR)/BR]									
	SCK baud rate = $(f_P / PBR) \times [(1+DBR)/BR]$ The following table lists the baud rate scaler values									
	The following table lists the baud rate scaler values	Baud Rate Scaler								
	The following table lists the baud rate scaler values									
	The following table lists the baud rate scaler values Table 38-39.	Baud Rate Scaler								
	The following table lists the baud rate scaler values Table 38-39. CTARn[BR]	Baud Rate Scaler Baud Rate Scaler Value								
	The following table lists the baud rate scaler values Table 38-39. CTARn[BR] 0000	Baud Rate Scaler Baud Rate Scaler Value 2								
	The following table lists the baud rate scaler values Table 38-39. CTARn[BR] 0000 0001	Baud Rate Scaler Baud Rate Scaler Value 2 4								
	The following table lists the baud rate scaler values Table 38-39. CTARn[BR] 0000 0001 0001 0010	Baud Rate Scaler Baud Rate Scaler Value 2 4 6								
	CTARn[BR] 0000 0001 0010 0011	Baud Rate Scaler Baud Rate Scaler Value 2 4 6 8								
	CTARn[BR] 0000 0001 0010 0011 0100	Baud Rate Scaler Baud Rate Scaler Value 2 4 6 8 16								
	CTARn[BR] 0000 0001 0010 0011 0100 0101	Baud Rate Scaler Baud Rate Scaler Value 2 4 6 8 16 32								
	CTARn[BR] 0000 0001 0010 0011 0100 0101 0100 0101 0101 0101 0101 0101	Baud Rate Scaler Baud Rate Scaler Value 2 4 6 8 16 32 64								
	CTARn[BR] 0000 0001 0010 0011 0100 0101 0101 0101 0101 0101 0101 0111	Baud Rate Scaler Baud Rate Scaler Value 2 4 6 8 16 32 64 128								
	CTARn[BR] 0000 0001 0010 0011 0100 0101 0100 0111 0110 0111 0110 0111	Baud Rate Scaler Baud Rate Scaler Value 2 4 6 8 16 32 64 128 256								
	CTARn[BR] O000 O001 O001 O010 O011 O0111 O010 O0111 O010 O0111 O010 O0111 O010 O0111 O0100 O0111 O0100 O0111 O0100 O01111 O0100 O01111 O0100 O01000 O0100 O0100 <	Baud Rate Scaler Baud Rate Scaler Value 2 4 6 8 16 32 64 128 256 512								
	CTARn[BR] 0000 0001 0010 0011 0100 0101 0100 0111 0100 0111 0101 0110 0110 0110 0111 0110 0111 0110 0111	Baud Rate Scaler Baud Rate Scaler Value 2 4 6 8 16 32 64 128 256 512 1024								
	CTARn[BR] 0000 0001 0010 0011 0100 0101 0101 0101 0101 0101 0101 0101 0110 0111 1000 1001 1011	Baud Rate Scaler Value 2 4 6 8 16 32 64 128 256 512 1024 2048								
	CTARn[BR] 0000 0001 0010 0011 0100 0101 0101 0101 0101 0101 0101 0110 0111 1000 1011 1010 1011 1010	Baud Rate Scaler Value 2 4 6 8 16 32 64 128 256 512 1024 2048 4096								

38.3.4 Clock and Transfer Attributes Register (In Slave Mode) (SPIx_CTARn_SLAVE)

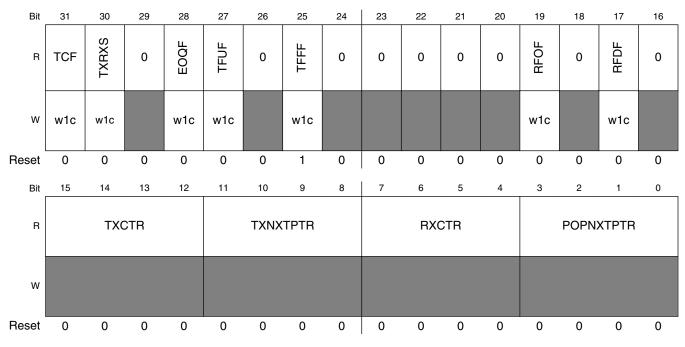
When the module is configured as an SPI bus slave, the CTAR0 register is used.

Address: 4002_C000h base + Ch offset + (0d × i), where i=0d to 0d

SPIx_CTARn_SLAVE field descriptions

Field	Description
31 Reserved	Always write the reset value to this field.
	This field is reserved.
30–27 FMSZ	Frame Size
	The number of bits transfered per frame is equal to the FMSZ field value plus 1. Note that the minimum valid value of frame size is 4.
26 CPOL	Clock Polarity
	Selects the inactive state of the Serial Communications Clock (SCK).
	NOTE: In case of Continuous SCK mode, when the module goes in low power mode(disabled), inactive state of SCK is not guaranted.
	0 The inactive state value of SCK is low.
	1 The inactive state value of SCK is high.
25 CPHA	Clock Phase
	Selects which edge of SCK causes data to change and which edge causes data to be captured. This bit is used in both master and slave mode. For successful communication between serial devices, the devices must have identical clock phase settings. In Continuous SCK mode, the bit value is ignored and the transfers are done as if the CPHA bit is set to 1.
	0 Data is captured on the leading edge of SCK and changed on the following edge.
	1 Data is changed on the leading edge of SCK and captured on the following edge.

Table continues on the next page ...


Field	Description
24–23 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
22 Reserved	This field is reserved.
21–0 Reserved	This field is reserved.

SPIx_CTARn_SLAVE field descriptions (continued)

38.3.5 Status Register (SPIx_SR)

SR contains status and flag bits. The bits reflect the status of the module and indicate the occurrence of events that can generate interrupt or DMA requests. Software can clear flag bits in the SR by writing a 1 to them. Writing a 0 to a flag bit has no effect. This register may not be writable in Module Disable mode due to the use of power saving mechanisms.

Address: 4002_C000h base + 2Ch offset = 4002_C02Ch

SPIx_SR field descriptions

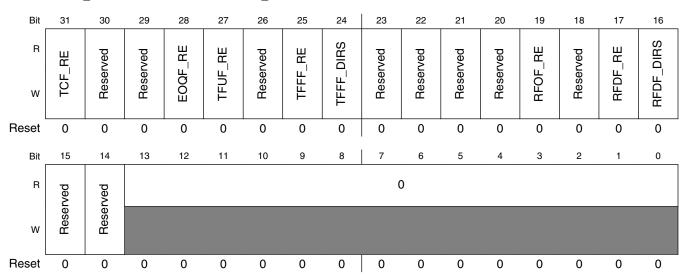
Fie	eld	Description
3 [.] TC	F	Transfer Complete Flag Indicates that all bits in a frame have been shifted out. TCF remains set until it is cleared by writing a 1 to it.

Table continues on the next page ...

SPIx_SR field descriptions (continued)

Field	Description
	0 Transfer not complete.
	1 Transfer complete.
30 TXRXS	TX and RX Status Reflects the run status of the module.
	 0 Transmit and receive operations are disabled (The module is in Stopped state). 1 Transmit and receive operations are enabled (The module is in Running state).
29 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
28	End of Queue Flag
EOQF	Indicates that the last entry in a queue has been transmitted when the module is in Master mode. The EOQF bit is set when the TX FIFO entry has the EOQ bit set in the command halfword and the end of the transfer is reached. The EOQF bit remains set until cleared by writing a 1 to it. When the EOQF bit is set, the TXRXS bit is automatically cleared.
	0 EOQ is not set in the executing command.
	1 EOQ is set in the executing SPI command.
27	Transmit FIFO Underflow Flag
TFUF	Indicates an underflow condition in the TX FIFO. The transmit underflow condition is detected only for SPI blocks operating in Slave mode and SPI configuration. TFUF is set when the TX FIFO of the module operating in SPI Slave mode is empty and an external SPI master initiates a transfer. The TFUF bit remains set until cleared by writing 1 to it.
	 No TX FIFO underflow. TX FIFO underflow has occurred.
26 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
25	Transmit FIFO Fill Flag
TFFF	Provides a method for the module to request more entries to be added to the TX FIFO. The TFFF bit is set while the TX FIFO is not full. The TFFF bit can be cleared by writing 1 to it or by acknowledgement from the DMA controller to the TX FIFO full request.
	0 TX FIFO is full.1 TX FIFO is not full.
24 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
23 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
22 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
21 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
20 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
19 RFOF	Receive FIFO Overflow Flag
	Table continues on the next page

Table continues on the next page...



SPIx_SR field descriptions (continued)

Field	Description
	Indicates an overflow condition in the RX FIFO. The field is set when the RX FIFO and shift register are full and a transfer is initiated. The bit remains set until it is cleared by writing a 1 to it.
	 No Rx FIFO overflow. Rx FIFO overflow has occurred.
18 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
17 RFDF	Receive FIFO Drain Flag Provides a method for the module to request that entries be removed from the RX FIFO. The bit is set while the RX FIFO is not empty. The RFDF bit can be cleared by writing 1 to it or by acknowledgement from the DMA controller when the RX FIFO is empty.
	0 RX FIFO is empty.1 RX FIFO is not empty.
16 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
15–12 TXCTR	TX FIFO Counter Indicates the number of valid entries in the TX FIFO. The TXCTR is incremented every time the PUSHR is written. The TXCTR is decremented every time an SPI command is executed and the SPI data is transferred to the shift register.
11–8 TXNXTPTR	Transmit Next Pointer Indicates which TX FIFO entry is transmitted during the next transfer. The TXNXTPTR field is updated every time SPI data is transferred from the TX FIFO to the shift register.
7–4 RXCTR	RX FIFO Counter Indicates the number of entries in the RX FIFO. The RXCTR is decremented every time the POPR is read. The RXCTR is incremented every time data is transferred from the shift register to the RX FIFO.
3–0 POPNXTPTR	Pop Next Pointer Contains a pointer to the RX FIFO entry to be returned when the POPR is read. The POPNXTPTR is updated when the POPR is read.

38.3.6 DMA/Interrupt Request Select and Enable Register (SPIx_RSER)

RSER controls DMA and interrupt requests. Do not write to the RSER while the module is in the Running state.

Address: 4002_C000h base + 30h offset = 4002_C030h

SPIx_RSER field descriptions

Field	Description
31 TCF_RE	Transmission Complete Request Enable
	Enables TCF flag in the SR to generate an interrupt request.
	0 TCF interrupt requests are disabled.
	1 TCF interrupt requests are enabled.
30 Reserved	Always write the reset value to this field.
	This field is reserved.
29 Reserved	Always write the reset value to this field.
	This field is reserved.
28 EOQF_RE	Finished Request Enable
_	Enables the EOQF flag in the SR to generate an interrupt request.
	0 EOQF interrupt requests are disabled.
	1 EOQF interrupt requests are enabled.
27 TFUF_RE	Transmit FIFO Underflow Request Enable
—	Enables the TFUF flag in the SR to generate an interrupt request.
	Table continues on the next page

Table continues on the next page...

SPIx_RSER field descriptions (continued)

Field	Description
	0 TFUF interrupt requests are disabled.
	1 TFUF interrupt requests are enabled.
26 Reserved	Always write the reset value to this field.
	This field is reserved.
25 TFFF_RE	Transmit FIFO Fill Request Enable
	Enables the TFFF flag in the SR to generate a request. The TFFF_DIRS bit selects between generating an interrupt request or a DMA request.
	0 TFFF interrupts or DMA requests are disabled.
	1 TFFF interrupts or DMA requests are enabled.
24 TFFF_DIRS	Transmit FIFO Fill DMA or Interrupt Request Select
	Selects between generating a DMA request or an interrupt request. When SR[TFFF] and RSER[TFFF_RE] are set, this field selects between generating an interrupt request or a DMA request.
	0 TFFF flag generates interrupt requests.
	1 TFFF flag generates DMA requests.
23 Reserved	Always write the reset value to this field.
	This field is reserved.
22	Always write the reset value to this field.
Reserved	This field is reserved.
21	Always write the reset value to this field.
Reserved	
	This field is reserved.
20	Always write the reset value to this field.
Reserved	This field is reserved.
19	Receive FIFO Overflow Request Enable
RFOF_RE	Enables the RFOF flag in the SR to generate an interrupt request.
	0 RFOF interrupt requests are disabled.
	1 RFOF interrupt requests are enabled.
18	Always write the reset value to this field.
Reserved	
	This field is reserved.
17 RFDF_RE	Receive FIFO Drain Request Enable
	Enables the RFDF flag in the SR to generate a request. The RFDF_DIRS bit selects between generating an interrupt request or a DMA request.
	0 RFDF interrupt or DMA requests are disabled.
	1 RFDF interrupt or DMA requests are enabled.
16 RFDF_DIRS	Receive FIFO Drain DMA or Interrupt Request Select

Table continues on the next page...

Field	Description
	Selects between generating a DMA request or an interrupt request. When the RFDF flag bit in the SR is set, and the RFDF_RE bit in the RSER is set, the RFDF_DIRS bit selects between generating an interrupt request or a DMA request.
	0 Interrupt request.
	1 DMA request.
15 Reserved	Always write the reset value to this field.
	This field is reserved.
14 Reserved	Always write the reset value to this field.
	This field is reserved.
13–0	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

SPIx_RSER field descriptions (continued)

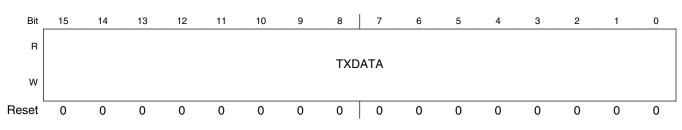
38.3.7 PUSH TX FIFO Register In Master Mode (SPIx_PUSHR)

Specifies data to be transferred to the TX FIFO and CMD FIFO. An 8- or 16-bit write access to the TXDATA field transfers the 16 bits of data to the TX FIFO. A write access to the command fields transfers the 16 bits of command information to the CMD FIFO. In Master mode, the register transfers 16 bits of data to the TX FIFO and 16 bits of command information to the CMD FIFO.In Slave mode, the CMD FIFO is not used and the 16 bits of command information are reserved.

The TX FIFO and CMD FIFO must be filled simultaneously. In other words, you must perform write accesses to both the data and command fields for every PUSHR operation. Because both the TX FIFO and CMD FIFO are written to and read from simultaneously, they behave as a single 32 bit FIFO.

A read access of PUSHR returns the topmost TX FIFO and CMD FIFO entries concatenated.

When the module is disabled, writing to this register does not update the FIFO. Therefore, any reads performed while the module is disabled return the last PUSHR write performed while the module was still enabled.


Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	L					⊢										
	LNO		CTAS		EOQ	TCN	Rese	erved	F	Reserve	d			PCS		
w	0					Ö										
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Address: 4002_C000h base + 34h offset = 4002_C034h

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

Chapter 38 Serial Peripheral Interface (SPI)

SPIx_PUSHR field descriptions

Field	Description
31 CONT	Continuous Peripheral Chip Select Enable Selects a continuous selection format. The bit is used in SPI Master mode. The bit enables the selected PCS signals to remain asserted between transfers.
	0 Return PCSn signals to their inactive state between transfers.1 Keep PCSn signals asserted between transfers.
30–28 CTAS	Clock and Transfer Attributes Select Selects which CTAR to use in master mode to specify the transfer attributes for the associated SPI frame. In SPI Slave mode, CTAR0 is used. See the chip configuration details to determine how many CTARs this device has. You should not program a value in this field for a register that is not present.
	000CTAR0001CTAR1010Reserved011Reserved100Reserved101Reserved110Reserved111Reserved
27 EOQ	 End Of Queue Host software uses this bit to signal to the module that the current SPI transfer is the last in a queue. At the end of the transfer, the EOQF bit in the SR is set. 0 The SPI data is not the last data to transfer. 1 The SPI data is the last data to transfer.
26 CTCNT	 Clear Transfer Counter Clears the TCNT field in the TCR register. The TCNT field is cleared before the module starts transmitting the current SPI frame. 0 Do not clear the TCR[TCNT] field. 1 Clear the TCR[TCNT] field.
25–24 Reserved	Always write the reset value to this field. This field is reserved.
23–21 Reserved	Always write the reset value to this field. This field is reserved.
20–16 PCS	Select which PCS signals are to be asserted for the transfer. Refer to the chip-specific SPI information for the number of PCS signals used in this MCU.

Table continues on the next page ...

Field	Description
	0 Negate the PCS[x] signal.
	1 Assert the PCS[x] signal.
15–0 TXD 4 T 4	Transmit Data
TXDATA	Holds SPI data to be transferred according to the associated SPI command.

SPIx_PUSHR field descriptions (continued)

38.3.8 PUSH TX FIFO Register In Slave Mode (SPIx_PUSHR_SLAVE)

Specifies data to be transferred to the TX FIFO. An 8- or 16-bit write access to PUSHR transfers the 16-bit TXDATA field to the TX FIFO.

In master mode, the register transfers the 16 bits of command information to the CMD FIFO and the 16-bit TXDATA field to the TX FIFO. In slave mode, the CMD FIFO is not used and the 16 bits of command information in PUSHR are reserved.

Address: 4002	C000h base +	34h offset -	4002	C034h
Audress. 4002_		- 3411 UIISet =	4002	_003411

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R								()														-	гхр	ΑΤΑ	1						
w																										`						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SPIx_PUSHR_SLAVE field descriptions

Field	Description
31–16	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
15–0 TXDATA	Transmit Data
	Holds SPI data to be transferred according to the associated SPI command.

2 1 0

0 0 0

38.3.9 POP RX FIFO Register (SPIx_POPR)

POPR is used to read the RX FIFO. Eight- or sixteen-bit read accesses to the POPR have the same effect on the RX FIFO as 32-bit read accesses. A write to this register will generate a Transfer Error.

Add	lres	s: 40	002_	_C00	00h	bas	e +	38h	offs	set =	= 40	02_0	C03	8h															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3
R															F	RXD	ATA	١											
W																													
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SPIx_POPR field descriptions

Field	Description
31–0 BXDATA	Received Data
	Contains the SPI data from the RX FIFO entry to which the Pop Next Data Pointer points.

38.3.10 Transmit FIFO Registers (SPIx_TXFRn)

TXFRn registers provide visibility into the TX FIFO for debugging purposes. Each register is an entry in the TX FIFO. The registers are read-only and cannot be modified. Reading the TXFRx registers does not alter the state of the TX FIFO.

Add	ress	s: 4(002_	_C0(00h	bas	e +	3Ch	offs	set -	+ (4	i × b), wl	here	e i=C)d to	o 3d															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R		-				Т	XCI	ND_	TXI	DAT	A	-		-						-	-		-	ΓXD	ATA	١						
W																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

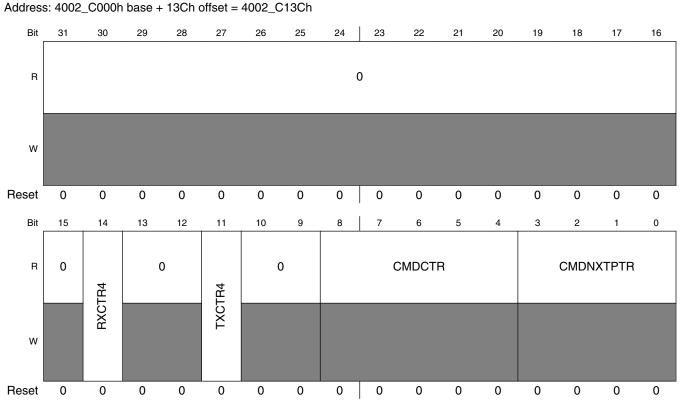
SPIx_TXFRn field descriptions

Field	Description
31–16	Transmit Command or Transmit Data
TXCMD_	In Master mode the TXCMD field contains the command that sets the transfer attributes for the SPI data.In
TXDATA	Slave mode, this field is reserved.
15–0	Transmit Data
TXDATA	Contains the SPI data to be shifted out.

38.3.11 Receive FIFO Registers (SPIx_RXFR*n*)

RXFRn provide visibility into the RX FIFO for debugging purposes. Each register is an entry in the RX FIFO. The RXFR registers are read-only. Reading the RXFRx registers does not alter the state of the RX FIFO.

Add	ddress: 4002_C000h base + 7Ch offset + (4d × i), where i=0d to 3d																															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R		RXDATA																														
W																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


SPIx_RXFRn field descriptions

Field	Description
31–0 RXDATA	Receive Data
	Contains the received SPI data.

38.3.12 Status Register Extended (SPIx_SREX)

The register contains status fields. The fields reflect the status of the module and indicate the occurrence of events. This register is not writable.

SPIx_SREX field descriptions

Field	Description
31–15	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
14 RXCTR4	RX FIFO Counter[4] This bit is an extension of SR[RXCTR]. The concatenated field {RXCTR4, RXCTR} indicates the number of entries in the RX FIFO. This field is decremented every time the POPR is read. And this field is incremented every time data is transferred from the shift register to the RX FIFO.
13–12	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
11	TX FIFO Counter[4]
TXCTR4	This bit is an extension of SR[TXCTR]. The concatenated field {TXCTR4, TXCTR} indicates the number of valid entries in the TX FIFO. This field is incremented every time the PUSHR is written. And this field is decremented every time an SPI command is executed and the SPI data is transferred to the shift register.

Table continues on the next page ...

runctional description

SPIx_SREX field descriptions	(continued)
------------------------------	-------------

Field	Description
10–9 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
8–4 CMDCTR	CMD FIFO Counter Indicates the number of entries in the CMD FIFO. The CMDCTR is incremented every time the command part of PUSHR is written. The CMDCTR is decremented every time a SPI command is executed (all data frames due to current command frame have been transmitted).
3–0 CMDNXTPTR	Command Next Pointer Indicates which CMD FIFO Entry is used during the next transfer. The CMDNXTPTR field is updated every time SPI data due to current command have been transmitted.

38.4 Functional description

The module supports full-duplex, synchronous serial communications between MCUs and peripheral devices. The SPI configuration transfers data serially using a shift register and a selection of programmable transfer attributes.

The module has the following configuration

• The SPI Configuration in which the module operates as a basic SPI or a queued SPI.

The DCONF field in the Module Configuration Register (MCR) determines the module Configuration. SPI configuration is selected when DCONF within SPIx_MCR is 0b00.

The CTARn registers hold clock and transfer attributes. The SPI configuration allows to select which CTAR to use on a frame by frame basis by setting a field in the SPI command.

See Clock and Transfer Attributes Register (In Master Mode) (SPI_CTAR*n*) for information on the fields of CTAR registers.

Typical master to slave connections are shown in the following figure. When a data transfer operation is performed, data is serially shifted a predetermined number of bit positions. Because the modules are linked, data is exchanged between the master and the slave. The data that was in the master shift register is now in the shift register of the slave, and vice versa. At the end of a transfer, the Transfer Control Flag(TCF) bit in the Shift Register(SR) is set to indicate a completed frame transfer.

Chapter 38 Serial Peripheral Interface (SPI)

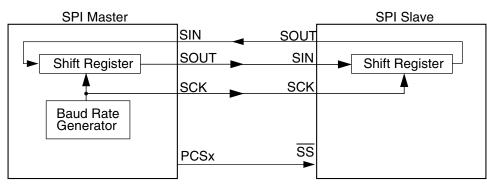


Figure 38-49. Serial protocol overview

Generally, more than one slave device can be connected to the module master. 5 Peripheral Chip Select (PCS) signals of the module masters can be used to select which of the slaves to communicate with. Refer to the chip configuration details for the number of PCS signals used in this MCU.

The SPI configuration shares transfer protocol and timing properties which are described independently of the configuration in Transfer formats. The transfer rate and delay settings are described in Module baud rate and clock delay generation.

38.4.1 Start and Stop of module transfers

The module has two operating states: Stopped and Running. Both the states are independent of it's configuration. The default state of the module is Stopped. In the Stopped state, no serial transfers are initiated in Master mode and no transfers are responded to in Slave mode. The Stopped state is also a safe state for writing the various configuration registers of the module without causing undetermined results. In the Running state serial transfers take place.

The TXRXS bit in the SR indicates the state of module. The bit is set if the module is in Running state.

The module starts or transitions to Running when all of the following conditions are true:

- SR[EOQF] bit is clear
- MCU is not in the Debug mode or the MCR[FRZ] bit is clear
- MCR[HALT] bit is clear

The module stops or transitions from Running to Stopped after the current frame when any one of the following conditions exist:

• SR[EOQF] bit is set

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

-unctional description

- MCU in the Debug mode and the MCR[FRZ] bit is set
- MCR[HALT] bit is set

State transitions from Running to Stopped occur on the next frame boundary if a transfer is in progress, or immediately if no transfers are in progress.

38.4.2 Serial Peripheral Interface (SPI) configuration

The SPI configuration transfers data serially using a shift register and a selection of programmable transfer attributes. The module is in SPI configuration when the DCONF field in the MCR is 0b00. The SPI frames can be 32 bits long. The host CPU or a DMA controller transfers the SPI data from the external to the module RAM queues to a TX FIFO buffer. The received data is stored in entries in the RX FIFO buffer. The host CPU or the DMA controller transfers the received data from the RX FIFO to memory external to the module. The operation of FIFO buffers is described in the following sections:

- Transmit First In First Out (TX FIFO) buffering mechanism
- Transmit First In First Out (TX FIFO) buffering mechanism
- Command First In First Out (CMD FIFO) Buffering Mechanism
- Receive First In First Out (RX FIFO) buffering mechanism

The interrupt and DMA request conditions are described in Interrupts/DMA requests.

The SPI configuration supports two block-specific modes—Master mode and Slave mode.In Master mode the module initiates and controls the transfer according to the fields of the executing SPI Command. In Slave mode, the module responds only to transfers initiated by a bus master external to it and the SPI command field space is reserved.

38.4.2.1 Master mode

In SPI Master mode, the module initiates the serial transfers by controlling the SCK and the PCS signals. The executing SPI Command determines which CTARs will be used to set the transfer attributes and which PCS signals to assert. The command field also contains various bits that help with queue management and transfer protocol. See PUSH TX FIFO Register In Master Mode (SPI_PUSHR) for details on the SPI command fields. The data in the executing TX FIFO entry is loaded into the shift register and shifted out on the Serial Out (SOUT) pin. In SPI Master mode, each SPI frame to be transmitted has a command associated with it, allowing for transfer attribute control on a frame by frame basis.

38.4.2.2 Slave mode

In SPI Slave mode the module responds to transfers initiated by an SPI bus master. It does not initiate transfers. Certain transfer attributes such as clock polarity, clock phase, and frame size must be set for successful communication with an SPI master. The SPI Slave mode transfer attributes are set in the CTAR0. The data is shifted out with MSB first. Shifting out of LSB is not supported in this mode.

38.4.2.3 FIFO disable operation

The FIFO disable mechanisms allow SPI transfers without using the TX FIFO, CMD FIFO or RX FIFO. The module operates as a double-buffered simplified SPI when the FIFOs are disabled. The Transmit and Receive side of the FIFOs are disabled separately. Setting the MCR[DIS_TXF] bit disables the TX FIFO and CMD FIFO, and setting the MCR[DIS_RXF] bit disables the RX FIFO.

The FIFO disable mechanisms are transparent to the user and to host software. Transmit data and commands are written to the PUSHR and received data is read from the POPR.

When the TX FIFO and CMD FIFO are disabled:

- SR[TFFF], SR[TFUF] and SR[TXCTR] behave as if there is a one-entry FIFO
- The contents of TXFRs, SR[TXNXTPTR] are undefined

Similarly, when the RX FIFO is disabled, the RFDF, RFOF, and RXCTR fields in the SR behave as if there is a one-entry FIFO, but the contents of the RXFR registers and POPNXTPTR are undefined.

38.4.2.4 Transmit First In First Out (TX FIFO) buffering mechanism

The TX FIFO functions as a buffer of SPI data for transmission. The TX FIFO holds 4 words, each consisting of SPI data. The number of entries in the TX FIFO is device-specific. SPI data is added to the TX FIFO by writing to the Data Field of module PUSH FIFO Register (PUSHR). TX FIFO entries can only be removed from the TX FIFO by being shifted out or by flushing the TX FIFO.

The TX FIFO Counter field (TXCTR) in the module Status Register (SR) indicates the number of valid entries in the TX FIFO. The TXCTR is updated every time a 8- or 16-bit write takes place to PUSHR[TXDATA] or SPI data is transferred into the shift register from the TX FIFO.

runctional description

The TXNXTPTR field indicates the TX FIFO Entry that will be transmitted during the next transfer. The TXNXTPTR field is incremented every time SPI data is transferred from the TX FIFO to the shift register. The maximum value of the field is equal to the maximum implemented TXFR number and it rolls over after reaching the maximum.

38.4.2.4.1 Filling the TX FIFO

Host software or other intelligent blocks can add (push) entries to the TX FIFO and CMD FIFO by writing to the PUSHR. When the TX FIFO is not full, the TX FIFO Fill Flag (TFFF) in the SR is set. The TFFF bit is cleared when TX FIFO is full and the DMA controller indicates that a write to PUSHR is complete. Writing a '1' to the TFFF bit also clears it. The TFFF can generate a DMA request or an interrupt request. See Transmit FIFO Fill Interrupt or DMA Request for details.

The module ignores attempts to push data to a full TX FIFO, and the state of the TX FIFO does not change and no error condition is indicated.

38.4.2.4.2 Draining the TX FIFO

The TX FIFO entries are removed (drained) by shifting SPI data out through the shift register. Entries are transferred from the TX FIFO to the shift register and shifted out as long as there are valid entries in the TX FIFO. Every time an entry is transferred from the TX FIFO to the shift register, the TX FIFO Counter decrements by one. At the end of a transfer, the TCF bit in the SR is set to indicate the completion of a transfer. The TX FIFO is flushed by writing a '1' to the CLR_TXF bit in MCR.

If an external bus master initiates a transfer with a module slave while the slave's TX FIFO is empty, the Transmit FIFO Underflow Flag (TFUF) in the slave's SR is set. See Transmit FIFO Underflow Interrupt Request for details.

38.4.2.5 Receive First In First Out (RX FIFO) buffering mechanism

The RX FIFO functions as a buffer for data received on the SIN pin. The RX FIFO holds 4 received SPI data frames. The number of entries in the RX FIFO is device-specific. SPI data is added to the RX FIFO at the completion of a transfer when the received data in the shift register is transferred into the RX FIFO. SPI data are removed (popped) from the RX FIFO by reading the module POP RX FIFO Register (POPR). RX FIFO entries can only be removed from the RX FIFO by reading the POPR or by flushing the RX FIFO.

The RX FIFO Counter field (RXCTR) in the module's Status Register (SR) indicates the number of valid entries in the RX FIFO. The RXCTR is updated every time the POPR is read or SPI data is copied from the shift register to the RX FIFO.

The POPNXTPTR field in the SR points to the RX FIFO entry that is returned when the POPR is read. The POPNXTPTR contains the positive offset from RXFR0 in a number of 32-bit registers. For example, POPNXTPTR equal to two means that the RXFR2 contains the received SPI data that will be returned when the POPR is read. The POPNXTPTR field is incremented every time the POPR is read. The maximum value of the field is equal to the maximum implemented RXFR number and it rolls over after reaching the maximum.

38.4.2.5.1 Filling the RX FIFO

The RX FIFO is filled with the received SPI data from the shift register. While the RX FIFO is not full, SPI frames from the shift register are transferred to the RX FIFO. Every time an SPI frame is transferred to the RX FIFO, the RX FIFO Counter is incremented by one.

If the RX FIFO and shift register are full and a transfer is initiated, the RFOF bit in the SR is set indicating an overflow condition. Depending on the state of the ROOE bit in the MCR, the data from the transfer that generated the overflow is either ignored or shifted in to the shift register. If the ROOE bit is set, the incoming data is shifted in to the shift register. If the ROOE bit is cleared, the incoming data is ignored.

38.4.2.5.2 Draining the RX FIFO

Host CPU or a DMA can remove (pop) entries from the RX FIFO by reading the module POP RX FIFO Register (POPR). A read of the POPR decrements the RX FIFO Counter by one. Attempts to pop data from an empty RX FIFO are ignored and the RX FIFO Counter remains unchanged. The data, read from the empty RX FIFO, is undetermined.

When the RX FIFO is not empty, the RX FIFO Drain Flag (RFDF) in the SR is set. The RFDF bit is cleared when the RX_FIFO is empty and the DMA controller indicates that a read from POPR is complete or by writing a 1 to it.

38.4.3 Module baud rate and clock delay generation

The SCK frequency and the delay values for serial transfer are generated by dividing the system clock frequency by a prescaler and a scaler with the option for doubling the baud rate. The following figure shows conceptually how the SCK signal is generated.

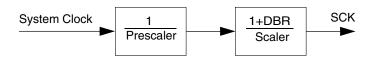


Figure 38-50. Communications clock prescalers and scalers

38.4.3.1 Baud rate generator

The baud rate is the frequency of the SCK. The protocol clock is divided by a prescaler (PBR) and scaler (BR) to produce SCK with the possibility of halving the scaler division. The DBR, PBR, and BR fields in the CTARs select the frequency of SCK by the formula in the BR field description. The following table shows an example of how to compute the baud rate.

f _P	PBR	Prescaler	BR	Scaler	DBR	Baud rate
100 MHz	0b00	2	0b0000	2	0	25 Mb/s
20 MHz	0b00	2	0b0000	2	1	10 Mb/s

Table 38-68.	Baud rate computation exampl	е
--------------	------------------------------	---

NOTE

The clock frequencies mentioned in the preceding table are given as an example. Refer to the clocking chapter for the frequency used to drive this module in the device.

38.4.3.2 PCS to SCK Delay (t_{CSC})

The PCS to SCK delay is the length of time from assertion of the PCS signal to the first SCK edge. See Figure 38-51 for an illustration of the PCS to SCK delay. The PCSSCK and CSSCK fields in the CTAR*x* registers select the PCS to SCK delay by the formula in the CSSCK field description. The following table shows an example of how to compute the PCS to SCK delay.

 Table 38-69.
 PCS to SCK delay computation example

f _{sys}	PCSSCK	Prescaler	CSSCK	Scaler	PCS to SCK Delay		
100 MHz	0b01	3	0b0100	32	0.96 µs		

NOTE

The clock frequency mentioned in the preceding table is given as an example. Refer to the clocking chapter for the frequency used to drive this module in the device.

38.4.3.3 After SCK Delay (t_{ASC})

The After SCK Delay is the length of time between the last edge of SCK and the negation of PCS. See Figure 38-51 and Figure 38-52 for illustrations of the After SCK delay. The PASC and ASC fields in the CTAR*x* registers select the After SCK Delay by the formula in the ASC field description. The following table shows an example of how to compute the After SCK delay.

Table 38-70.	After SCK Delay computation example
--------------	-------------------------------------

f _P	PASC	Prescaler	ASC	Scaler	After SCK Delay
100 MHz	0b01	3	0b0100	32	0.96 µs

NOTE

The clock frequency mentioned in the preceding table is given as an example. Refer to the clocking chapter for the frequency used to drive this module in the device.

38.4.3.4 Delay after Transfer (t_{DT})

The Delay after Transfer is the minimum time between negation of the PCS signal for a frame and the assertion of the PCS signal for the next frame. See Figure 38-51 for an illustration of the Delay after Transfer. The PDT and DT fields in the CTAR*x* registers select the Delay after Transfer by the formula in the DT field description. The following table shows an example of how to compute the Delay after Transfer.

 Table 38-71.
 Delay after Transfer computation example

f _P	f _P PDT		DT	Scaler	Delay after Transfer		
100 MHz	0b01	3	0b1110	32768	0.98 ms		

NOTE

The clock frequency mentioned in the preceding table is given as an example. Refer to the clocking chapter for the frequency used to drive this module in the device.

When in Non-Continuous Clock mode the t_{DT} delay is configured according to the equation specified in the CTAR[DT] field description. When in Continuous Clock mode, the delay is fixed at 1 SCK period.

runctional description

38.4.4 Transfer formats

The SPI serial communication is controlled by the Serial Communications Clock (SCK) signal and the PCS signals. The SCK signal provided by the master device synchronizes shifting and sampling of the data on the SIN and SOUT pins. The PCS signals serve as enable signals for the slave devices.

In Master mode, the CPOL and CPHA bits in the Clock and Transfer Attributes Registers (CTARn) select the polarity and phase of the serial clock, SCK.

- CPOL Selects the idle state polarity of the SCK
- CPHA Selects if the data on SOUT is valid before or on the first SCK edge

Even though the bus slave does not control the SCK signal, in Slave mode the values of CPOL and CPHA must be identical to the master device settings to ensure proper transmission. In SPI Slave mode, only CTAR0 is used.

The module supports four different transfer formats:

- Classic SPI with CPHA=0
- Classic SPI with CPHA=1
- Modified Transfer Format with CPHA = 0
- Modified Transfer Format with CPHA = 1

A modified transfer format is supported to allow for high-speed communication with peripherals that require longer setup times. The module can sample the incoming data later than halfway through the cycle to give the peripheral more setup time. The MTFE bit in the MCR selects between Classic SPI Format and Modified Transfer Format.

In the interface configurations, the module provides the option of keeping the PCS signals asserted between frames. See Continuous Selection Format for details.

38.4.4.1 Classic SPI Transfer Format (CPHA = 0)

The transfer format shown in following figure is used to communicate with peripheral SPI slave devices where the first data bit is available on the first clock edge. In this format, the master and slave sample their SIN pins on the odd-numbered SCK edges and change the data on their SOUT pins on the even-numbered SCK edges.

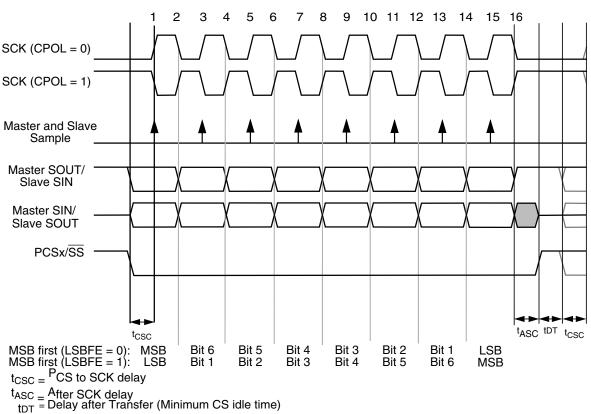
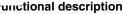



Figure 38-51. Module transfer timing diagram (MTFE=0, CPHA=0, FMSZ=8)

The master initiates the transfer by placing its first data bit on the SOUT pin and asserting the appropriate peripheral chip select signals to the slave device. The slave responds by placing its first data bit on its SOUT pin. After the t_{ASC} delay elapses, the master outputs the first edge of SCK. The master and slave devices use this edge to sample the first input data bit on their serial data input signals. At the second edge of the SCK, the master and slave devices place their second data bit on their serial data output signals. For the rest of the frame the master and the slave sample their SIN pins on the odd-numbered clock edges and changes the data on their SOUT pins on the even-numbered clock edges. After the last clock edge occurs, a delay of t_{ASC} is inserted before the master negates the PCS signals. A delay of t_{DT} is inserted before a new frame transfer can be initiated by the master.

38.4.4.2 Classic SPI Transfer Format (CPHA = 1)

This transfer format shown in the following figure is used to communicate with peripheral SPI slave devices that require the first SCK edge before the first data bit becomes available on the slave SOUT pin. In this format, the master and slave devices change the data on their SOUT pins on the odd-numbered SCK edges and sample the data on their SIN pins on the even-numbered SCK edges. NP ____

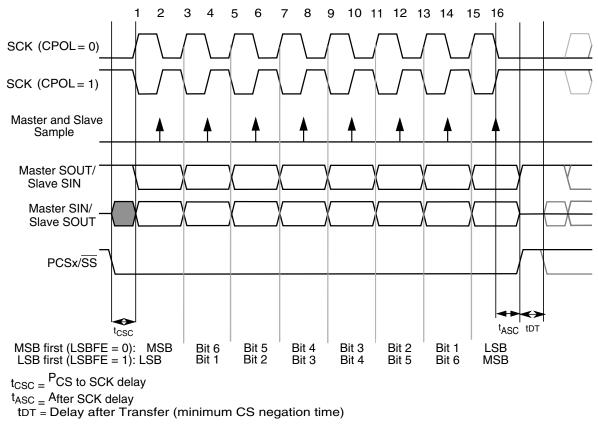


Figure 38-52. Module transfer timing diagram (MTFE=0, CPHA=1, FMSZ=8)

The master initiates the transfer by asserting the PCS signal to the slave. After the t_{CSC} delay has elapsed, the master generates the first SCK edge and at the same time places valid data on the master SOUT pin. The slave responds to the first SCK edge by placing its first data bit on its slave SOUT pin.

At the second edge of the SCK the master and slave sample their SIN pins. For the rest of the frame the master and the slave change the data on their SOUT pins on the odd-numbered clock edges and sample their SIN pins on the even-numbered clock edges. After the last clock edge occurs, a delay of t_{ASC} is inserted before the master negates the PCS signal. A delay of t_{DT} is inserted before a new frame transfer can be initiated by the master.

38.4.4.3 Modified SPI Transfer Format (MTFE = 1, CPHA = 0)

In this Modified Transfer Format both the master and the slave sample later in the SCK period than in Classic SPI mode to allow the logic to tolerate more delays in device pads and board traces. These delays become a more significant fraction of the SCK period as the SCK period decreases with increasing baud rates.

The master and the slave place data on the SOUT pins at the assertion of the PCS signal. After the PCS to SCK delay has elapsed the first SCK edge is generated. The slave samples the master SOUT signal on every odd numbered SCK edge. The DSPI in the slave mode when the MTFE bit is set also places new data on the slave SOUT on every odd numbered clock edge. Regular external slave, configured with CPHA=0 format drives its SOUT output at every even numbered SCK clock edge.

The DSPI master places its second data bit on the SOUT line one protocol clock after odd numbered SCK edge if the protocol clock frequency to SCK frequency ratio is higher than three. If this ratio is below four the master changes SOUT at odd numbered SCK edge. The point where the master samples the SIN is selected by the DSPI_MCR[SMPL_PT] field. The master sample point can be delayed by one or two protocol clock cycles. The SMPL_PT field should be set to 0 if the protocol to SCK frequency ratio is less than 4. However if this ratio is less than 4, the actual sample point is delayed by one protocol clock cycle automatically by the design.

The following timing diagrams illustrate the DSPI operation with MTFE=1. Timing delays shown are:

- T_{csc} PCS to SCK assertion delay
- T_{acs} After SCK PCS negation delay
- T_{su_ms} master SIN setup time
- *T_{hd_ms}* master SIN hold time
- T_{vd_sl} slave data output valid time, time between slave data output SCK driving edge and data becomes valid.
- T_{su_sl} data setup time on slave data input
- T_{hd_sl} data hold time on slave data input
- T_{sys} protocol clock period.

The following figure shows the modified transfer format for CPHA = 0 and Fsys/Fsck = 4. Only the condition where CPOL = 0 is illustrated. Solid triangles show the data sampling clock edges. The two possible slave behavior are shown.

- Signal, marked "SOUT of Ext Slave", presents regular SPI slave serial output.
- Signal, marked "SOUT of DSPI Slave", presents DSPI in the slave mode with MTFE bit set.

Other MTFE = 1 diagrams show DSPI SIN input as being driven by a regular external SPI slave, configured according DSPI master CPHA programming.

Note

In the following diagrams, f_{sys} represents the protocol clock frequency from which the Baud frequency f_{sck} is derived.

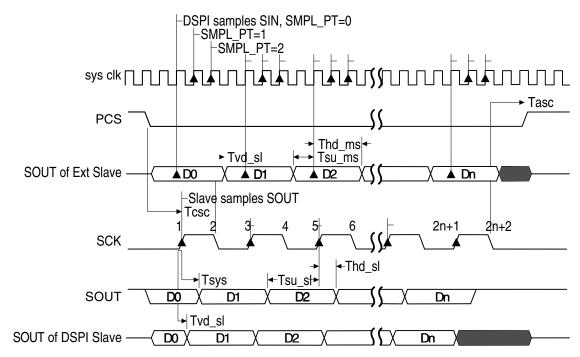
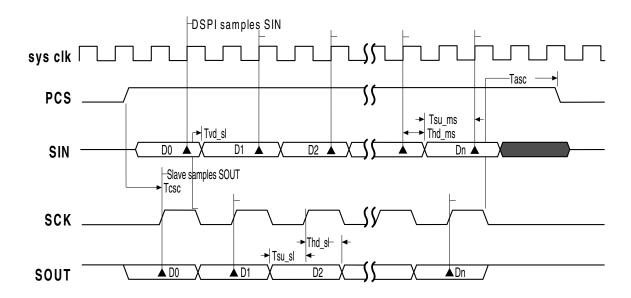



Figure 38-53. DSPI Modified Transfer Format (MTFE=1, CPHA=0, f_{sck} = f_{sys}/4)

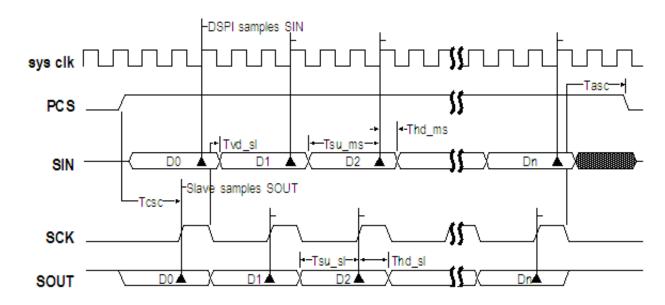


Figure 38-55. DSPI Modified Transfer Format (MTFE=1, CPHA=0, f_{sck} = f_{sys}/3)

38.4.4.4 Modified SPI Transfer Format (MTFE = 1, CPHA = 1)

The following figures show the Modified Transfer Format for CPHA = 1. Only the condition, where CPOL = 0 is shown. At the start of a transfer the DSPI asserts the PCS signal to the slave device. After the PCS to SCK delay has elapsed the master and the slave put data on their SOUT pins at the first edge of SCK. The slave samples the master SOUT signal on the even numbered edges of SCK. The master samples the slave SOUT signal on the odd numbered SCK edges starting with the third SCK edge. The slave samples the last bit on the last edge of the SCK. The master samples the last slave SOUT bit one half SCK cycle after the last edge of SCK. No clock edge will be visible on the master SCK pin during the sampling of the last bit. **The SCK to PCS delay and the After SCK delay must be greater or equal to half of the SCK period.**

runctional description

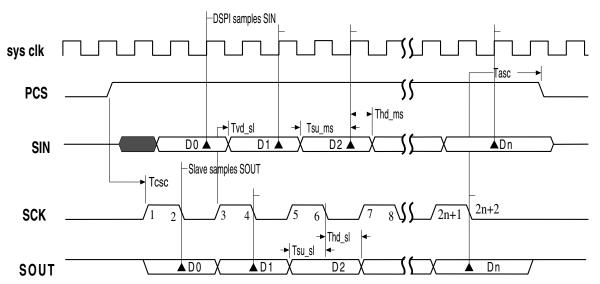


Figure 38-56. DSPI Modified Transfer Format (MTFE=1, CPHA=1, f_{sck} = f_{sys}/2)

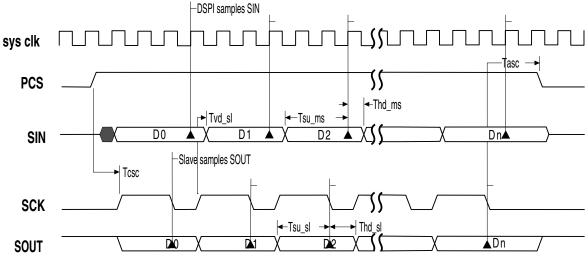


Figure 38-57. DSPI Modified Transfer Format (MTFE=1, CPHA=1, f_{sck} = f_{sys}/3)

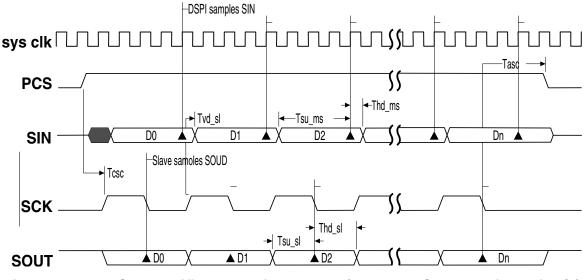
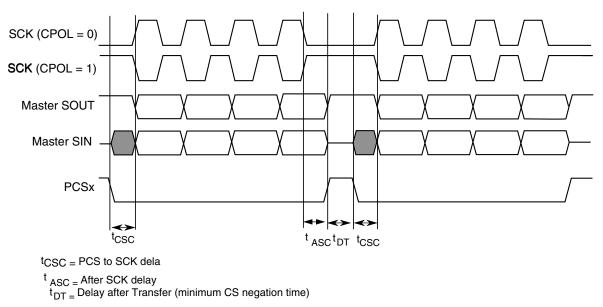
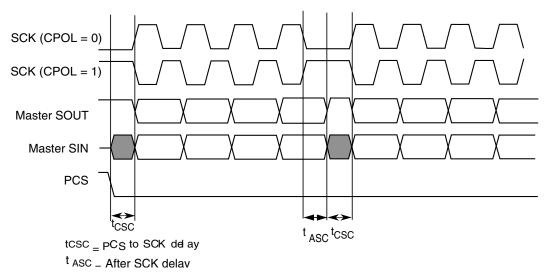


Figure 38-58. DSPI Modified Transfer Format (MTFE=1, CPHA=1, f_{sck} = f_{sys}/4)


38.4.4.5 Continuous Selection Format

Some peripherals must be deselected between every transfer. Other peripherals must remain selected between several sequential serial transfers. The Continuous Selection Format provides the flexibility to handle the following case. The Continuous Selection Format is enabled for the SPI configuration by setting the CONT bit in the SPI command.

When the CONT bit = 0, the module drives the asserted Chip Select signals to their idle states in between frames. The idle states of the Chip Select signals are selected by the PCSISn bits in the MCR. The following timing diagram is for two four-bit transfers with CPHA = 1 and CONT = 0.



-unctional description

Figure 38-59. Example of non-continuous format (CPHA=1, CONT=0)

When the CONT bit = 1, the PCS signal remains asserted for the duration of the two transfers. The Delay between Transfers (t_{DT}) is not inserted between the transfers. The following figure shows the timing diagram for two four-bit transfers with CPHA = 1 and CONT = 1.

Figure 38-60. Example of continuous transfer (CPHA=1, CONT=1)

When using the module with continuous selection follow these rules:

- All transmit commands must have the same PCSn bits programming.
- The CTARs, selected by transmit commands, must be programmed with the same transfer attributes. Only FMSZ field can be programmed differently in these CTARs.

- When transmitting multiple frames in this mode, the user software must ensure that the last frame has the PUSHR[CONT] bit deasserted in Master mode and the user software must provide sufficient frames in the TX_FIFO to be sent out in Slave mode and the master deasserts the PCSn at end of transmission of the last frame.
- PUSHR[CONT] must be deasserted before asserting MCR[HALT] in master mode. This will make sure that the PCSn signals are deasserted. Asserting MCR[HALT] during continuous transfer will cause the PCSn signals to remain asserted and hence Slave Device cannot transition from Running to Stopped state.

NOTE

User must fill the TX FIFO with the number of entries that will be concatenated together under one PCS assertion for both master and slave before the TX FIFO becomes empty.

When operating in Slave mode, ensure that when the last entry in the TX FIFO is completely transmitted, that is, the corresponding TCF flag is asserted and TXFIFO is empty, the slave is deselected for any further serial communication; otherwise, an underflow error occurs.

38.4.5 Continuous Serial Communications Clock

The module provides the option of generating a Continuous SCK signal for slave peripherals that require a continuous clock.

Continuous SCK is enabled by setting the CONT_SCKE bit in the MCR. Enabling this bit generates the Continuous SCK only if MCR[HALT] bit is low. Continuous SCK is valid in all configurations.

Continuous SCK is only supported for CPHA=1. Clearing CPHA is ignored if the CONT_SCKE bit is set. Continuous SCK is supported for Modified Transfer Format.

Clock and transfer attributes for the Continuous SCK mode are set according to the following rules:

- When the module is in SPI configuration, CTAR0 is used initially. At the start of each SPI frame transfer, the CTAR specified by the CTAS for the frame is used.
- In all configurations, the currently selected CTAR remains in use until the start of a frame with a different CTAR specified, or the Continuous SCK mode is terminated.

runctional description

It is recommended to keep the baud rate the same while using the Continuous SCK. Switching clock polarity between frames while using Continuous SCK can cause errors in the transfer. Continuous SCK operation is not guaranteed if the module is put into the External Stop mode or Module Disable mode.

Enabling Continuous SCK disables the PCS to SCK delay and the Delay after Transfer (t_{DT}) is fixed to one SCK cycle. The following figure is the timing diagram for Continuous SCK format with Continuous Selection disabled.

NOTE

In Continuous SCK mode, for the SPI transfer CTAR0 should always be used, and the TX FIFO must be cleared using the MCR[CLR_TXF] field before initiating transfer.

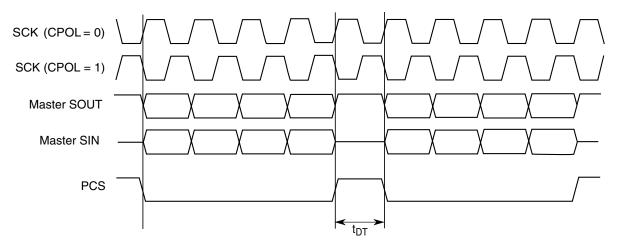


Figure 38-61. Continuous SCK Timing Diagram (CONT=0)

If the CONT bit in the TX FIFO entry is set, PCS remains asserted between the transfers. Under certain conditions, SCK can continue with PCS asserted, but with no data being shifted out of SOUT, that is, SOUT pulled high. This can cause the slave to receive incorrect data. Those conditions include:

- Continuous SCK with CONT bit set, but no data in the TX FIFO.
- Continuous SCK with CONT bit set and entering Stopped state (refer to Start and Stop of module transfers).
- Continuous SCK with CONT bit set and entering Stop mode or Module Disable mode.

The following figure shows timing diagram for Continuous SCK format with Continuous Selection enabled.

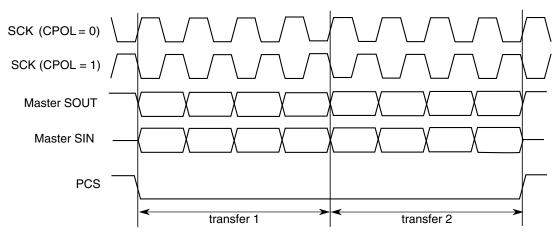


Figure 38-62. Continuous SCK timing diagram (CONT=1)

38.4.6 Slave Mode Operation Constraints

Slave mode logic shift register is buffered. This allows data streaming operation, when the module is permanently selected and data is shifted in with a constant rate.

The transmit data is transferred at second SCK clock edge of the each frame to the shift register if the \overline{SS} signal is asserted and any time when transmit data is ready and \overline{SS} signal is negated.

Received data is transferred to the receive buffer at last SCK edge of each frame, defined by frame size programmed to the CTAR0/1 register. Then the data from the buffer is transferred to the RXFIFO or DDR register.

If the \overline{SS} negates before that last SCK edge, the data from shift register is lost.

38.4.7 Interrupts/DMA requests

The module has several conditions that can generate only interrupt requests and two conditions that can generate interrupt or DMA requests. The following table lists these conditions.

Condition	Flag	Interrupt	DMA
End of Queue (EOQ)	EOQF	Yes	-
TX FIFO Fill	TFFF	Yes	Yes
Transfer Complete	TCF	Yes	-
TX FIFO Underflow	TFUF	Yes	-

 Table 38-72.
 Interrupt and DMA request conditions

Table continues on the next page...

runctional description

Condition	Flag		DMA	
RX FIFO Drain	RFDF	Yes	Yes	
RX FIFO Overflow	RFOF	Yes	-	

Table 38-72. Interrupt and DMA request conditions (continued)

Each condition has a flag bit in the module Status Register (SR) and a Request Enable bit in the DMA/Interrupt Request Select and Enable Register (RSER). Certain flags (as shown in above table) generate interrupt requests or DMA requests depending on configuration of RSER register.

The module also provides a global interrupt request line, which is asserted when any of individual interrupt requests lines is asserted.

38.4.7.1 End Of Queue interrupt request

The End Of Queue (EOQ) interrupt request indicates that the end of a transmit queue is reached. The module generates the interrupt request when EOQ interrupt requests are enabled (RSER[EOQF_RE]) and the EOQ bit in the executing SPI command is 1.

The module generates the interrupt request when the last bit of the SPI frame with EOQ bit set is transmitted.

38.4.7.2 Transmit FIFO Fill Interrupt or DMA Request

The Transmit FIFO Fill Request indicates that the TX FIFO is not full. The Transmit FIFO Fill Request is generated when the number of entries in the TX FIFO is less than the maximum number of possible entries, and the TFFF_RE bit in the RSER is set. The TFFF_DIRS bit in the RSER selects whether a DMA request or an interrupt request is generated.

NOTE

TFFF flag clears automatically when DMA is used to fill TX FIFO.

To clear TFFF when not using DMA, follow these steps for every PUSH performed using CPU to fill TX FIFO:

- 1. Wait until TFFF = 1.
- 2. Write data to PUSHR using CPU.
- 3. Clear TFFF by writing a 1 to its location. If TX FIFO is not full, this flag will not clear.

38.4.7.3 Transfer Complete Interrupt Request

The Transfer Complete Request indicates the end of the transfer of a serial frame. The Transfer Complete Request is generated at the end of each frame transfer when the TCF_RE bit is set in the RSER.

38.4.7.4 Transmit FIFO Underflow Interrupt Request

The Transmit FIFO Underflow Request indicates that an underflow condition in the TX FIFO has occurred. The transmit underflow condition is detected only for the module operating in Slave mode and SPI configuration . The TFUF bit is set when the TX FIFO of the module is empty, and a transfer is initiated from an external SPI master. If the TFUF bit is set while the TFUF_RE bit in the RSER is set, an interrupt request is generated.

38.4.7.5 Receive FIFO Drain Interrupt or DMA Request

The Receive FIFO Drain Request indicates that the RX FIFO is not empty. The Receive FIFO Drain Request is generated when the number of entries in the RX FIFO is not zero, and the RFDF_RE bit in the RSER is set. The RFDF_DIRS bit in the RSER selects whether a DMA request or an interrupt request is generated.

38.4.7.6 Receive FIFO Overflow Interrupt Request

The Receive FIFO Overflow Request indicates that an overflow condition in the RX FIFO has occurred. A Receive FIFO Overflow request is generated when RX FIFO and shift register are full and a transfer is initiated. The RFOF_RE bit in the RSER must be set for the interrupt request to be generated.

Depending on the state of the ROOE bit in the MCR, the data from the transfer that generated the overflow is either ignored or shifted in to the shift register. If the ROOE bit is set, the incoming data is shifted in to the shift register. If the ROOE bit is cleared, the incoming data is ignored.

38.4.8 Power saving features

The module supports following power-saving strategies:

mualization/application information

- External Stop mode
- Module Disable mode Clock gating of non-memory mapped logic

38.4.8.1 Stop mode (External Stop mode)

This module supports the Stop mode protocol. When a request is made to enter External Stop mode, the module acknowledges the request . If a serial transfer is in progress, then this module waits until it reaches the frame boundary before it is ready to have its clocks shut off . While the clocks are shut off, this module's memory-mapped logic is not accessible. This also puts the module in STOPPED state. The SR[TXRXS] bit is cleared to indicate STOPPED state. The states of the interrupt and DMA request signals cannot be changed while in External Stop mode.

38.4.8.2 Module Disable mode

Module Disable mode is a block-specific mode that the module can enter to save power. Host CPU can initiate the Module Disable mode by setting the MDIS bit in the MCR. The Module Disable mode can also be initiated by hardware.

When the MDIS bit is set, the module negates the Clock Enable signal at the next frame boundary. Once the Clock Enable signal is negated, it is said to have entered Module Disable Mode. This also puts the module in STOPPED state. The SR[TXRXS] bit is cleared to indicate STOPPED state.If implemented, the Clock Enable signal can stop the clock to the non-memory mapped logic. When Clock Enable is negated, the module is in a dormant state, but the memory mapped registers are still accessible. Certain read or write operations have a different effect when the module is in the Module Disable mode. Reading the RX FIFO Pop Register does not change the state of the RX FIFO. Similarly, writing to the PUSHR Register does not change the state of the TX FIFO or CMD FIFO. Clearing either of the FIFOs has no effect in the Module Disable mode. Changes to the DIS_TXF and DIS_RXF fields of the MCR have no effect in the Module Disable mode. In the Module Disable mode, all status bits and register flags in the module return the correct values when read, but writing to them has no effect. Writing to the TCR during Module Disable mode has no effect. Interrupt and DMA request signals cannot be cleared while in the Module Disable mode.

38.5 Initialization/application information

This section describes how to initialize the module.

38.5.1 How to manage queues

The queues are not part of the module, but it includes features in support of queue management. Queues are primarily supported in SPI configuration.

- 1. When module executes last command word from a queue, the EOQ bit in the command word is set to indicate it that this is the last entry in the queue.
- 2. At the end of the transfer, corresponding to the command word with EOQ set is sampled, the EOQ flag (EOQF) in the SR is set.
- 3. The setting of the EOQF flag disables serial transmission and reception of data, putting the module in the Stopped state. The TXRXS bit is cleared to indicate the Stopped state.
- 4. The DMA can continue to fill TX FIFO until it is full or step 5 occurs.
- 5. Disable DMA transfers by disabling the DMA enable request for the DMA channel assigned to TX FIFO (and CMD FIFO) and RX FIFO. This is done by clearing the corresponding DMA enable request bits in the DMA Controller.
- 6. Ensure all received data in RX FIFO has been transferred to memory receive queue by reading the RXCNT in SR or by checking RFDF in the SR after each read operation of the POPR.
- 7. Modify DMA descriptor of TX and RX channels for new queues
- 8. Flush TX FIFO (and CMD FIFO) by writing a 1 to the CLR_TXF bit in the MCR. Flush RX FIFO by writing a '1' to the CLR_RXF bit in the MCR.
- 9. Clear transfer count either by setting CTCNT bit in the command word of the first entry in the new queue or via CPU writing directly to SPI_TCNT field in the TCR.
- 10. Enable DMA channel by enabling the DMA enable request for the DMA channel assigned to the module TX FIFO, (and CMD FIFO) and RX FIFO by setting the corresponding DMA set enable request bit.
- 11. Enable serial transmission and serial reception of data by clearing the EOQF bit.

38.5.2 Switching Master and Slave mode

When changing modes in the module, follow the steps below to guarantee proper operation.

mualization/application information

- 1. Halt it by setting MCR[HALT].
- 2. Clear the transmit and receive FIFOs by writing a 1 to the CLR_TXF and CLR_RXF bits in MCR.
- 3. Set the appropriate mode in MCR[MSTR] and enable it by clearing MCR[HALT].

38.5.3 Initializing Module in Master/Slave Modes

Once the appropriate mode in MCR[MSTR] is configured, the module is enabled by clearing MCR[HALT]. It should be ensured that module Slave is enabled before enabling it's Master. This ensures the Slave is ready to be communicated with, before Master initializes communication.

38.5.4 Baud rate settings

The following table shows the baud rate that is generated based on the combination of the baud rate prescaler PBR and the baud rate scaler BR in the CTARs. The values calculated assume a 100 MHz protocol frequency and the double baud rate DBR bit is cleared.

NOTE

The clock frequency mentioned above is given as an example in this chapter. See the clocking chapter for the frequency used to drive this module in the device.

				Baud rate d	livider prescaler values
		2	3	5	7
	2	25.0M	16.7M	10.0M	7.14M
	4	12.5M	8.33M	5.00M	3.57M
	6	8.33M	5.56M	3.33M	2.38M
	8	6.25M	4.17M	2.50M	1.79M
	16	3.12M	2.08M	1.25M	893k
Baud Rate Scaler Values	32	1.56M	1.04M	625k	446k
Val	64	781k	521k	312k	223k
aler	128	391k	260k	156k	112k
S S	256	195k	130k	78.1k	55.8k
Rate	512	97.7k	65.1k	39.1k	27.9k
Pud F	1024	48.8k	32.6k	19.5k	14.0k
Bai	2048	24.4k	16.3k	9.77k	6.98k
	4096	12.2k	8.14k	4.88k	3.49k
	8192	6.10k	4.07k	2.44k	1.74k
	16384	3.05k	2.04k	1.22k	872
	32768	1.53k	1.02k	610	436

 Table 38-73.
 Baud rate values (bps)

38.5.5 Delay settings

The following table shows the values for the Delay after Transfer (t_{DT}) and CS to SCK Delay (T_{CSC}) that can be generated based on the prescaler values and the scaler values set in the CTARs. The values calculated assume a 100 MHz protocol frequency.

NOTE

The clock frequency mentioned above is given as an example in this chapter. See the clocking chapter for the frequency used to drive this module in the device.

					Delay prescaler values
		1	3	5	7
	2	20.0 ns	60.0 ns	100.0 ns	140.0 ns
	4	40.0 ns	120.0 ns	200.0 ns	280.0 ns
	8	80.0 ns	240.0 ns	400.0 ns	560.0 ns
	16	160.0 ns	480.0 ns	800.0 ns	1.1 µs
	32	320.0 ns	960.0 ns	1.6 µs	2.2 μs
ഗ	64	640.0 ns	1.9 µs	3.2 µs	4.5 µs
alue	128	1.3 µs	3.8 µs	6.4 µs	9.0 µs
er ve	256	2.6 µs	7.7 µs	12.8 µs	17.9 µs
Delay scaler values	512	5.1 µs	15.4 µs	25.6 µs	35.8 µs
ay s	1024	10.2 µs	30.7 µs	51.2 µs	71.7 µs
Dela	2048	20.5 µs	61.4 µs	102.4 µs	143.4 µs
	4096	41.0 µs	122.9 µs	204.8 µs	286.7 µs
	8192	81.9 µs	245.8 µs	409.6 µs	573.4 µs
	16384	163.8 µs	491.5 µs	819.2 µs	1.1 ms
	32768	327.7 μs	983.0 µs	1.6 ms	2.3 ms
	65536	655.4 µs	2.0 ms	3.3 ms	4.6 ms

Table 38-74. Delay values

38.5.6 Calculation of FIFO pointer addresses

Complete visibility of the FIFO contents is available through the FIFO registers, and valid entries can be identified through a memory-mapped pointer and counter for each FIFO. The pointer to the first-in entry in each FIFO is memory mapped. For the TX FIFO the first-in pointer is the Transmit Next Pointer (TXNXTPTR). For the CMD FIFO the first-in pointer is the Command Next Pointer (CMDNXTPTR). For the RX FIFO the first-in pointer is the Pop Next Pointer (POPNXTPTR). The following figure illustrates the concept of first-in and last-in FIFO entries along with the FIFO Counter. The TX FIFO is chosen for the illustration, but the concepts carry over. See Transmit First In First Out (TX FIFO) buffering mechanism, Command First In First Out (CMD FIFO) Buffering Mechanism and Receive First In First Out (RX FIFO) buffering mechanism for details on the FIFO operation.

Push TX FIFO Register

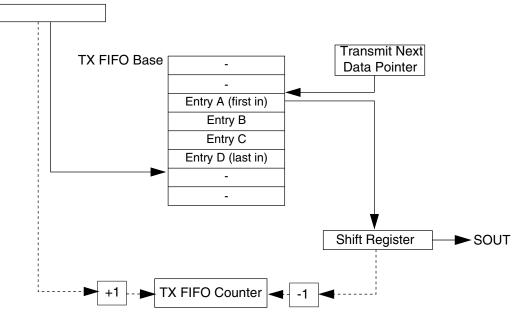


Figure 38-63. TX FIFO pointers and counter

38.5.6.1 Address Calculation for the First-in Entry and Last-in Entry in the TX FIFO

The memory address of the first-in entry in the TX FIFO is computed by the following equation:

First-in EntryAddress = TXFIFOBase + (4 × TXNXTPTR)

The memory address of the last-in entry in the TX FIFO is computed by the following equation:

Last-inEntryaddress = TXFIFOBase + 4 × (TXCTR + TXNXTPTR – 1)mod(TXFIFOdepth)

TX FIFO Base - Base address of TX FIFO TXCTR - TX FIFO Counter TXNXTPTR - Transmit Next Pointer TX FIFO Depth - Transmit FIFO depth, implementation specific

38.5.6.2 Address Calculation for the First-in Entry and Last-in Entry in the CMD FIFO

The memory address of the first-in entry in the CMD FIFO is computed by the following equation:

unualization/application information

First-in EntryAddress = TXFIFOBase + (4 × TXNXTPTR)

The memory address of the last-in entry in the CMD FIFO is computed by the following equation:

Last-inEntryaddress = TXFIFOBase + 4 × (TXCTR + TXNXTPTR – 1)mod(TXFIFOdepth) CMD FIFO Base - Base address of CMD FIFO CMDCTR - CMD FIFO Counter CMDNXTPTR - Command Next Pointer CMD FIFO Depth - Command FIFO depth, implementation specific

38.5.6.3 Address Calculation for the First-in Entry and Last-in Entry in the RX FIFO

The memory address of the first-in entry in the RX FIFO is computed by the following equation:

First-in EntryAddress = RX FIFOBase + (4 × POPNXTPTR)

The memory address of the last-in entry in the RX FIFO is computed by the following equation:

Last-inEntryaddress = RX FIFO Base + 4 × (RXCTR + POPNXTPTR - 1)mod(RXFIFOdepth)

RX FIFO Base - Base address of RX FIFO RXCTR - RX FIFO counter POPNXTPTR - Pop Next Pointer RX FIFO Depth - Receive FIFO depth, implementation specific

Chapter 39 Inter-Integrated Circuit (I2C)

39.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The inter-integrated circuit (I²C, I2C, or IIC) module provides a method of communication between a number of devices.

The interface is designed to operate up to 100 kbit/s with maximum bus loading and timing. The I2C device is capable of operating at higher baud rates, up to a maximum of clock/20, with reduced bus loading. The maximum communication length and the number of devices that can be connected are limited by a maximum bus capacitance of 400 pF. The I2C module also complies with the *System Management Bus (SMBus) Specification, version 2.*

39.1.1 Features

The I2C module has the following features:

- Compatible with *The I²C-Bus Specification*
- Multimaster operation
- Software programmable for one of 64 different serial clock frequencies
- Software-selectable acknowledge bit
- Interrupt-driven byte-by-byte data transfer
- Arbitration-lost interrupt with automatic mode switching from master to slave
- Calling address identification interrupt
- START and STOP signal generation and detection
- Repeated START signal generation and detection
- Acknowledge bit generation and detection

nuroduction

- Bus busy detection
- General call recognition
- 10-bit address extension
- Support for System Management Bus (SMBus) Specification, version 2
- Programmable input glitch filter
- Low power mode wakeup on slave address match
- Range slave address support
- DMA support

39.1.2 Modes of operation

The I2C module's operation in various low power modes is as follows:

- Run mode: This is the basic mode of operation. To conserve power in this mode, disable the module.
- Wait mode: The module continues to operate when the core is in Wait mode and can provide a wakeup interrupt.
- Stop mode: The module is inactive in Stop mode for reduced power consumption, except that address matching is enabled in Stop mode. The STOP instruction does not affect the I2C module's register states.

39.1.3 Block diagram

The following figure is a functional block diagram of the I2C module.

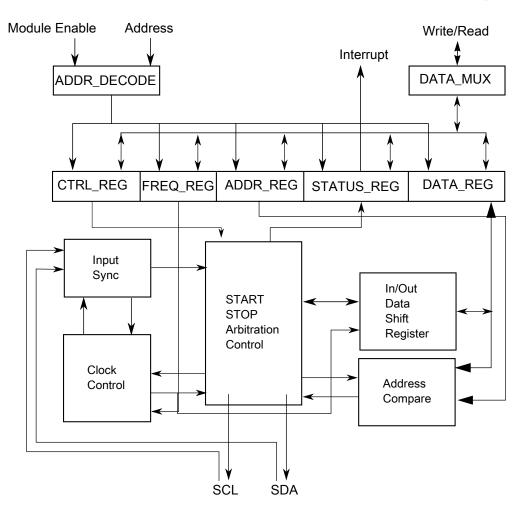


Figure 39-1. I2C Functional block diagram

39.2 I²C signal descriptions

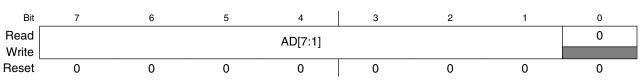
The signal properties of I^2C are shown in the table found here.

Table 39-1. I²C signal descriptions

Signal	Description	I/O
SCL	Bidirectional serial clock line of the I ² C system.	I/O
SDA	Bidirectional serial data line of the I ² C system.	I/O

39.3 Memory map/register definition

This section describes in detail all I2C registers accessible to the end user.


Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4006_6000	I2C Address Register 1 (I2C0_A1)	8	R/W	00h	39.3.1/878
4006_6001	I2C Frequency Divider register (I2C0_F)	8	R/W	00h	39.3.2/879
4006_6002	I2C Control Register 1 (I2C0_C1)	8	R/W	00h	39.3.3/880
4006_6003	I2C Status register (I2C0_S)	8	R/W	80h	39.3.4/882
4006_6004	I2C Data I/O register (I2C0_D)	8	R/W	00h	39.3.5/883
4006_6005	I2C Control Register 2 (I2C0_C2)	8	R/W	00h	39.3.6/884
4006_6006	I2C Programmable Input Glitch Filter Register (I2C0_FLT)	8	R/W	00h	39.3.7/885
4006_6007	I2C Range Address register (I2C0_RA)	8	R/W	00h	39.3.8/886
4006_6008	I2C SMBus Control and Status register (I2C0_SMB)	8	R/W	00h	39.3.9/887
4006_6009	I2C Address Register 2 (I2C0_A2)	8	R/W	C2h	39.3.10/ 889
4006_600A	I2C SCL Low Timeout Register High (I2C0_SLTH)	8	R/W	00h	39.3.11/ 889
4006_600B	I2C SCL Low Timeout Register Low (I2C0_SLTL)	8	R/W	00h	39.3.12/ 889

I2C memory map

39.3.1 I2C Address Register 1 (I2Cx_A1)

This register contains the slave address to be used by the I2C module.

Address: 4006_6000h base + 0h offset = 4006_6000h

I2Cx_A1 field descriptions

Field	Description
	Address Contains the primary slave address used by the I2C module when it is addressed as a slave. This field is used in the 7-bit address scheme and the lower seven bits in the 10-bit address scheme.

Table continues on the next page ...

Chapter 39 Inter-Integrated Circuit (I2C)

I2Cx_A1 field descriptions (continued)

Field	Description
0	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

39.3.2 I2C Frequency Divider register (I2Cx_F)

Address: 4006_6000h base + 1h offset = 4006_6001h

Bit	7	6	5	4	3	2	1	0
Read Write	MULT		ICR					
Reset	0	0	0	0	0	0	0	0

I2Cx_F field descriptions

Field	Description
7–6 MULT	Multiplier Factor Defines the multiplier factor (mul). This factor is used along with the SCL divider to generate the I2C baud rate. 00 mul = 1 01 mul = 2 10 mul = 4 11 Reserved
5–0 ICR	ClockRate Prescales the I2C module clock for bit rate selection. This field and the MULT field determine the I2C baud rate, the SDA hold time, the SCL start hold time, and the SCL stop hold time. For a list of values corresponding to each ICR setting, see I2C divider and hold values. The SCL divider multiplied by multiplier factor (mul) determines the I2C baud rate. I2C baud rate = I2C module clock speed (Hz) / (mul × SCL divider) The SDA hold time is the delay from the falling edge of SCL (I2C clock) to the changing of SDA (I2C data). SDA hold time = I2C module clock period (s) × mul × SDA hold value The SCL start hold time is the delay from the falling edge of SDA (I2C data) while SCL is high (start condition) to the falling edge of SCL (I2C clock). SCL start hold time = I2C module clock period (s) × mul × SCL start hold value The SCL stop hold time is the delay from the rising edge of SCL (I2C clock) to the rising edge of SDA (I2C data) while SCL is high (stop condition). SCL stop hold time = I2C module clock period (s) × mul × SCL stop hold value The SCL stop hold time = I2C module clock period (s) × mul × SCL stop hold value The SCL stop hold time = I2C module clock period (s) × mul × SCL stop hold value For example, if the I2C module clock speed is 8 MHz, the following table shows the possible hold time values with different ICR and MULT selections to achieve an I ² C baud rate of 100 kbit/s.
1	Table continues on the next page

memory map/register definition

Field	Description					
		ICP	Hold times (µs)			
	MULT	ICR	SDA SCL Start		SCL Stop	
	2h	00h	3.500	3.000	5.500	
	1h	07h	2.500	4.000	5.250	
	1h	0Bh	2.250	4.000	5.250	
	0h	14h	2.125	4.250	5.125	
	0h	18h	1.125	4.750	5.125	

I2Cx_F field descriptions (continued)

39.3.3 I2C Control Register 1 (I2Cx_C1)

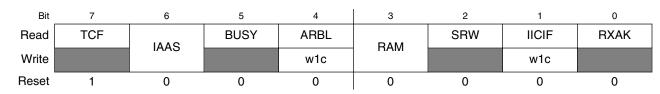
Address: 4006_6000h base + 2h offset = 4006_6002h

Bit	7	6	5	4	3	2	1	0
Read	IICEN	IICIE	MST	тх	ТХАК	0	WUEN	DMAEN
Write	HOEN	IIOL	MOT		IXAN	RSTA	WOLN	DIVIALIN
Reset	0	0	0	0	0	0	0	0

I2Cx_C1 field descriptions

Field	Description
7 IICEN	I2C Enable
IIOEN	Enables I2C module operation.
	0 Disabled
	1 Enabled
6 IICIE	I2C Interrupt Enable
	Enables I2C interrupt requests.
	0 Disabled
	1 Enabled
5	Master Mode Select
MST	When MST is changed from 0 to 1, a START signal is generated on the bus and master mode is selected. When this bit changes from 1 to 0, a STOP signal is generated and the mode of operation changes from master to slave.
	0 Slave mode
	1 Master mode
4	Transmit Mode Select
TX	

Table continues on the next page ...


I2Cx_C1 field descriptions (continued)

Field	Description
	Selects the direction of master and slave transfers. In master mode this bit must be set according to the type of transfer required. Therefore, for address cycles, this bit is always set. When addressed as a slave this bit must be set by software according to the SRW bit in the status register.
	0 Receive 1 Transmit
3	Transmit Acknowledge Enable
TXAK	Specifies the value driven onto the SDA during data acknowledge cycles for both master and slave receivers. The value of SMB[FACK] affects NACK/ACK generation.
	NOTE: SCL is held low until TXAK is written.
	0 An acknowledge signal is sent to the bus on the following receiving byte (if FACK is cleared) or the current receiving byte (if FACK is set).
	1 No acknowledge signal is sent to the bus on the following receiving data byte (if FACK is cleared) or the current receiving data byte (if FACK is set).
2 RSTA	Repeat START
HOTA	Writing 1 to this bit generates a repeated START condition provided it is the current master. This bit will always be read as 0. Attempting a repeat at the wrong time results in loss of arbitration.
1 WUEN	Wakeup Enable
WOEN	The I2C module can wake the MCU from low power mode with no peripheral bus running when slave address matching occurs.
	0 Normal operation. No interrupt generated when address matching in low power mode.
	1 Enables the wakeup function in low power mode.
0 DMAEN	DMA Enable
	Enables or disables the DMA function.
	0 All DMA signalling disabled.
	¹ DMA transfer is enabled. While SMB[FACK] = 0, the following conditions trigger the DMA request:
	 a data byte is received, and either address or data is transmitted. (ACK/NACK is automatic) the first byte received matches the A1 register or is a general call address.
	If any address matching occurs, S[IAAS] and S[TCF] are set. If the direction of transfer is known from master to slave, then it is not required to check S[SRW]. With this assumption, DMA can also be used in this case. In other cases, if the master reads data from the slave, then it is required to rewrite the C1 register operation. With this assumption, DMA cannot be used.
	When FACK = 1, an address or a data byte is transmitted.

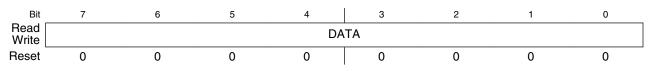
39.3.4 I2C Status register (I2Cx_S)

Address: 4006_6000h base + 3h offset = 4006_6003h

I2Cx_S field descriptions

Field	Description
7 TCF	Transfer Complete Flag Acknowledges a byte transfer; TCF is set on the completion of a byte transfer. This bit is valid only during or immediately following a transfer to or from the I2C module. TCF is cleared by reading the I2C data register in receive mode or by writing to the I2C data register in transmit mode.
	0 Transfer in progress1 Transfer complete
6 IAAS	 Addressed As A Slave This bit is set by one of the following conditions: The calling address matches the programmed primary slave address in the A1 register, or matches the range address in the RA register (which must be set to a nonzero value and under the condition I2C_C2[RMEN] = 1). C2[GCAEN] is set and a general call is received. SMB[SIICAEN] is set and the calling address matches the second programmed slave address. ALERTEN is set and an SMBus alert response address is received RMEN is set and an address is received that is within the range between the values of the A1 and RA registers. IAAS sets before the ACK bit. The CPU must check the SRW bit and set TX/RX accordingly. Writing the C1 register with any value clears this bit. Not addressed Addressed as a slave
5 BUSY	 Bus Busy Indicates the status of the bus regardless of slave or master mode. This bit is set when a START signal is detected and cleared when a STOP signal is detected. 0 Bus is idle 1 Bus is busy
4 ARBL	 Arbitration Lost This bit is set by hardware when the arbitration procedure is lost. The ARBL bit must be cleared by software, by writing 1 to it. 0 Standard bus operation. 1 Loss of arbitration.
3 RAM	Range Address Match

Table continues on the next page ...



I2Cx_S field descriptions (continued)

Field	Description
	 This bit is set to 1 by any of the following conditions, if I2C_C2[RMEN] = 1: Any nonzero calling address is received that matches the address in the RA register. The calling address is within the range of values of the A1 and RA registers.
	NOTE: For the RAM bit to be set to 1 correctly, C1[IICIE] must be set to 1.
	Writing the C1 register with any value clears this bit to 0.
	0 Not addressed
	1 Addressed as a slave
2	Slave Read/Write
SRW	When addressed as a slave, SRW indicates the value of the R/W command bit of the calling address sent to the master.
	0 Slave receive, master writing to slave
	1 Slave transmit, master reading from slave
1 IICIF	 Interrupt Flag This bit sets when an interrupt is pending. This bit must be cleared by software by writing 1 to it, such as in the interrupt routine. One of the following events can set this bit: One byte transfer, including ACK/NACK bit, completes if FACK is 0. An ACK or NACK is sent on the bus by writing 0 or 1 to TXAK after this bit is set in receive mode. One byte transfer, excluding ACK/NACK bit, completes if FACK is 1. Match of slave address to calling address including primary slave address, range slave address, alert response address, second slave address, or general call address. Arbitration lost In SMBus mode, any timeouts except SCL and SDA high timeouts I2C bus stop or start detection if the SSIE bit in the Input Glitch Filter register is 1 NOTE: To clear the I2C bus stop or start detection interrupt: In the interrupt service routine, first clear the STOPF or STARTF bit in the Input Glitch Filter register by writing 1 to it, and then clear the IICIF bit. If this sequence is reversed, the IICIF bit is asserted again.
	0 No interrupt pending1 Interrupt pending
0 BXAK	Receive Acknowledge
HXAN	 Acknowledge signal was received after the completion of one byte of data transmission on the bus No acknowledge signal detected

39.3.5 I2C Data I/O register (I2Cx_D)

Address: 4006_6000h base + 4h offset = 4006_6004h

Field	Description
7–0 DATA	Data
DATA	In master transmit mode, when data is written to this register, a data transfer is initiated. The most significant bit is sent first. In master receive mode, reading this register initiates receiving of the next byte of data.
	NOTE: When making the transition out of master receive mode, switch the I2C mode before reading the Data register to prevent an inadvertent initiation of a master receive data transfer.
	In slave mode, the same functions are available after an address match occurs.
	The C1[TX] bit must correctly reflect the desired direction of transfer in master and slave modes for the transmission to begin. For example, if the I2C module is configured for master transmit but a master receive is desired, reading the Data register does not initiate the receive.
	Reading the Data register returns the last byte received while the I2C module is configured in master receive or slave receive mode. The Data register does not reflect every byte that is transmitted on the I2C bus, and neither can software verify that a byte has been written to the Data register correctly by reading it back.
	In master transmit mode, the first byte of data written to the Data register following assertion of MST (start bit) or assertion of RSTA (repeated start bit) is used for the address transfer and must consist of the calling address (in bits 7-1) concatenated with the required R/W bit (in position bit 0).

I2Cx_D field descriptions

39.3.6 I2C Control Register 2 (I2Cx_C2)

Address: 4006_6000h base + 5h offset = 4006_6005h

Bit	7	6	5	4	3	2	1	0
Read Write	GCAEN	ADEXT	HDRS	SBRC	RMEN		AD[10:8]	
Reset	0	0	0	0	0	0	0	0

I2Cx_C2 field descriptions

Field	Description
7	General Call Address Enable
GCAEN	Enables general call address.
	0 Disabled
	1 Enabled
6 ADEXT	Address Extension
	Controls the number of bits used for the slave address.
	0 7-bit address scheme
	1 10-bit address scheme
5 HDRS	High Drive Select
	Controls the drive capability of the I2C pads.

Table continues on the next page...

I2Cx_C2 field descriptions (continued)

Field	Description
	0 Normal drive mode
	1 High drive mode
4 SBRC	Slave Baud Rate Control
	Enables independent slave mode baud rate at maximum frequency, which forces clock stretching on SCL in very fast I2C modes. To a slave, an example of a "very fast" mode is when the master transfers at 40 kbit/s but the slave can capture the master's data at only 10 kbit/s.
	0 The slave baud rate follows the master baud rate and clock stretching may occur
	1 Slave baud rate is independent of the master baud rate
3	Range Address Matching Enable
RMEN	This bit controls the slave address matching for addresses between the values of the A1 and RA registers. When this bit is set, a slave address matching occurs for any address greater than the value of the A1 register and less than or equal to the value of the RA register.
	0 Range mode disabled. No address matching occurs for an address within the range of values of the A1 and RA registers.
	1 Range mode enabled. Address matching occurs when a slave receives an address within the range of values of the A1 and RA registers.
2–0	Slave Address
AD[10:8]	Contains the upper three bits of the slave address in the 10-bit address scheme. This field is valid only while the ADEXT bit is set.

39.3.7 I2C Programmable Input Glitch Filter Register (I2Cx_FLT)

Address: 4006_6000h base + 6h offset = 4006_6006h

Bit	7	6	5	4	3	2	1	0
Read	SHEN	STOPF	SSIE	STARTF		FL	т	
Write	SHEN	w1c	- 33IL	w1c		FL.	- 1	
Reset	0	0	0	0	0	0	0	0

I2Cx_FLT field descriptions

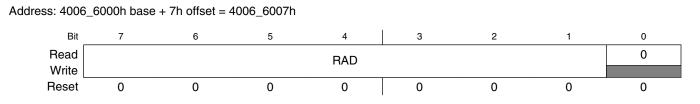

Field	Description
7	Stop Hold Enable
SHEN	 Set this bit to hold off entry to stop mode when any data transmission or reception is occurring. The following scenario explains the holdoff functionality: The I2C module is configured for a basic transfer, and the SHEN bit is set to 1. A transfer begins. The MCU signals the I2C module to enter stop mode. The byte currently being transferred, including both address and data, completes its transfer. The I2C slave or master acknowledges that the in-transfer byte completed its transfer and acknowledges the request to enter stop mode. After receiving the I2C module's acknowledgment of the request to enter stop mode, the MCU determines whether to shut off the I2C module's clock.

Table continues on the next page ...

I2Cx_FLT field descriptions (continued)

Field	Description
	If the SHEN bit is set to 1 and the I2C module is in an idle or disabled state when the MCU signals to enter stop mode, the module immediately acknowledges the request to enter stop mode.
	If SHEN is cleared to 0 and the overall data transmission or reception that was suspended by stop mode entry was incomplete: To resume the overall transmission or reception after the MCU exits stop mode, software must reinitialize the transfer by resending the address of the slave.
	If the I2C Control Register 1's IICIE bit was set to 1 before the MCU entered stop mode, system software will receive the interrupt triggered by the I2C Status Register's TCF bit after the MCU wakes from the stop mode.
	 Stop holdoff is disabled. The MCU's entry to stop mode is not gated. Stop holdoff is enabled.
6	I2C Bus Stop Detect Flag
STOPF	Hardware sets this bit when the I2C bus's stop status is detected. The STOPF bit must be cleared by writing 1 to it.
	0 No stop happens on I2C bus
	1 Stop detected on I2C bus
5 SSIE	I2C Bus Stop or Start Interrupt Enable
331E	This bit enables the interrupt for I2C bus stop or start detection.
	NOTE: To clear the I2C bus stop or start detection interrupt: In the interrupt service routine, first clear the STOPF or STARTF bit by writing 1 to it, and then clear the IICIF bit in the status register. If this sequence is reversed, the IICIF bit is asserted again.
	0 Stop or start detection interrupt is disabled
	1 Stop or start detection interrupt is enabled
4	I2C Bus Start Detect Flag
STARTF	Hardware sets this bit when the I2C bus's start status is detected. The STARTF bit must be cleared by writing 1 to it.
	0 No start happens on I2C bus
	1 Start detected on I2C bus
3–0 FLT	I2C Programmable Filter Factor
	Controls the width of the glitch, in terms of I2C module clock cycles, that the filter must absorb. For any glitch whose size is less than or equal to this width setting, the filter does not allow the glitch to pass.
	0h No filter/bypass
	1-Fh Filter glitches up to width of <i>n</i> I2C module clock cycles, where <i>n</i> =1-15d

39.3.8 I2C Range Address register (I2Cx_RA)

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

I2Cx_RA field descriptions

Field	Description
RAD	Range Slave Address This field contains the slave address to be used by the I2C module. The field is used in the 7-bit address scheme. If I2C_C2[RMEN] is set to 1, any nonzero value write enables this register. This register value can be considered as a maximum boundary in the range matching mode.
0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

39.3.9 I2C SMBus Control and Status register (I2Cx_SMB) NOTE

When the SCL and SDA signals are held high for a length of time greater than the high timeout period, the SHTF1 flag sets. Before reaching this threshold, while the system is detecting how long these signals are being held high, a master assumes that the bus is free. However, the SHTF1 bit is set to 1 in the bus transmission process with the idle bus state.

NOTE

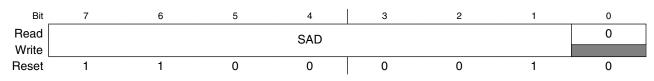
When the TCKSEL bit is set, there is no need to monitor the SHTF1 bit because the bus speed is too high to match the protocol of SMBus.

Address: 4006_6000h base + 8h offset = 4006_6008h

Bit	7	6	5	4	3	2	1	0
Read	FACK	ALERTEN	SIICAEN	TCKSEL	SLTF	SHTF1	SHTF2	SHTF2IE
Write		SIICALIN	TOROLL	w1c		w1c		
Reset	0	0	0	0	0	0	0	0

I2Cx_SMB field descriptions

Field	Description							
7 FACK	Fast NACK/ACK Enable							
T NOIC	For SMBus packet error checking, the CPU must be able to issue an ACK or NACK according to the result of receiving data byte.							
	0 An ACK or NACK is sent on the following receiving data byte							
	1 Writing 0 to TXAK after receiving a data byte generates an ACK. Writing 1 to TXAK after receiving a data byte generates a NACK.							
6 ALERTEN	SMBus Alert Response Address Enable							
	Enables or disables SMBus alert response address matching.							


Table continues on the next page ...

Field	Description										
	NOTE: After the host responds to a device that used the alert response address, you must use software to put the device's address on the bus. The alert protocol is described in the SMBus specification.										
	0 SMBus alert response address matching is disabled										
	1 SMBus alert response address matching is enabled										
5 SIICAEN	Second I2C Address Enable										
	Enables or disables SMBus device default address.										
	0 I2C address register 2 matching is disabled										
	1 I2C address register 2 matching is enabled										
4 TCKSEL	Timeout Counter Clock Select										
	Selects the clock source of the timeout counter.										
	0 Timeout counter counts at the frequency of the I2C module clock / 64										
	1 Timeout counter counts at the frequency of the I2C module clock										
3 SLTF	SCL Low Timeout Flag										
	This bit is set when the SLT register (consisting of the SLTH and SLTL registers) is loaded with a non-zero value (LoValue) and an SCL low timeout occurs. Software clears this bit by writing a logic 1 to it.										
	NOTE: The low timeout function is disabled when the SLT register's value is 0.										
	0 No low timeout occurs										
	1 Low timeout occurs										
2 SHTF1	SCL High Timeout Flag 1										
31111	This read-only bit sets when SCL and SDA are held high more than clock \times LoValue / 512, which indicates the bus is free. This bit is cleared automatically.										
	0 No SCL high and SDA high timeout occurs										
	1 SCL high and SDA high timeout occurs										
1 SHTF2	SCL High Timeout Flag 2										
	This bit sets when SCL is held high and SDA is held low more than clock \times LoValue / 512. Software clears this bit by writing 1 to it.										
	0 No SCL high and SDA low timeout occurs										
	1 SCL high and SDA low timeout occurs										
0 SHTF2IE	SHTF2 Interrupt Enable										
	Enables SCL high and SDA low timeout interrupt.										
	0 SHTF2 interrupt is disabled										
	1 SHTF2 interrupt is enabled										

39.3.10 I2C Address Register 2 (I2Cx_A2)

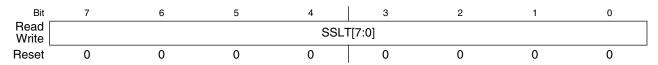
Address: 4006_6000h base + 9h offset = 4006_6009h

I2Cx_A2 field descriptions

Field	Description
7–1 SAD	SMBus Address Contains the slave address used by the SMBus. This field is used on the device default address or other related addresses.
0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

39.3.11 I2C SCL Low Timeout Register High (I2Cx_SLTH)

Address: 4006_6000h base + Ah offset = 4006_600Ah


Bit	7	6	5	4	3	2	1	0						
Read Write		SSLT[15:8]												
Reset	0	0	0	0	0	0	0	0						

I2Cx_SLTH field descriptions

Field	Description
7–0 SSLT[15:8]	SSLT[15:8]
	Most significant byte of SCL low timeout value that determines the timeout period of SCL low.

39.3.12 I2C SCL Low Timeout Register Low (I2Cx_SLTL)

Address: 4006_6000h base + Bh offset = 4006_600Bh

I2Cx_	SLTL fi	eld desci	riptions
-------	---------	-----------	----------

Field	Description
7–0	SSLT[7:0]
SSLT[7:0]	Least significant byte of SCL low timeout value that determines the timeout period of SCL low.

39.4 Functional description

This section provides a comprehensive functional description of the I2C module.

39.4.1 I2C protocol

The I2C bus system uses a serial data line (SDA) and a serial clock line (SCL) for data transfers.

All devices connected to it must have open drain or open collector outputs. A logic AND function is exercised on both lines with external pull-up resistors. The value of these resistors depends on the system.

Normally, a standard instance of communication is composed of four parts:

- 1. START signal
- 2. Slave address transmission
- 3. Data transfer
- 4. STOP signal

The STOP signal should not be confused with the CPU STOP instruction. The following figure illustrates I2C bus system communication.

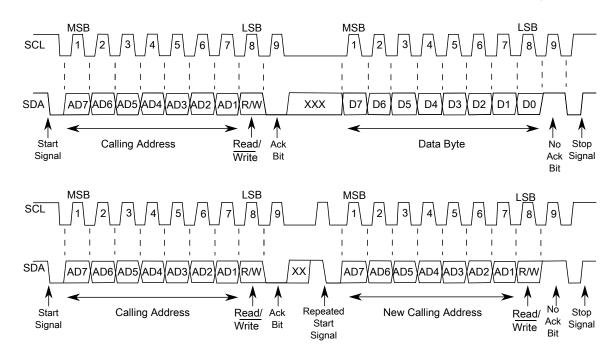


Figure 39-26. I2C bus transmission signals

39.4.1.1 START signal

The bus is free when no master device is engaging the bus (both SCL and SDA are high). When the bus is free, a master may initiate communication by sending a START signal. A START signal is defined as a high-to-low transition of SDA while SCL is high. This signal denotes the beginning of a new data transfer—each data transfer might contain several bytes of data—and brings all slaves out of their idle states.

39.4.1.2 Slave address transmission

Immediately after the START signal, the first byte of a data transfer is the slave address transmitted by the master. This address is a 7-bit calling address followed by an R/\overline{W} bit. The R/\overline{W} bit tells the slave the desired direction of data transfer.

- 1 = Read transfer: The slave transmits data to the master
- 0 = Write transfer: The master transmits data to the slave

Only the slave with a calling address that matches the one transmitted by the master responds by sending an acknowledge bit. The slave sends the acknowledge bit by pulling SDA low at the ninth clock.

runctional description

No two slaves in the system can have the same address. If the I2C module is the master, it must not transmit an address that is equal to its own slave address. The I2C module cannot be master and slave at the same time. However, if arbitration is lost during an address cycle, the I2C module reverts to slave mode and operates correctly even if it is being addressed by another master.

39.4.1.3 Data transfers

When successful slave addressing is achieved, data transfer can proceed on a byte-bybyte basis in the direction specified by the R/\overline{W} bit sent by the calling master.

All transfers that follow an address cycle are referred to as data transfers, even if they carry subaddress information for the slave device.

Each data byte is 8 bits long. Data may be changed only while SCL is low. Data must be held stable while SCL is high. There is one clock pulse on SCL for each data bit, and the MSB is transferred first. Each data byte is followed by a ninth (acknowledge) bit, which is signaled from the receiving device by pulling SDA low at the ninth clock. In summary, one complete data transfer needs nine clock pulses.

If the slave receiver does not acknowledge the master in the ninth bit, the slave must leave SDA high. The master interprets the failed acknowledgement as an unsuccessful data transfer.

If the master receiver does not acknowledge the slave transmitter after a data byte transmission, the slave interprets it as an end to data transfer and releases the SDA line.

In the case of a failed acknowledgement by either the slave or master, the data transfer is aborted and the master does one of two things:

- Relinquishes the bus by generating a STOP signal.
- Commences a new call by generating a repeated START signal.

39.4.1.4 STOP signal

The master can terminate the communication by generating a STOP signal to free the bus. A STOP signal is defined as a low-to-high transition of SDA while SCL is asserted.

The master can generate a STOP signal even if the slave has generated an acknowledgement, at which point the slave must release the bus.

39.4.1.5 Repeated START signal

The master may generate a START signal followed by a calling command without generating a STOP signal first. This action is called a repeated START. The master uses a repeated START to communicate with another slave or with the same slave in a different mode (transmit/receive mode) without releasing the bus.

39.4.1.6 Arbitration procedure

The I2C bus is a true multimaster bus that allows more than one master to be connected on it.

If two or more masters try to control the bus at the same time, a clock synchronization procedure determines the bus clock. The bus clock's low period is equal to the longest clock low period, and the high period is equal to the shortest one among the masters.

The relative priority of the contending masters is determined by a data arbitration procedure. A bus master loses arbitration if it transmits logic level 1 while another master transmits logic level 0. The losing masters immediately switch to slave receive mode and stop driving SDA output. In this case, the transition from master to slave mode does not generate a STOP condition. Meanwhile, hardware sets a status bit to indicate the loss of arbitration.

39.4.1.7 Clock synchronization

Because wire AND logic is performed on SCL, a high-to-low transition on SCL affects all devices connected on the bus. The devices start counting their low period and, after a device's clock has gone low, that device holds SCL low until the clock reaches its high state. However, the change of low to high in this device clock might not change the state of SCL if another device clock is still within its low period. Therefore, the synchronized clock SCL is held low by the device with the longest low period. Devices with shorter low periods enter a high wait state during this time; see the following diagram. When all applicable devices have counted off their low period, the synchronized clock SCL is released and pulled high. Afterward there is no difference between the device clocks and the state of SCL, and all devices start counting their high periods. The first device to complete its high period pulls SCL low again.

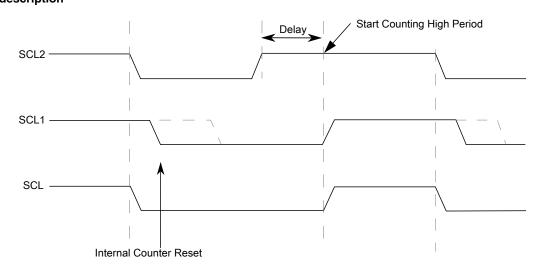


Figure 39-27. I2C clock synchronization

39.4.1.8 Handshaking

The clock synchronization mechanism can be used as a handshake in data transfers. A slave device may hold SCL low after completing a single byte transfer (9 bits). In this case, it halts the bus clock and forces the master clock into wait states until the slave releases SCL.

39.4.1.9 Clock stretching

The clock synchronization mechanism can be used by slaves to slow down the bit rate of a transfer. After the master drives SCL low, a slave can drive SCL low for the required period and then release it. If the slave's SCL low period is greater than the master's SCL low period, the resulting SCL bus signal's low period is stretched. In other words, the SCL bus signal's low period is increased to be the same length as the slave's SCL low period.

39.4.1.10 I2C divider and hold values

NOTE

For some cases on some devices, the SCL divider value may vary by ± 2 or ± 4 when ICR's value ranges from 00h to 0Fh. These potentially varying SCL divider values are highlighted in the following table. For the actual SCL divider values for your device, see the chip-specific details about the I2C module.

ICR (hex)	SCL divider	SDA hold value	SCL hold (start) value	SCL hold (stop) value	ICR (hex)	SCL divider (clocks)	SDA hold (clocks)	SCL hold (start) value	SCL hold (stop) value
00	20	7	6	11	20	160	17	78	81
01	22	7	7	12	21	192	17	94	97
02	24	8	8	13	22	224	33	110	113
03	26	8	9	14	23	256	33	126	129
04	28	9	10	15	24	288	49	142	145
05	30	9	11	16	25	320	49	158	161
06	34	10	13	18	26	384	65	190	193
07	40	10	16	21	27	480	65	238	241
08	28	7	10	15	28	320	33	158	161
09	32	7	12	17	29	384	33	190	193
0A	36	9	14	19	2A	448	65	222	225
0B	40	9	16	21	2B	512	65	254	257
0C	44	11	18	23	2C	576	97	286	289
0D	48	11	20	25	2D	640	97	318	321
0E	56	13	24	29	2E	768	129	382	385
0F	68	13	30	35	2F	960	129	478	481
10	48	9	18	25	30	640	65	318	321
11	56	9	22	29	31	768	65	382	385
12	64	13	26	33	32	896	129	446	449
13	72	13	30	37	33	1024	129	510	513
14	80	17	34	41	34	1152	193	574	577
15	88	17	38	45	35	1280	193	638	641
16	104	21	46	53	36	1536	257	766	769
17	128	21	58	65	37	1920	257	958	961
18	80	9	38	41	38	1280	129	638	641
19	96	9	46	49	39	1536	129	766	769
1A	112	17	54	57	ЗA	1792	257	894	897
1B	128	17	62	65	3B	2048	257	1022	1025
1C	144	25	70	73	3C	2304	385	1150	1153
1D	160	25	78	81	3D	2560	385	1278	1281
1E	192	33	94	97	3E	3072	513	1534	1537
1F	240	33	118	121	3F	3840	513	1918	1921

 Table 39-28.
 I2C divider and hold values

runctional description

39.4.2 10-bit address

For 10-bit addressing, 0x11110 is used for the first 5 bits of the first address byte. Various combinations of read/write formats are possible within a transfer that includes 10-bit addressing.

39.4.2.1 Master-transmitter addresses a slave-receiver

The transfer direction is not changed. When a 10-bit address follows a START condition, each slave compares the first 7 bits of the first byte of the slave address (11110XX) with its own address and tests whether the eighth bit (R/\overline{W} direction bit) is 0. It is possible that more than one device finds a match and generates an acknowledge (A1). Each slave that finds a match compares the 8 bits of the second byte of the slave address with its own address, but only one slave finds a match and generates an acknowledge (A2). The matching slave remains addressed by the master until it receives a STOP condition (P) or a repeated START condition (Sr) followed by a different slave address.

 Table 39-29.
 Master-transmitter addresses slave-receiver with a 10-bit address

S	Slave address first 7 bits 11110 + AD10 + AD9	R/W 0	A1	Slave address second byte AD[8:1]	A2	Data	A		Data	A/A	Р	
---	--	----------	----	---	----	------	---	--	------	-----	---	--

After the master-transmitter has sent the first byte of the 10-bit address, the slave-receiver sees an I2C interrupt. User software must ensure that for this interrupt, the contents of the Data register are ignored and not treated as valid data.

39.4.2.2 Master-receiver addresses a slave-transmitter

The transfer direction is changed after the second R/\overline{W} bit. Up to and including acknowledge bit A2, the procedure is the same as that described for a master-transmitter addressing a slave-receiver. After the repeated START condition (Sr), a matching slave remembers that it was addressed before. This slave then checks whether the first seven bits of the first byte of the slave address following Sr are the same as they were after the START condition (S), and it tests whether the eighth (R/\overline{W}) bit is 1. If there is a match, the slave considers that it has been addressed as a transmitter and generates acknowledge A3. The slave-transmitter remains addressed until it receives a STOP condition (P) or a repeated START condition (Sr) followed by a different slave address.

After a repeated START condition (Sr), all other slave devices also compare the first seven bits of the first byte of the slave address with their own addresses and test the eighth (R/\overline{W}) bit. However, none of them are addressed because $R/\overline{W} = 1$ (for 10-bit devices), or the 11110XX slave address (for 7-bit devices) does not match.

Table 39-30.Master-receiver addresses a slave-transmitter with a 10-bit
address

S	Slave address first 7 bits 11110 + AD10 + AD9	R/W 0	A1	Slave address second byte AD[8:1]	A2	Sr	Slave address first 7 bits 11110 + AD10 + AD9	R/W 1	A3	Data	A		Data	A	Ρ	
---	---	----------	----	---	----	----	---	----------	----	------	---	--	------	---	---	--

After the master-receiver has sent the first byte of the 10-bit address, the slave-transmitter sees an I2C interrupt. User software must ensure that for this interrupt, the contents of the Data register are ignored and not treated as valid data.

39.4.3 Address matching

All received addresses can be requested in 7-bit or 10-bit address format.

- AD[7:1] in Address Register 1, which contains the I2C primary slave address, always participates in the address matching process. It provides a 7-bit address.
- If the ADEXT bit is set, AD[10:8] in Control Register 2 participates in the address matching process. It extends the I2C primary slave address to a 10-bit address.

Additional conditions that affect address matching include:

- If the GCAEN bit is set, general call participates the address matching process.
- If the ALERTEN bit is set, alert response participates the address matching process.
- If the SIICAEN bit is set, Address Register 2 participates in the address matching process.
- If the RMEN bit is set, when the Range Address register is programmed to a nonzero value, any address within the range of values of Address Register 1 (excluded) and the Range Address register (included) participates in the address matching process. The Range Address register must be programmed to a value greater than the value of Address Register 1.

When the I2C module responds to one of these addresses, it acts as a slave-receiver and the IAAS bit is set after the address cycle. Software must read the Data register after the first byte transfer to determine that the address is matched.

39.4.4 System management bus specification

SMBus provides a control bus for system and power management related tasks. A system can use SMBus to pass messages to and from devices instead of tripping individual control lines.

Removing the individual control lines reduces pin count. Accepting messages ensures future expandability. With the system management bus, a device can provide manufacturer information, tell the system what its model/part number is, save its state for a suspend event, report different types of errors, accept control parameters, and return its status.

39.4.4.1 Timeouts

The $T_{TIMEOUT,MIN}$ parameter allows a master or slave to conclude that a defective device is holding the clock low indefinitely or a master is intentionally trying to drive devices off the bus. The slave device must release the bus (stop driving the bus and let SCL and SDA float high) when it detects any single clock held low longer than $T_{TIMEOUT,MIN}$. Devices that have detected this condition must reset their communication and be able to receive a new START condition within the timeframe of $T_{TIMEOUT,MAX}$.

SMBus defines a clock low timeout, $T_{TIMEOUT}$, of 35 ms, specifies $T_{LOW:SEXT}$ as the cumulative clock low extend time for a slave device, and specifies $T_{LOW:MEXT}$ as the cumulative clock low extend time for a master device.

39.4.4.1.1 SCL low timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than a timeout value condition. Devices that have detected the timeout condition must reset the communication. When the I2C module is an active master, if it detects that SMBCLK low has exceeded the value of $T_{TIMEOUT,MIN}$, it must generate a stop condition within or after the current data byte in the transfer process. When the I2C module is a slave, if it detects the T_{TIMEOUT,MIN} condition, it resets its communication and is then able to receive a new START condition.

39.4.4.1.2 SCL high timeout

When the I2C module has determined that the SMBCLK and SMBDAT signals have been high for at least $T_{HIGH:MAX}$, it assumes that the bus is idle.

A HIGH timeout occurs after a START condition appears on the bus but before a STOP condition appears on the bus. Any master detecting this scenario can assume the bus is free when either of the following occurs:

- SHTF1 rises.
- The BUSY bit is high and SHTF1 is high.

When the SMBDAT signal is low and the SMBCLK signal is high for a period of time, another kind of timeout occurs. The time period must be defined in software. SHTF2 is used as the flag when the time limit is reached. This flag is also an interrupt resource, so it triggers IICIF.

39.4.4.1.3 CSMBCLK TIMEOUT MEXT and CSMBCLK TIMEOUT SEXT

The following figure illustrates the definition of the timeout intervals $T_{LOW:SEXT}$ and $T_{LOW:MEXT}$. When in master mode, the I2C module must not cumulatively extend its clock cycles for a period greater than $T_{LOW:MEXT}$ within a byte, where each byte is defined as START-to-ACK, ACK-to-ACK, or ACK-to-STOP. When CSMBCLK TIMEOUT MEXT occurs, SMBus MEXT rises and also triggers the SLTF.

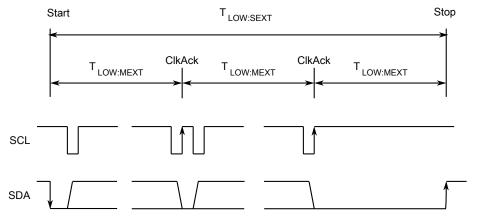


Figure 39-28. Timeout measurement intervals

A master is allowed to abort the transaction in progress to any slave that violates the $T_{LOW:SEXT}$ or $T_{TIMEOUT,MIN}$ specifications. To abort the transaction, the master issues a STOP condition at the conclusion of the byte transfer in progress. When a slave, the I2C module must not cumulatively extend its clock cycles for a period greater than $T_{LOW:SEXT}$ during any message from the initial START to the STOP. When CSMBCLK TIMEOUT SEXT occurs, SEXT rises and also triggers SLTF.

NOTE

CSMBCLK TIMEOUT SEXT and CSMBCLK TIMEOUT MEXT are optional functions that are implemented in the second step.

39.4.4.2 FAST ACK and NACK

To improve reliability and communication robustness, implementation of packet error checking (PEC) by SMBus devices is optional for SMBus devices but required for devices participating in and only during the address resolution protocol (ARP) process. The PEC is a CRC-8 error checking byte, calculated on all the message bytes. The PEC is appended to the message by the device that supplied the last data byte. If the PEC is present but not correct, a NACK is issued by the receiver. Otherwise an ACK is issued. To calculate the CRC-8 by software, this module can hold the SCL line low after receiving the eighth SCL (8th bit) if this byte is a data byte. So software can determine whether an ACK or NACK should be sent to the bus by setting or clearing the TXAK bit if the FACK (fast ACK/NACK enable) bit is enabled.

SMBus requires a device always to acknowledge its own address, as a mechanism to detect the presence of a removable device (such as a battery or docking station) on the bus. In addition to indicating a slave device busy condition, SMBus uses the NACK mechanism to indicate the reception of an invalid command or invalid data. Because such a condition may occur on the last byte of the transfer, SMBus devices are required to have the ability to generate the not acknowledge after the transfer of each byte and before the completion of the transaction. This requirement is important because SMBus does not provide any other resend signaling. This difference in the use of the NACK signaling has implications on the specific implementation of the SMBus port, especially in devices that handle critical system data such as the SMBus host and the SBS components.

NOTE

In the last byte of master receive slave transmit mode, the master must send a NACK to the bus, so FACK must be switched off before the last byte transmits.

39.4.5 Resets

The I2C module is disabled after a reset. The I2C module cannot cause a core reset.

39.4.6 Interrupts

The I2C module generates an interrupt when any of the events in the table found here occur, provided that the IICIE bit is set.

The interrupt is driven by the IICIF bit (of the I2C Status Register) and masked with the IICIE bit (of the I2C Control Register 1). The IICIF bit must be cleared (by software) by writing 1 to it in the interrupt routine. The SMBus timeouts interrupt is driven by SLTF and masked with the IICIE bit. The SLTF bit must be cleared by software by writing 1 to it in the interrupt routine. You can determine the interrupt type by reading the Status Register.

NOTE

In master receive mode, the FACK bit must be set to zero before the last byte transfer.

Interrupt source	Status	Flag	Local enable
Complete 1-byte transfer	TCF	licif	IICIE
Match of received calling address	IAAS	licif	IICIE
Arbitration lost	ARBL	licif	IICIE
I ² C bus stop detection	STOPF	licif	IICIE & SSIE
I ² C bus start detection	STARTF	licif	IICIE & SSIE
SMBus SCL low timeout	SLTF	licif	IICIE
SMBus SCL high SDA low timeout	SHTF2	licif	IICIE & SHTF2IE
Wakeup from stop or wait mode	IAAS	IICIF	IICIE & WUEN

Table 39-31. Interrupt summary

39.4.6.1 Byte transfer interrupt

The Transfer Complete Flag (TCF) bit is set at the falling edge of the ninth clock to indicate the completion of a byte and acknowledgement transfer. When FACK is enabled, TCF is then set at the falling edge of eighth clock to indicate the completion of byte.

39.4.6.2 Address detect interrupt

When the calling address matches the programmed slave address (I2C Address Register) or when the GCAEN bit is set and a general call is received, the IAAS bit in the Status Register is set. The CPU is interrupted, provided the IICIE bit is set. The CPU must check the SRW bit and set its Tx mode accordingly.

39.4.6.3 Stop Detect Interrupt

When the stop status is detected on the I^2C bus, the SSIE bit is set to 1. The CPU is interrupted, provided the IICIE and SSIE bits are both set to 1.

39.4.6.4 Exit from low-power/stop modes

The slave receive input detect circuit and address matching feature are still active on low power modes (wait and stop). An asynchronous input matching slave address or general call address brings the CPU out of low power/stop mode if the interrupt is not masked. Therefore, TCF and IAAS both can trigger this interrupt.

39.4.6.5 Arbitration lost interrupt

The I2C is a true multimaster bus that allows more than one master to be connected on it. If two or more masters try to control the bus at the same time, the relative priority of the contending masters is determined by a data arbitration procedure. The I2C module asserts the arbitration-lost interrupt when it loses the data arbitration process and the ARBL bit in the Status Register is set.

Arbitration is lost in the following circumstances:

- 1. SDA is sampled as low when the master drives high during an address or data transmit cycle.
- 2. SDA is sampled as low when the master drives high during the acknowledge bit of a data receive cycle.
- 3. A START cycle is attempted when the bus is busy.
- 4. A repeated START cycle is requested in slave mode.
- 5. A STOP condition is detected when the master did not request it.

The ARBL bit must be cleared (by software) by writing 1 to it.

39.4.6.6 Timeout interrupt in SMBus

When the IICIE bit is set, the I2C module asserts a timeout interrupt (outputs SLTF and SHTF2) upon detection of any of the mentioned timeout conditions, with one exception. The SCL high and SDA high TIMEOUT mechanism must not be used to influence the timeout interrupt output, because this timeout indicates an idle condition on the bus. SHTF1 rises when it matches the SCL high and SDA high TIMEOUT and falls automatically just to indicate the bus status. The SHTF2's timeout period is the same as that of SHTF1, which is short compared to that of SLTF, so another control bit, SHTF2IE, is added to enable or disable it.

39.4.7 Programmable input glitch filter

An I2C glitch filter has been added outside legacy I2C modules but within the I2C package. This filter can absorb glitches on the I2C clock and data lines for the I2C module.

The width of the glitch to absorb can be specified in terms of the number of (half) I2C module clock cycles. A single Programmable Input Glitch Filter control register is provided. Effectively, any down-up-down or up-down-up transition on the data line that occurs within the number of clock cycles programmed in this register is ignored by the I2C module. The programmer must specify the size of the glitch (in terms of I2C module clock cycles) for the filter to absorb and not pass.

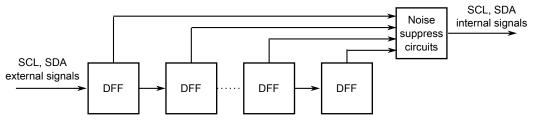


Figure 39-29. Programmable input glitch filter diagram

39.4.8 Address matching wake-up

When a primary, range, or general call address match occurs when the I2C module is in slave receive mode, the MCU wakes from a low power mode where no peripheral bus is running.

Data sent on the bus that is the same as a target device address might also wake the target MCU.

mualization/application information

After the address matching IAAS bit is set, an interrupt is sent at the end of address matching to wake the core. The IAAS bit must be cleared after the clock recovery.

NOTE

After the system recovers and is in Run mode, restart the I2C module if it is needed to transfer packets. To avoid I2C transfer problems resulting from the situation, firmware should prevent the MCU execution of a STOP instruction when the I2C module is in the middle of a transfer unless the Stop mode holdoff feature is used during this period (set FLT[SHEN] to 1).

39.4.9 DMA support

If the DMAEN bit is cleared and the IICIE bit is set, an interrupt condition generates an interrupt request.

If the DMAEN bit is set and the IICIE bit is set, an interrupt condition generates a DMA request instead. DMA requests are generated by the transfer complete flag (TCF).

If the DMAEN bit is set, only the TCF initiates a DMA request. All other events generate CPU interrupts.

NOTE

Before the last byte of master receive mode, TXAK must be set to send a NACK after the last byte's transfer. Therefore, the DMA must be disabled before the last byte's transfer.

NOTE

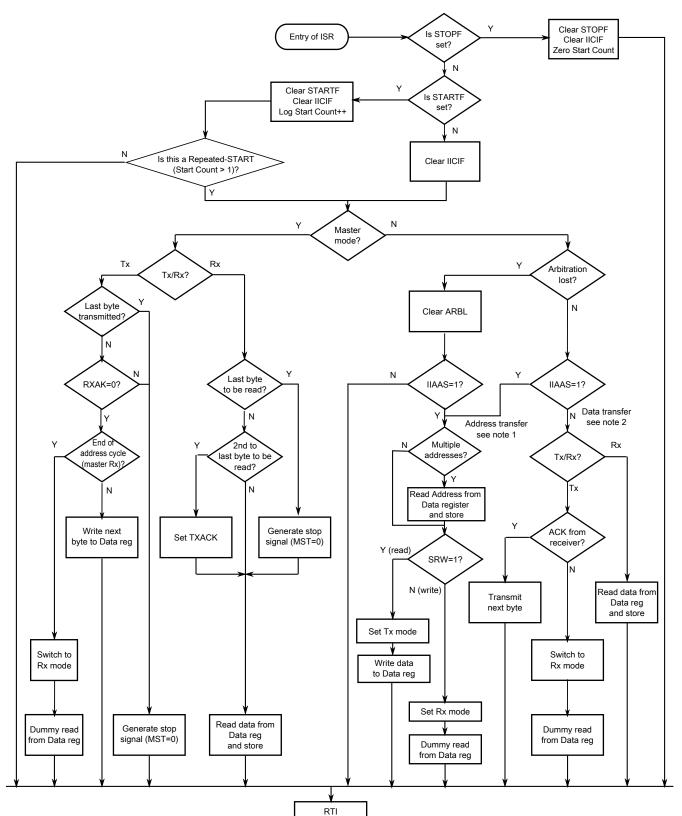
In 10-bit address mode transmission, the addresses to send occupy 2–3 bytes. During this transfer period, the DMA must be disabled because the C1 register is written to send a repeat start or to change the transfer direction.

39.5 Initialization/application information

Module Initialization (Slave)

- 1. Write: Control Register 2
 - to enable or disable general call
 - to select 10-bit or 7-bit addressing mode
- 2. Write: Address Register 1 to set the slave address

- 3. Write: Control Register 1 to enable the I2C module and interrupts
- 4. Initialize RAM variables (IICEN = 1 and IICIE = 1) for transmit data
- 5. Initialize RAM variables used to achieve the routine shown in the following figure

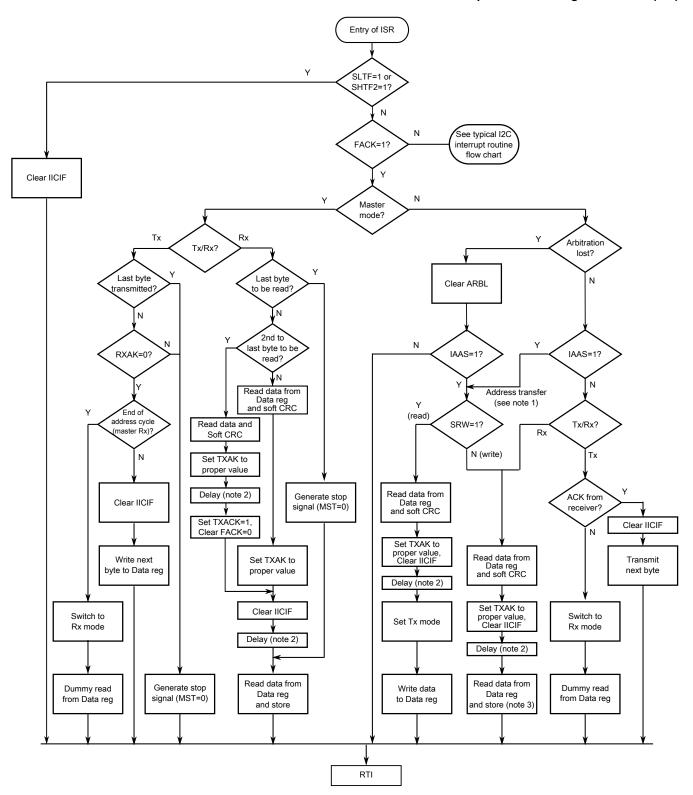

Module Initialization (Master)

- 1. Write: Frequency Divider register to set the I2C baud rate (see example in description of ICR)
- 2. Write: Control Register 1 to enable the I2C module and interrupts
- 3. Initialize RAM variables (IICEN = 1 and IICIE = 1) for transmit data
- 4. Initialize RAM variables used to achieve the routine shown in the following figure
- 5. Write: Control Register 1 to enable TX
- 6. Write: Control Register 1 to enable MST (master mode)
- 7. Write: Data register with the address of the target slave (the LSB of this byte determines whether the communication is master receive or transmit)

The routine shown in the following figure encompasses both master and slave I2C operations. For slave operation, an incoming I2C message that contains the proper address begins I2C communication. For master operation, communication must be initiated by writing the Data register. An example of an I2C driver which implements many of the steps described here is available in AN4342: Using the Inter-Integrated Circuit on ColdFire+ and Kinetis .

Notes:

1. If general call is enabled, check to determine if the received address is a general call address (0x00).


If the received address is a general call address, the general call must be handled by user software.

2. When 10-bit addressing addresses a slave, the slave sees an interrupt following the first byte of the extended address. Ensure that for this interrupt, the contents of the Data register are ignored and not treated as a valid data transfer.

Figure 39-30. Typical I2C interrupt routine

Chapter 39 Inter-Integrated Circuit (I2C)

Notes:

- 1. If general call or SIICAEN is enabled, check to determine if the received address is a general call address (0x00) or an SMBus device default address. In either case, they must be handled by user software.
- 2. In receive mode, one bit time delay may be needed before the first and second data reading, to wait for the possible longest time period (in worst case) of the 9th SCL cycle.
- 3. This read is a dummy read in order to reset the SMBus receiver state machine.

Figure 39-31. Typical I2C SMBus interrupt routine

mualization/application information

40.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The UART allows asynchronous serial communication with peripheral devices and CPUs.

40.1.1 Features

The UART includes the following features:

- Full-duplex operation
- Standard mark/space non-return-to-zero (NRZ) format
- 13-bit baud rate selection with /32 fractional divide, based on the module clock frequency
- Programmable 8-bit or 9-bit data format
- Programmable 1 or 2 stop bits in a data frame.
- Separately enabled transmitter and receiver
- Programmable transmitter output polarity
- Programmable receive input polarity
- Up to 16-bit break character transmission.

nuroduction

- 11-bit break character detection option
- Independent FIFO structure for transmit and receive
- Two receiver wakeup methods:
 - Idle line wakeup
 - Address mark wakeup
- Address match feature in the receiver to reduce address mark wakeup ISR overhead
- Ability to select MSB or LSB to be first bit on wire
- Hardware flow control support for request to send (RTS) and clear to send (CTS) signals
- Interrupt-driven operation with flags
 - Transmitter data buffer at or below watermark
 - Transmission complete
 - Receiver data buffer at or above watermark
 - Idle receiver input
 - Receiver data buffer overrun
 - Receiver data buffer underflow
 - Transmit data buffer overflow
 - Noise error
 - Framing error
 - Parity error
 - Active edge on receive pin
 - LIN break detect
- Receiver framing error detection
- Hardware parity generation and checking
- 1/16 bit-time noise detection
- DMA interface

40.1.2 Modes of operation

The UART functions in the same way in all the normal modes.

It has the following low power modes:

- Wait mode
- Stop mode

40.1.2.1 Run mode

This is the normal mode of operation.

40.1.2.2 Wait mode

UART operation in the Wait mode depends on the state of the C1[UARTSWAI] field.

- If C1[UARTSWAI] is cleared, and the CPU is in Wait mode, the UART operates normally.
- If C1[UARTSWAI] is set, and the CPU is in Wait mode, the UART clock generation ceases and the UART module enters a power conservation state.

Setting C1[UARTSWAI] does not affect the state of the C2[RE] or C2[TE].

If C1[UARTSWAI] is set, any ongoing transmission or reception stops at the Wait mode entry. The transmission or reception resumes when either an internal or external interrupt brings the CPU out of Wait mode. Bringing the CPU out of Wait mode by reset aborts any ongoing transmission or reception and resets the UART.

40.1.2.3 Stop mode

The UART is inactive during Stop mode for reduced power consumption. The STOP instruction does not affect the UART register states, but the UART module clock is disabled. The UART operation resumes after an external interrupt brings the CPU out of Stop mode. Bringing the CPU out of Stop mode by reset aborts any ongoing transmission or reception and resets the UART.

40.2 UART signal descriptions

The UART signals are shown in the following table.

Signal	Description	I/O
CTS	Clear to send	I
RTS	Request to send	0
RXD	Receive data	I
TXD	Transmit data	0

Table 40-1. UART signal descriptions

40.2.1 Detailed signal descriptions

The detailed signal descriptions of the UART are shown in the following table.

Signal	I/O		Description				
CTS	I	Clear to send. Indicates whether the UART can start transmitting data when flow control is enabled.					
		State meaning	State meaning Asserted—Data transmission can start.				
			Negated—Data transmission cannot start.				
		Timing	Assertion—When transmitting device's RTS asserts.				
			Negation—When transmitting device's RTS deasserts.				
RTS	0		nd. When driven by the receiver, indicates whether the UART is ready to When driven by the transmitter, can enable an external transceiver during transmission.				
		State meaning	Asserted—When driven by the receiver, ready to receive data. When driven by the transmitter, enable the external transmitter.				
			Negated—When driven by the receiver, not ready to receive data. When driven by the transmitter, disable the external transmitter.				
		Timing	Assertion—Can occur at any time; can assert asynchronously to the other input signals.				
			Negation—Can occur at any time; can deassert asynchronously to the other input signals.				
RXD	I		Receive data. Serial data input to receiver.				
		State meaningWhether RXD is interpreted as a 1 or 0 depends on the bit encoding method along with other configuration settings.					
		Timing	Sampled at a frequency determined by the module clock divided by the baud rate.				

Table 40-2. UART—Detailed signal descriptions

Table continues on the next page...

Signal	I/O	Description				
TXD	0	Transmit data. Serial data output from transmitter.				
		State meaning	tate meaning Whether TXD is interpreted as a 1 or 0 depends on the bit encoding method along with other configuration settings.			
		Timing	Driven at the beginning or within a bit time according to the bit encoding method along with other configuration settings. Otherwise, transmissions are independent of reception timing.			

Table 40-2. UART—Detailed signal descriptions (continued)

40.3 Memory map and registers

This section provides a detailed description of all memory and registers.

Accessing reserved addresses within the memory map results in a transfer error. None of the contents of the implemented addresses are modified as a result of that access.

Only byte accesses are supported.

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4006_A000	UART Baud Rate Registers: High (UART0_BDH)	8	R/W	00h	40.3.1/915
4006_A001	UART Baud Rate Registers: Low (UART0_BDL)	8	R/W	04h	40.3.2/916
4006_A002	UART Control Register 1 (UART0_C1)	8	R/W	00h	40.3.3/916
4006_A003	UART Control Register 2 (UART0_C2)	8	R/W	00h	40.3.4/918
4006_A004	UART Status Register 1 (UART0_S1)	8	R	C0h	40.3.5/920
4006_A005	UART Status Register 2 (UART0_S2)	8	R/W	00h	40.3.6/923
4006_A006	UART Control Register 3 (UART0_C3)	8	R/W	00h	40.3.7/924
4006_A007	UART Data Register (UART0_D)	8	R/W	00h	40.3.8/926
4006_A008	UART Match Address Registers 1 (UART0_MA1)	8	R/W	00h	40.3.9/927
4006_A009	UART Match Address Registers 2 (UART0_MA2)	8	R/W	00h	40.3.10/ 927
4006_A00A	UART Control Register 4 (UART0_C4)	8	R/W	00h	40.3.11/ 927
4006_A00B	UART Control Register 5 (UART0_C5)	8	R/W	00h	40.3.12/ 928
4006_A00C	UART Extended Data Register (UART0_ED) 8 R 00				40.3.13/ 929
4006_A00D	UART Modem Register (UART0_MODEM) 8 R/W 00h				40.3.14/ 930
4006_A010	UART FIFO Parameters (UART0_PFIFO)	8	R/W	See section	40.3.15/ 931

UART memory map

Table continues on the next page ...

wemory map and registers

UART memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4006_A011	UART FIFO Control Register (UART0_CFIFO)	8	R/W	00h	40.3.16/ 933
4006_A012	UART FIFO Status Register (UART0_SFIFO)	8	R/W	C0h	40.3.17/ 934
4006_A013	UART FIFO Transmit Watermark (UART0_TWFIFO)	8	R/W	00h	40.3.18/ 935
4006_A014	UART FIFO Transmit Count (UART0_TCFIFO)	8	R	00h	40.3.19/ 936
4006_A015	UART FIFO Receive Watermark (UART0_RWFIFO)	8	R/W	01h	40.3.20/ 936
4006_A016	UART FIFO Receive Count (UART0_RCFIFO)	8	R	00h	40.3.21/ 937
4006_B000	UART Baud Rate Registers: High (UART1_BDH)	8	R/W	00h	40.3.1/915
4006_B001	UART Baud Rate Registers: Low (UART1_BDL)	8	R/W	04h	40.3.2/916
4006_B002	UART Control Register 1 (UART1_C1)	8	R/W	00h	40.3.3/916
4006_B003	UART Control Register 2 (UART1_C2)	8	R/W	00h	40.3.4/918
4006_B004	UART Status Register 1 (UART1_S1)	8	R	C0h	40.3.5/920
4006_B005	UART Status Register 2 (UART1_S2)	8	R/W	00h	40.3.6/923
4006_B006	UART Control Register 3 (UART1_C3)	8	R/W	00h	40.3.7/924
4006_B007	UART Data Register (UART1_D)	8	R/W	00h	40.3.8/926
4006_B008	UART Match Address Registers 1 (UART1_MA1)	8	R/W	00h	40.3.9/927
4006_B009	UART Match Address Registers 2 (UART1_MA2)	8	R/W	00h	40.3.10/ 927
4006_B00A	UART Control Register 4 (UART1_C4)	8	R/W	00h	40.3.11/ 927
4006_B00B	UART Control Register 5 (UART1_C5)	8	R/W	00h	40.3.12/ 928
4006_B00C	UART Extended Data Register (UART1_ED)	8	R	00h	40.3.13/ 929
4006_B00D	UART Modem Register (UART1_MODEM)	8	R/W	00h	40.3.14/ 930
4006_B010	UART FIFO Parameters (UART1_PFIFO)	8	R/W	See section	40.3.15/ 931
4006_B011	UART FIFO Control Register (UART1_CFIFO)	8	R/W	00h	40.3.16/ 933
4006_B012	UART FIFO Status Register (UART1_SFIFO)	8	R/W	C0h	40.3.17/ 934
4006_B013	UART FIFO Transmit Watermark (UART1_TWFIFO)	8	R/W	00h	40.3.18/ 935
4006_B014	UART FIFO Transmit Count (UART1_TCFIFO)	8	R	00h	40.3.19/ 936
4006_B015	UART FIFO Receive Watermark (UART1_RWFIFO)	8	R/W	01h	40.3.20/ 936

Table continues on the next page ...

UART memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4006_B016	UART FIFO Receive Count (UART1_RCFIFO)	8	R	00h	40.3.21/ 937

40.3.1 UART Baud Rate Registers: High (UARTx_BDH)

This register, along with the BDL register, controls the prescale divisor for UART baud rate generation. To update the 13-bit baud rate setting (SBR[12:0]), first write to BDH to buffer the high half of the new value and then write to BDL. The working value in BDH does not change until BDL is written.

BDL is reset to a nonzero value, but after reset, the baud rate generator remains disabled until the first time the receiver or transmitter is enabled, that is, when C2[RE] or C2[TE] is set.

Address: Base address + 0h offset

Bit	7	6	5	4	3	2	1	0
Read Write	LBKDIE	RXEDGIE	SBNS			SBR		
Reset	0	0	0	0	0	0	0	0

UARTx_BDH field	d descriptions
-----------------	----------------

Field	Description				
7 LBKDIE	LIN Break Detect Interrupt Enable				
	Enables the LIN break detect flag, LBKDIF, to generate interrupt requests,				
	0 LBKDIF interrupt requests disabled.				
	¹ LBKDIF interrupt requests enabled.				
6 RXEDGIE	RxD Input Active Edge Interrupt Enable				
INEDGIE	Enables the receive input active edge, RXEDGIF, to generate interrupt requests.				
	0 Hardware interrupts from RXEDGIF disabled using polling.				
	1 RXEDGIF interrupt request enabled.				
5 SBNS	Stop Bit Number Select				
50105	SBNS selects the number of stop bits present in a data frame. This field valid for all 8, 9 and 10 bit data formats available.				
	0 Data frame consists of a single stop bit.				
	1 Data frame consists of two stop bits.				
4–0	UART Baud Rate Bits				
SBR	The baud rate for the UART is determined by the 13 SBR fields. See Baud rate generation for details.				
	Table continues on the next page				

Table continues on the next page

Field		Description
	NOTE:	 The baud rate generator is disabled until C2[TE] or C2[RE] is set for the first time after reset. The baud rate generator is disabled when SBR = 0. Writing to BDH has no effect without writing to BDL, because writing to BDH puts the data in a temporary location until BDL is written.

UARTx_BDH field descriptions (continued)

40.3.2 UART Baud Rate Registers: Low (UARTx_BDL)

This register, along with the BDH register, controls the prescale divisor for UART baud rate generation. To update the 13-bit baud rate setting, SBR[12:0], first write to BDH to buffer the high half of the new value and then write to BDL. The working value in BDH does not change until BDL is written. BDL is reset to a nonzero value, but after reset, the baud rate generator remains disabled until the first time the receiver or transmitter is enabled, that is, when C2[RE] or C2[TE] is set.

Bit	7	6	5	4	3	2	1	0
Read Write				SI	BR			
Reset	0	0	0	0	0	1	0	0

UARTx_BDL field descriptions

Field	Description			
SBR	 UART Baud Rate Bits The baud rate for the UART is determined by the 13 SBR fields. See Baud rate generation for details. NOTE: The baud rate generator is disabled until C2[TE] or C2[RE] is set for the first time after reset. The baud rate generator is disabled when SBR = 0. Writing to BDH has no effect without writing to BDL, because writing to BDH puts the data in a temporary location until BDL is written. 			

40.3.3 UART Control Register 1 (UARTx_C1)

This read/write register controls various optional features of the UART system.

Address: Base address + 2h offset

Bit	7	6	5	4	3	2	1	0
Read Write	LOOPS	UARTSWAI	RSRC	М	WAKE	ILT	PE	PT
Reset	0	0	0	0	0	0	0	0

UARTx_C1 field descriptions

Field	Description
7	Loop Mode Select
LOOPS	When LOOPS is set, the RxD pin is disconnected from the UART and the transmitter output is internally connected to the receiver input. The transmitter and the receiver must be enabled to use the loop function.
	0 Normal operation.
	1 Loop mode where transmitter output is internally connected to receiver input. The receiver input is determined by RSRC.
6	UART Stops in Wait Mode
UARTSWAI	0 UART clock continues to run in Wait mode.
	1 UART clock freezes while CPU is in Wait mode.
5	Receiver Source Select
RSRC	This field has no meaning or effect unless the LOOPS field is set. When LOOPS is set, the RSRC field determines the source for the receiver shift register input.
	 Selects internal loop back mode. The receiver input is internally connected to transmitter output. Single wire UART mode where the receiver input is connected to the transmit pin input signal.
4	9-bit or 8-bit Mode Select
M	0 Normal—start + 8 data bits (MSB/LSB first as determined by MSBF) + stop.
	1 Use—start + 9 data bits (MSB/LSB first as determined by MSBF) + stop.
3	Receiver Wakeup Method Select
WAKE	Determines which condition wakes the UART:
	 Address mark in the most significant bit position of a received data character, or An idle condition on the receive pin input signal.
	0 Idle line wakeup.
	1 Address mark wakeup.
2	Idle Line Type Select
ILT	Determines when the receiver starts counting logic 1s as idle character bits. The count begins either after a valid start bit or after the stop bit. If the count begins after the start bit, then a string of logic 1s preceding the stop bit can cause false recognition of an idle character. Beginning the count after the stop bit avoids false idle character recognition, but requires properly synchronized transmissions.
	 NOTE: In case the UART is programmed with ILT = 1, a logic of 1'b0 is automatically shifted after a received stop bit, therefore resetting the idle count. In case the UART is programmed for IDLE line wakeup (RWU = 1 and WAKE = 0), ILT has no effect on when the receiver starts counting logic 1s as idle character bits. In idle line wakeup, an idle character is recognized at anytime the receiver sees 10, 11, or 12 1s depending on the M, PE, and C4[M10] fields.
	0 Idle character bit count starts after start bit.
	1 Idle character bit count starts after stop bit.
1	Parity Enable
PE	Enables the parity function. When parity is enabled, parity function inserts a parity bit in the bit position immediately preceding the stop bit.

Table continues on the next page...

memory map and registers

UARTx_C1 field descriptions (continued)

Field	Description
	0 Parity function disabled.
	1 Parity function enabled.
0 PT	Parity Type Determines whether the UART generates and checks for even parity or odd parity. With even parity, an even number of 1s clears the parity bit and an odd number of 1s sets the parity bit. With odd parity, an odd number of 1s clears the parity bit and an even number of 1s sets the parity bit.
	0 Even parity.1 Odd parity.

40.3.4 UART Control Register 2 (UARTx_C2)

This register can be read or written at any time.

Address: Base address + 3h offset

Bit	7	6	5	4	3	2	1	0
Read Write	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
Reset	0	0	0	0	0	0	0	0

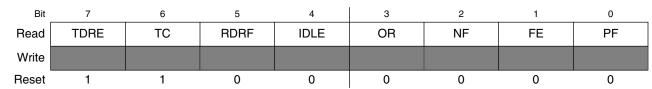
UARTx_C2 field descriptions

Field	Description
7 TIE	Transmitter Interrupt or DMA Transfer Enable.
	Enables S1[TDRE] to generate interrupt requests or DMA transfer requests, based on the state of C5[TDMAS].
	NOTE: If C2[TIE] and C5[TDMAS] are both set, then TCIE must be cleared, and D[D] must not be written unless servicing a DMA request.
	0 TDRE interrupt and DMA transfer requests disabled.
	1 TDRE interrupt or DMA transfer requests enabled.
6 TCIE	Transmission Complete Interrupt Enable
	Enables the transmission complete flag, S1[TC], to generate interrupt requests .
	0 TC interrupt requests disabled.
	¹ TC interrupt requests enabled.
5	Receiver Full Interrupt or DMA Transfer Enable
RIE	Enables S1[RDRF] to generate interrupt requests or DMA transfer requests, based on the state of C5[RDMAS].
	0 RDRF interrupt and DMA transfer requests disabled.
	1 RDRF interrupt or DMA transfer requests enabled.
4	Idle Line Interrupt Enable
ILIE	

Table continues on the next page ...

UARTx_C2 field descriptions (continued)

0 IDLE interrupt requests disabled. 1 IDLE interrupt requests enabled. 3 Transmitter Enable TE Enables the UART transmitter. TE can be used to queue an idle preamble by clearing and then setting TE 0 Transmitter off. 1 Transmitter on. 2 Receiver Enable Enables the UART receiver. 0 0 Receiver off. 1 Receiver off. 1 Receiver Wakeup Control RWU Receiver output the term off. 1 Receiver output the use of the UART receiver in a standby state. RWU automatically clears when an RWU event occurs, that is, an IDLE event when C1[WAKE] is clear or an address match when C1[WAKE] is set. NOTE: RWU must be set only with C1[WAKE] = 0 (wakeup on idle) if the channel is currently not idle. This can be determined by S2[RAF]. If the flag is set to wake up an IDLE event and the channel is already idle, it is possible that the UART will discard data. This is because the data must be received or a LIN break detected after an IDLE is detected before IDLE is allowed to reasserted. 0 Normal operation. 1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes the receiver by automatically clearing RWU. 0 Send Break 1 Toggling	Field	Description
1 IDLE interrupt requests enabled. 3 Transmitter Enable Enables the UART transmitter. TE can be used to queue an idle preamble by clearing and then setting TE 0 Transmitter off. 1 Transmitter on. 2 Receiver Enable Enables the UART receiver. 0 0 Receiver off. 1 Receiver on. 1 Receiver on. 1 Receiver on. 1 Receiver Wakeup Control This field can be set to place the UART receiver in a standby state. RWU automatically clears when an RWU event occurs, that is, an IDLE event when C1[WAKE] is clear or an address match when C1[WAKE] is set. NOTE: RWU must be set only with C1[WAKE] = 0 (wakeup on idle) if the channel is currently not idle. This can be determined by S2[RAF]. If the flag is set to wake up an IDLE event and the channel is already idle, it is possible that the UART will discard data. This is because the data must be received or a LIN break detected after an IDLE is detected before IDLE is allowed to reasserted. 0 Normal operation. 1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes the receiver by automatically clearing RWU. 0 Send Break Toggling SBK sends one break character from the following: See Transmitting break characters for t		Enables the idle line flag, S1[IDLE], to generate interrupt requests
3 Transmitter Enable TE Enables the UART transmitter. TE can be used to queue an idle preamble by clearing and then setting TE 0 Transmitter off. 1 Transmitter on. 2 Receiver Enable Enables the UART receiver. 0 0 Receiver off. 1 Receiver on. 1 Receiver Wakeup Control RWU This field can be set to place the UART receiver in a standby state. RWU automatically clears when an RWU event occurs, that is, an IDLE event when C1[WAKE] is clear or an address match when C1[WAKE] is set. NOTE: RWU must be set only with C1[WAKE] = 0 (wakeup on idle) if the channel is currently not idle. This can be determined by S2[RAF]. If the flag is set to wake up an IDLE event and the channel is already idle, it is possible that the UART will discard data. This is because the data must be receiver or a LIN break detected after an IDLE is detected before IDLE is allowed to reasserted. 0 Normal operation. 1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes the receiver by automatically clearing RWU. 0 Send Break Toggling SBK sends one break character from the following: See Transmitting break characters for the number of logic 0s for the different configurations. Toggling implies clearing the SBK field before the break characters (10, 11, or 12 bits, or 13 or 14 bits). Ensure that		0 IDLE interrupt requests disabled.
TE Enables the UART transmitter. TE can be used to queue an idle preamble by clearing and then setting TE 0 Transmitter off. 1 Transmitter on. 2 Receiver Enable Enables the UART receiver. 0 0 Receiver off. 1 Receiver on. 1 Receiver Wakeup Control RWU This field can be set to place the UART receiver in a standby state. RWU automatically clears when an RWU event occurs, that is, an IDLE event when C1[WAKE] is clear or an address match when C1[WAKE] is set. NOTE: RWU must be set only with C1[WAKE] = 0 (wakeup on idle) if the channel is currently not idle. This can be determined by S2[RAF]. If the flag is set to wake up an IDLE event and the channel is already idle, it is possible that the UART will discard data. This is because the data must be received or a LIN break detected after an IDLE is detected before IDLE is allowed to reasserted. 0 Normal operation. 1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes the receiver by automatically clearing RWU. 0 Send Break Toggling SBK sends one break character from the following: See Transmitting break characters for the number of logic 0s for the different configurations. Toggling implies clearing the SBK field before the break character for the strinished transmitting. As long as SBK is set, the transmiter continues to send complete break characters (10, 11		1 IDLE interrupt requests enabled.
Enables the UART transmitter. TE can be used to queue an idle preamble by clearing and then setting TE 0 Transmitter off. 1 Transmitter on. 2 Receiver Enable Enables the UART receiver. 0 0 Receiver off. 1 Receiver off. 1 Receiver Wakeup Control RWU Receiver Wakeup Control This field can be set to place the UART receiver in a standby state. RWU automatically clears when an RWU event occurs, that is, an IDLE event when C1[WAKE] is clear or an address match when C1[WAKE] is set. NOTE: RWU must be set only with C1[WAKE] = 0 (wakeup on idle) if the channel is currently not idle. This can be determined by S2[RAF]. If the flag is set to wake up an IDLE event and the channel is already idle, it is possible that the UART will discard data. This is because the data must be received or a LIN break detected after an IDLE is detected before IDLE is allowed to reasserted. 0 Normal operation. 1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes the receiver by automatically clearing RWU. 0 Send Break Toggling SBK sends one break character from the following: See Transmitting break characters for the number of logic 0s for the different configurations. Toggling implies clearing the SBK field before the break characters (10, 11, or 12 bits, or 13 or 14 bits). Ensure that C2[TE] is asserted atleast 1		Transmitter Enable
1 Transmitter on. 2 Receiver Enable Enables the UART receiver. 0 0 Receiver off. 1 Receiver on. 1 Receiver Wakeup Control RWU This field can be set to place the UART receiver in a standby state. RWU automatically clears when an RWU event occurs, that is, an IDLE event when C1[WAKE] is clear or an address match when C1[WAKE] is set. NOTE: RWU must be set only with C1[WAKE] = 0 (wakeup on idle) if the channel is currently not idle. This can be determined by S2[RAF]. If the flag is set to wake up an IDLE event and the channel is already idle, it is possible that the UART will discard data. This is because the data must be received or a LIN break detected after an IDLE is detected before IDLE is allowed to reasserted. 0 Normal operation. 1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes the receiver by automatically clearing RWU. 0 Send Break Toggling SBK sends one break character from the following: See Transmitting break characters for the number of logic 0s for the different configurations. Toggling implies clearing the SBK field before the break characters (10, 11, or 12 bits, or 13 or 14 bits). Ensure that C2[TE] is asserted atleast 1 clock before assertion of this bit.	IE	Enables the UART transmitter. TE can be used to queue an idle preamble by clearing and then setting TE.
2 Receiver Enable RE Receiver Enable Enables the UART receiver. 0 0 Receiver off. 1 Receiver on. 1 Receiver Wakeup Control RWU This field can be set to place the UART receiver in a standby state. RWU automatically clears when an RWU event occurs, that is, an IDLE event when C1[WAKE] is clear or an address match when C1[WAKE] is set. NOTE: RWU must be set only with C1[WAKE] = 0 (wakeup on idle) if the channel is currently not idle. This can be determined by S2[RAF]. If the flag is set to wake up an IDLE event and the channel is already idle, it is possible that the UART will discard data. This is because the data must be received or a LIN break detected after an IDLE is detected before IDLE is allowed to reasserted. 0 Normal operation. 1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes the receiver by automatically clearing RWU. 0 Send Break Toggling SBK sends one break character from the following: See Transmitting break characters for the number of logic 0s for the different configurations. Toggling implies clearing the SBK field before the break characters (10, 11, or 12 bits, or 13 or 14 bits). Ensure that C2[TE] is asserted atleast 1 clock before assertion of this bit.		0 Transmitter off.
RE Enables the UART receiver. 0 Receiver off. 1 Receiver on. 1 Receiver Wakeup Control RWU This field can be set to place the UART receiver in a standby state. RWU automatically clears when an RWU event occurs, that is, an IDLE event when C1[WAKE] is clear or an address match when C1[WAKE] is set. NOTE: RWU must be set only with C1[WAKE] = 0 (wakeup on idle) if the channel is currently not idle. This can be determined by S2[RAF]. If the flag is set to wake up an IDLE event and the channel is already idle, it is possible that the UART will discard data. This is because the data must be received or a LIN break detected after an IDLE is detected before IDLE is allowed to reasserted. 0 Normal operation. 1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes the receiver by automatically clearing RWU. 0 Send Break Toggling SBK sends one break character from the following: See Transmitting break characters for the number of logic 0s for the different configurations. Toggling implies clearing the SBK field before the break characters (10, 11, or 12 bits, or 13 or 14 bits). Ensure that C2[TE] is asserted atleast 1 clock before assertion of this bit.		1 Transmitter on.
0 Receiver off. 1 Receiver off. 1 Receiver on. 1 Receiver Wakeup Control RWU This field can be set to place the UART receiver in a standby state. RWU automatically clears when an RWU event occurs, that is, an IDLE event when C1[WAKE] is clear or an address match when C1[WAKE] is set. NOTE: RWU must be set only with C1[WAKE] = 0 (wakeup on idle) if the channel is currently not idle. This can be determined by S2[RAF]. If the flag is set to wake up an IDLE event and the channel is already idle, it is possible that the UART will discard data. This is because the data must be received or a LIN break detected after an IDLE is detected before IDLE is allowed to reasserted. 0 Normal operation. 1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes the receiver by automatically clearing RWU. 0 Send Break Toggling SBK sends one break character from the following: See Transmitting break characters for the number of logic 0s for the different configurations. Toggling implies clearing the SBK field before the break characters has finished transmitting. As long as SBK is set, the transmitter continues to send complete break characters (10, 11, or 12 bits, or 13 or 14 bits). Ensure that C2[TE] is asserted atleast 1 clock before assertion of this bit.		Receiver Enable
1 Receiver on. 1 Receiver Wakeup Control RWU This field can be set to place the UART receiver in a standby state. RWU automatically clears when an RWU event occurs, that is, an IDLE event when C1[WAKE] is clear or an address match when C1[WAKE] is set. NOTE: RWU must be set only with C1[WAKE] = 0 (wakeup on idle) if the channel is currently not idle. This can be determined by S2[RAF]. If the flag is set to wake up an IDLE event and the channel is already idle, it is possible that the UART will discard data. This is because the data must be received or a LIN break detected after an IDLE is detected before IDLE is allowed to reasserted. 0 Normal operation. 1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes the receiver by automatically clearing RWU. 0 Send Break Toggling SBK sends one break character from the following: See Transmitting break characters for the number of logic 0s for the different configurations. Toggling implies clearing the SBK field before the break character has finished transmitting. As long as SBK is set, the transmitter continues to send complete break character (10, 11, or 12 bits, or 13 or 14 bits). Ensure that C2[TE] is asserted atleast 1 clock before assertion of this bit.	nc .	Enables the UART receiver.
1 Receiver Wakeup Control RWU This field can be set to place the UART receiver in a standby state. RWU automatically clears when an RWU event occurs, that is, an IDLE event when C1[WAKE] is clear or an address match when C1[WAKE] is set. NOTE: RWU must be set only with C1[WAKE] = 0 (wakeup on idle) if the channel is currently not idle. This can be determined by S2[RAF]. If the flag is set to wake up an IDLE event and the channel is already idle, it is possible that the UART will discard data. This is because the data must be received or a LIN break detected after an IDLE is detected before IDLE is allowed to reasserted. 0 Normal operation. 1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes the receiver by automatically clearing RWU. 0 Send Break Toggling SBK sends one break character from the following: See Transmitting break characters for the number of logic 0s for the different configurations. Toggling implies clearing the SBK field before the break character has finished transmitting. As long as SBK is set, the transmitter continues to send complete break characters (10, 11, or 12 bits, or 13 or 14 bits). Ensure that C2[TE] is asserted atleast 1 clock before assertion of this bit.		
RWU This field can be set to place the UART receiver in a standby state. RWU automatically clears when an RWU event occurs, that is, an IDLE event when C1[WAKE] is clear or an address match when C1[WAKE] is set. NOTE: RWU must be set only with C1[WAKE] = 0 (wakeup on idle) if the channel is currently not idle. This can be determined by S2[RAF]. If the flag is set to wake up an IDLE event and the channel is already idle, it is possible that the UART will discard data. This is because the data must be received or a LIN break detected after an IDLE is detected before IDLE is allowed to reasserted. 0 Normal operation. 1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes the receiver by automatically clearing RWU. 0 Send Break Toggling SBK sends one break character from the following: See Transmitting break characters for the number of logic 0s for the different configurations. Toggling implies clearing the SBK field before the break characters (10, 11, or 12 bits, or 13 or 14 bits). Ensure that C2[TE] is asserted atleast 1 clock before assertion of this bit.		
 This field can be set to place the UART receiver in a standby state. RWU automatically clears when an RWU event occurs, that is, an IDLE event when C1[WAKE] is clear or an address match when C1[WAKE] is set. NOTE: RWU must be set only with C1[WAKE] = 0 (wakeup on idle) if the channel is currently not idle. This can be determined by S2[RAF]. If the flag is set to wake up an IDLE event and the channel is already idle, it is possible that the UART will discard data. This is because the data must be received or a LIN break detected after an IDLE is detected before IDLE is allowed to reasserted. 0 Normal operation. 1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes the receiver by automatically clearing RWU. 0 Send Break Toggling SBK sends one break character from the following: See Transmitting break characters for the number of logic 0s for the different configurations. Toggling implies clearing the SBK field before the break characters (10, 11, or 12 bits, or 13 or 14 bits). Ensure that C2[TE] is asserted atleast 1 clock before assertion of this bit. 		Receiver Wakeup Control
This can be determined by S2[RAF]. If the flag is set to wake up an IDLE event and the channel is already idle, it is possible that the UART will discard data. This is because the data must be received or a LIN break detected after an IDLE is detected before IDLE is allowed to reasserted. 0 Normal operation. 1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes the receiver by automatically clearing RWU. 0 Send Break Toggling SBK sends one break character from the following: See Transmitting break characters for the number of logic 0s for the different configurations. Toggling implies clearing the SBK field before the break character has finished transmitting. As long as SBK is set, the transmitter continues to send complete break characters (10, 11, or 12 bits, or 13 or 14 bits). Ensure that C2[TE] is asserted atleast 1 clock before assertion of this bit.		RWU event occurs, that is, an IDLE event when C1[WAKE] is clear or an address match when C1[WAKE]
1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes the receiver by automatically clearing RWU. 0 Send Break SBK Toggling SBK sends one break character from the following: See Transmitting break characters for the number of logic 0s for the different configurations. Toggling implies clearing the SBK field before the break character has finished transmitting. As long as SBK is set, the transmitter continues to send complete break characters (10, 11, or 12 bits, or 13 or 14 bits). Ensure that C2[TE] is asserted atleast 1 clock before assertion of this bit.		This can be determined by S2[RAF]. If the flag is set to wake up an IDLE event and the channel is already idle, it is possible that the UART will discard data. This is because the data must be
1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes the receiver by automatically clearing RWU. 0 Send Break SBK Toggling SBK sends one break character from the following: See Transmitting break characters for the number of logic 0s for the different configurations. Toggling implies clearing the SBK field before the break character has finished transmitting. As long as SBK is set, the transmitter continues to send complete break characters (10, 11, or 12 bits, or 13 or 14 bits). Ensure that C2[TE] is asserted atleast 1 clock before assertion of this bit.		0 Normal operation.
SBK Toggling SBK sends one break character from the following: See Transmitting break characters for the number of logic 0s for the different configurations. Toggling implies clearing the SBK field before the break character has finished transmitting. As long as SBK is set, the transmitter continues to send complete break characters (10, 11, or 12 bits, or 13 or 14 bits). Ensure that C2[TE] is asserted atleast 1 clock before assertion of this bit.		1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware
Toggling SBK sends one break character from the following: See Transmitting break characters for the number of logic 0s for the different configurations. Toggling implies clearing the SBK field before the break character has finished transmitting. As long as SBK is set, the transmitter continues to send complete break characters (10, 11, or 12 bits, or 13 or 14 bits). Ensure that C2[TE] is asserted atleast 1 clock before assertion of this bit.	-	Send Break
13 or 14 logic 0s if S2[BRK13] is set.	SBK	number of logic 0s for the different configurations. Toggling implies clearing the SBK field before the break character has finished transmitting. As long as SBK is set, the transmitter continues to send complete break characters (10, 11, or 12 bits, or 13 or 14 bits). Ensure that C2[TE] is asserted atleast 1 clock before assertion of this bit. • 10, 11, or 12 logic 0s if S2[BRK13] is cleared
0 Normal transmitter operation.		0 Normal transmitter operation.
1 Queue break characters to be sent.		



40.3.5 UART Status Register 1 (UARTx_S1)

The S1 register provides inputs to the MCU for generation of UART interrupts or DMA requests. This register can also be polled by the MCU to check the status of its fields. To clear a flag, the status register should be read followed by a read or write to D register, depending on the interrupt flag type. Other instructions can be executed between the two steps as long the handling of I/O is not compromised, but the order of operations is important for flag clearing. When a flag is configured to trigger a DMA request, assertion of the associated DMA done signal from the DMA controller clears the flag.

NOTE

- If the condition that results in the assertion of the flag, interrupt, or DMA request is not resolved prior to clearing the flag, the flag, and interrupt/DMA request, reasserts. For example, if the DMA or interrupt service routine fails to write sufficient data to the transmit buffer to raise it above the watermark level, the flag reasserts and generates another interrupt or DMA request.
- Reading an empty data register to clear one of the flags of the S1 register causes the FIFO pointers to become misaligned. A receive FIFO flush reinitializes the pointers. A better way to prevent this situation is to always leave one byte in FIFO and this byte will be read eventually in clearing the flag bit.

0	0	0

Field	Description
7 TDRE	Transmit Data Register Empty Flag
	TDRE will set when the number of datawords in the transmit buffer (D and C3[T8])is equal to or less than the number indicated by TWFIFO[TXWATER]. A character that is in the process of being transmitted is not included in the count. To clear TDRE, read S1 when TDRE is set and then write to the UART data register (D). For more efficient interrupt servicing, all data except the final value to be written to the buffer must be written to D/C3[T8]. Then S1 can be read before writing the final data value, resulting in the clearing of the TRDE flag. This is more efficient because the TDRE reasserts until the watermark has been exceeded. So, attempting to clear the TDRE with every write will be ineffective until sufficient data has been written.

UARTx_S1 field descriptions

Table continues on the next page ...

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

Address: Base address + 4h offset

UARTx_S1 field descriptions (continued)

Field	Description
	0 The amount of data in the transmit buffer is greater than the value indicated by TWFIFO[TXWATER].
	1 The amount of data in the transmit buffer is less than or equal to the value indicated by TWFIFO[TXWATER] at some point in time since the flag has been cleared.
6 TC	Transmit Complete Flag
	 TC is set when the transmit buffer is empty and no data, preamble, or break character is being transmitted. When TC is set, the transmit data output signal becomes idle (logic 1). TC is cleared by reading S1 with TC set and then doing one of the following: Writing to D to transmit new data. Queuing a preamble by clearing and then setting C2[TE]. Queuing a break character by writing 1 to SBK in C2.
	0 Transmitter active (sending data, a preamble, or a break).1 Transmitter idle (transmission activity complete).
5	Receive Data Register Full Flag
RDRF	RDRF is set when the number of datawords in the receive buffer is equal to or more than the number indicated by RWFIFO[RXWATER]. A dataword that is in the process of being received is not included in the count. To clear RDRF, read S1 when RDRF is set and then read D. For more efficient interrupt and DMA operation, read all data except the final value from the buffer, using D/C3[T8]/ED. Then read S1 and the final data value, resulting in the clearing of the RDRF flag. Even if RDRF is set, data will continue to be received until an overrun condition occurs.RDRF is prevented from setting while S2[LBKDE] is set. Additionally, when S2[LBKDE] is set, the received datawords are stored in the receive buffer but over-write each other.
	 0 The number of datawords in the receive buffer is less than the number indicated by RXWATER. 1 The number of datawords in the receive buffer is equal to or greater than the number indicated by RXWATER at some point in time since this flag was last cleared.
4 IDLE	Idle Line Flag After the IDLE flag is cleared, a frame must be received (although not necessarily stored in the data buffer, for example if C2[RWU] is set), or a LIN break character must set the S2[LBKDIF] flag before an idle condition can set the IDLE flag. To clear IDLE, read UART status S1 with IDLE set and then read D. IDLE is set when either of the following appear on the receiver input: • 10 consecutive logic 1s if C1[M] = 0
	 11 consecutive logic 1s if C1[M] = 1 and C4[M10] = 0 12 consecutive logic 1s if C1[M] = 1, C4[M10] = 1, and C1[PE] = 1
	NOTE: When RWU is set and WAKE is cleared, an idle line condition sets the IDLE flag if RWUID is set, else the IDLE flag does not become set.
	 Receiver input is either active now or has never become active since the IDLE flag was last cleared. Receiver input has become idle or the flag has not been cleared since it last asserted.
3 OR	Receiver Overrun Flag
	OR is set when software fails to prevent the receive data register from overflowing with data. The OR bit is set immediately after the stop bit has been completely received for the dataword that overflows the buffer and all the other error flags (FE, NF, and PF) are prevented from setting. The data in the shift register is lost, but the data already in the UART data registers is not affected. If the OR flag is set, no data is stored in the data buffer even if sufficient room exists. Additionally, while the OR flag is set, the RDRF and IDLE flags are blocked from asserting, that is, transition from an inactive to an active state. To clear OR, read S1 when OR is set and then read D. See functional description for more details regarding the operation of the OR bit.If LBKDE is enabled and a LIN Break is detected, the OR field asserts if S2[LBKDIF] is not cleared before the next data character is received.

Table continues on the next page...

Field	Description
	0 No overrun has occurred since the last time the flag was cleared.
	1 Overrun has occurred or the overrun flag has not been cleared since the last overrun occured.
2 NF	Noise Flag
	NF is set when the UART detects noise on the receiver input. NF does not become set in the case of an overrun or while the LIN break detect feature is enabled (S2[LBKDE] = 1). When NF is set, it indicates only that a dataword has been received with noise since the last time it was cleared. There is no guarantee that the first dataword read from the receive buffer has noise or that there is only one dataword in the buffer that was received with noise unless the receive buffer has a depth of one. To clear NF, read S1 and then read D.
	0 No noise detected since the last time this flag was cleared. If the receive buffer has a depth greater than 1 then there may be data in the receiver buffer that was received with noise.
	1 At least one dataword was received with noise detected since the last time the flag was cleared.
1 FE	Framing Error Flag
	FE is set when a logic 0 is accepted as the stop bit. When BDH[SBNS] is set, then FE will set when a logic 0 is accepted for either of the two stop bits. FE does not set in the case of an overrun or while the LIN break detect feature is enabled (S2[LBKDE] = 1). FE inhibits further data reception until it is cleared. To clear FE, read S1 with FE set and then read D. The last data in the receive buffer represents the data that was received with the frame error enabled.
	0 No framing error detected.
	1 Framing error.
0 PF	Parity Error Flag
	PF is set when PE is set and the parity of the received data does not match its parity bit. The PF is not set in the case of an overrun condition. When PF is set, it indicates only that a dataword was received with parity error since the last time it was cleared. There is no guarantee that the first dataword read from the receive buffer has a parity error or that there is only one dataword in the buffer that was received with a parity error, unless the receive buffer has a depth of one. To clear PF, read S1 and then read D., S2[LBKDE] is disabled,Within the receive buffer structure the received dataword is tagged if it is received with a parity error. This information is available by reading the ED register prior to reading the D register.
	 No parity error detected since the last time this flag was cleared. If the receive buffer has a depth greater than 1, then there may be data in the receive buffer what was received with a parity error. At least one dataword was received with a parity error since the last time this flag was cleared.

UARTx_S1 field descriptions (continued)

40.3.6 UART Status Register 2 (UARTx_S2)

The S2 register provides inputs to the MCU for generation of UART interrupts or DMA requests. Also, this register can be polled by the MCU to check the status of these bits. This register can be read or written at any time, with the exception of the MSBF and RXINV bits, which should be changed by the user only between transmit and receive packets.

Address: Base address + 5h offset

Bit	7	6	5	4	3	2	1	0
Read	LBKDIF	RXEDGIF	MSBF	RXINV	RWUID	BRK13	LBKDE	RAF
Write	w1c	w1c	MODI		TWOID	DIACIS	LDRDL	
Reset	0	0	0	0	0	0	0	0

Field	Description
7 LBKDIF	LIN Break Detect Interrupt Flag
	LBKDIF is set when LBKDE is set and a LIN break character is detected on the receiver input. The LIN break characters are 11 consecutive logic 0s if $C1[M] = 0$ or 12 consecutive logic 0s if $C1[M] = 1$. LBKDIF is set after receiving the last LIN break character. LBKDIF is cleared by writing a 1 to it.
	0 No LIN break character detected.
	1 LIN break character detected.
6 RXEDGIF	RxD Pin Active Edge Interrupt Flag
	RXEDGIF is set when an active edge occurs on the RxD pin. The active edge is falling if RXINV = 0, and rising if RXINV=1. RXEDGIF is cleared by writing a 1 to it. See for additional details. RXEDGIF description
	NOTE: The active edge is detected only in two wire mode and on receiving data coming from the RxD pin.
	0 No active edge on the receive pin has occurred.
	1 An active edge on the receive pin has occurred.
5 MSBF	Most Significant Bit First
	Setting this field reverses the order of the bits that are transmitted and received on the wire. This field does not affect the polarity of the bits, the location of the parity bit, or the location of the start or stop bits.
	0 LSB (bit0) is the first bit that is transmitted following the start bit. Further, the first bit received after the start bit is identified as bit0.
	1 MSB (bit8, bit7 or bit6) is the first bit that is transmitted following the start bit, depending on the setting of C1[M] and C1[PE]. Further, the first bit received after the start bit is identified as bit8, bit7, or bit6, depending on the setting of C1[M] and C1[PE].
4 RXINV	Receive Data Inversion
	Setting this field reverses the polarity of the received data input. In NRZ format, a one is represented by a mark and a zero is represented by a space for normal polarity, and the opposite for inverted polarity.
	NOTE: Setting RXINV inverts the RxD input for data bits, start and stop bits, break, and idle.

UARTx_S2 field descriptions

Table continues on the next page...

wemory map and registers

UARTx_S2 field descriptions	(continued)
-----------------------------	-------------

it wakes the
it wakes the
t wakes the
t wakes the
its long. See for ng error is not
i], and S1[PF] are
[M] = 1.
tart bit search.

40.3.7 UART Control Register 3 (UARTx_C3)

Writing R8 does not have any effect. TXDIR and TXINV can be changed only between transmit and receive packets.

Address: Base	Address: Base address + 6h offset							
Bit	7	6	5	4	3	2	1	0
Read	R8	Т8	TXDIR	TXINV	ORIE	NEIE	FEIE	PEIE
Write		10	IXDIN		OTTLE			
Reset	0	0	0	0	0	0	0	0

UARTx_C3 field descriptions

Field	Description
7	Received Bit 8
R8	

Table continues on the next page ...

UARTx_C3 field descriptions (continued)

Field	Description
	R8 is the ninth data bit received when the UART is configured for 9-bit data format, that is, if C1[M] = 1 or C4[M10] = 1. The R8 value corresponds to the current data value in the UARTx_D register. To read the 9th bit, read the value of UARTx_C3[R8], then read the UARTx_D register.
6	Transmit Bit 8
T8	T8 is the ninth data bit transmitted when the UART is configured for 9-bit data format, that is, if $C1[M] = 1$ or $C4[M10] = 1$.
	NOTE: If the value of T8 is the same as in the previous transmission, T8 does not have to be rewritten. The same value is transmitted until T8 is rewritten.
	To correctly transmit the 9th bit, write UARTx_C3[T8] to the desired value, then write the UARTx_D register with the remaining data.
5	Transmitter Pin Data Direction in Single-Wire mode
TXDIR	Determines whether the TXD pin is used as an input or output in the single-wire mode of operation. This field is relevant only to the single wire mode.
	 TXD pin is an input in single wire mode. TXD pin is an output in single wire mode.
4	Transmit Data Inversion.
TXINV	Setting this field reverses the polarity of the transmitted data output. In NRZ format, a one is represented by a mark and a zero is represented by a space for normal polarity, and the opposite for inverted polarity.
	NOTE: Setting TXINV inverts all transmitted values, including idle, break, start, and stop bits. In loop mode, if TXINV is set, the receiver gets the transmit inversion bit when RXINV is disabled.
	0 Transmit data is not inverted.
	1 Transmit data is inverted.
3 ORIE	Overrun Error Interrupt Enable
	Enables the overrun error flag, S1[OR], to generate interrupt requests.
	0 OR interrupts are disabled.
	1 OR interrupt requests are enabled.
2 NEIE	Noise Error Interrupt Enable
	Enables the noise flag, S1[NF], to generate interrupt requests.
	0 NF interrupt requests are disabled.
	1 NF interrupt requests are enabled.
1 FEIE	Framing Error Interrupt Enable
	Enables the framing error flag, S1[FE], to generate interrupt requests.
	0 FE interrupt requests are disabled.
	1 FE interrupt requests are enabled.
0 PEIE	Parity Error Interrupt Enable
	Enables the parity error flag, S1[PF], to generate interrupt requests.
	0 PF interrupt requests are disabled.
	1 PF interrupt requests are enabled.

40.3.8 UART Data Register (UARTx_D)

This register is actually two separate registers. Reads return the contents of the read-only receive data register and writes go to the write-only transmit data register.

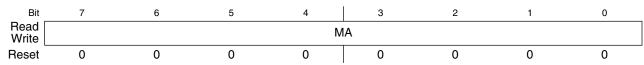
NOTE

- In 8-bit or 9-bit data format, only UART data register (D) needs to be accessed to clear the S1[RDRF] bit (assuming receiver buffer level is less than RWFIFO[RXWATER]). The C3 register needs to be read, prior to the D register, only if the ninth bit of data needs to be captured. Similarly, the ED register needs to be read, prior to the D register, only if the additional flag data for the dataword needs to be captured.
- In the normal 8-bit mode (M bit cleared) if the parity is enabled, you get seven data bits and one parity bit. That one parity bit is loaded into the D register. So, for the data bits, mask off the parity bit from the value you read out of this register.
- When transmitting in 9-bit data format and using 8-bit write instructions, write first to transmit bit 8 in UART control register 3 (C3[T8]), then D. A write to C3[T8] stores the data in a temporary register. If D register is written first, and then the new data on data bus is stored in D, the temporary value written by the last write to C3[T8] gets stored in the C3[T8] register.

Address: Base address + 7h offset								
Bit	7	6	5	4	3	2	1	0
Read Write				RT				
Reset	0	0	0	0	0	0	0	0

UARTx_D field descriptions

Field	Description				
7–0	Reads return the contents of the read-only receive data register and writes go to the write-only transmit				
RT	data register.				



40.3.9 UART Match Address Registers 1 (UARTx_MA1)

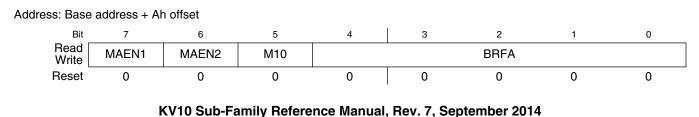
The MA1 and MA2 registers are compared to input data addresses when the most significant bit is set and the associated C4[MAEN] field is set. If a match occurs, the following data is transferred to the data register. If a match fails, the following data is discarded. These registers can be read and written at anytime.

Address: Base address + 8h offset

UARTx_M	A1 field	description	ns
---------	----------	-------------	----

Field	Description
7–0 MA	Match Address

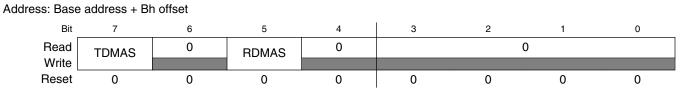
40.3.10 UART Match Address Registers 2 (UARTx_MA2)


These registers can be read and written at anytime. The MA1 and MA2 registers are compared to input data addresses when the most significant bit is set and the associated C4[MAEN] field is set. If a match occurs, the following data is transferred to the data register. If a match fails, the following data is discarded.

UARTx_MA2 field descriptions

Γ	Field	Description
	7–0 MA	Match Address

40.3.11 UART Control Register 4 (UARTx_C4)



memory map and registers

UARTx_	C4 field	descriptions
--------	----------	--------------

Field	Description				
7 MAEN1	Match Address Mode Enable 1 See Match address operation for more information.				
	 All data received is transferred to the data buffer if MAEN2 is cleared. All data received with the most significant bit cleared, is discarded. All data received with the most significant bit set, is compared with contents of MA1 register. If no match occurs, the data is discarded. If match occurs, data is transferred to the data buffer. 				
6 MAEN2	 Match Address Mode Enable 2 See Match address operation for more information. 0 All data received is transferred to the data buffer if MAEN1 is cleared. 1 All data received with the most significant bit cleared, is discarded. All data received with the most 				
	1 All data received with the most significant bit cleared, is discarded. All data received with the most significant bit set, is compared with contents of MA2 register. If no match occurs, the data is discarded. If a match occurs, data is transferred to the data buffer.				
5 M10	10-bit Mode select Causes a tenth, non-memory mapped bit to be part of the serial transmission. This tenth bit is generated and interpreted as a parity bit. The M10 field does not affect the LIN send or detect break behavior. If M10 is set, then both C1[M] and C1[PE] must also be set.				
	 See Data format for more information. The parity bit is the ninth bit in the serial transmission. The parity bit is the tenth bit in the serial transmission. 				
4–0 BRFA	Baud Rate Fine Adjust This bit field is used to add more timing resolution to the average baud frequency, in increments of 1/32. See Baud rate generation for more information.				

40.3.12 UART Control Register 5 (UARTx_C5)

UARTx_C5 field descriptions

Field	Description						
7 TDMAS	Transmitter DMA Select Configures the transmit data register empty flag, S1[TDRE], to generate interrupt or DMA requests if C2[TIE] is set.						
	 NOTE: If C2[TIE] is cleared, TDRE DMA and TDRE interrupt request signals are not asserted when the TDRE flag is set, regardless of the state of TDMAS. If C2[TIE] and TDMAS are both set, then C2[TCIE] must be cleared, and D must not be written unless a DMA request is being serviced. 						

Table continues on the next page ...

Field	Description
	 If C2[TIE] is set and the S1[TDRE] flag is set, the TDRE interrupt request signal is asserted to request interrupt service. If C2[TIE] is set and the S1[TDRE] flag is set, the TDRE DMA request signal is asserted to request a DMA transfer.
6	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
5 RDMAS	 Receiver Full DMA Select Configures the receiver data register full flag, S1[RDRF], to generate interrupt or DMA requests if C2[RIE] is set. NOTE: If C2[RIE] is cleared, and S1[RDRF] is set, the RDRF DMA and RDFR interrupt request signals are not asserted, regardless of the state of RDMAS. 0 If C2[RIE] and S1[RDRF] are set, the RDFR interrupt request signal is asserted to request an interrupt service. 1 If C2[RIE] and S1[RDRF] are set, the RDRF DMA request signal is asserted to request a DMA transfer.
4	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
3–0	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.

40.3.13 UART Extended Data Register (UARTx_ED)

This register contains additional information flags that are stored with a received dataword. This register may be read at any time but contains valid data only if there is a dataword in the receive FIFO.

NOTE

- The data contained in this register represents additional information regarding the conditions on which a dataword was received. The importance of this data varies with the application, and in some cases maybe completely optional. These fields automatically update to reflect the conditions of the next dataword whenever D is read.
- If S1[NF] and S1[PF] have not been set since the last time the receive buffer was empty, the NOISY and PARITYE fields will be zero.

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

wemory map and registers

Field	Description
7 NOISY	The current received dataword contained in D and C3[R8] was received with noise.
	0 The dataword was received without noise.
	1 The data was received with noise.
6 PARITYE	The current received dataword contained in D and C3[R8] was received with a parity error.
	0 The dataword was received without a parity error.
	1 The dataword was received with a parity error.
5–0 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.

UARTx_ED field descriptions

40.3.14 UART Modem Register (UARTx_MODEM)

The MODEM register controls options for setting the modem configuration.

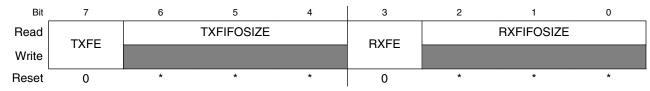
Address: Base address + Dh offset

Bit	7	6	5	4	3	2	1	0
Read		0			RXRTSE	TXRTSPOL	TXRTSE	TXCTSE
Write							_	
Reset	0	0	0	0	0	0	0	0

UARTx_MODEM field descriptions

Field	Description				
7–4 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.				
3	Receiver request-to-send enable				
RXRTSE	Allows the RTS output to control the CTS input of the transmitting device to prevent receiver overrun.				
	NOTE: Do not set both RXRTSE and TXRTSE.				
	0 The receiver has no effect on RTS.				
	1 RTS is deasserted if the number of characters in the receiver data register (FIFO) is equal to or greater than RWFIFO[RXWATER]. RTS is asserted when the number of characters in the receiver data register (FIFO) is less than RWFIFO[RXWATER]. See Hardware flow control				
2 TXRTSPOL	Transmitter request-to-send polarity				
TANISPOL	Controls the polarity of the transmitter RTS. TXRTSPOL does not affect the polarity of the receiver RTS. RTS will remain negated in the active low state unless TXRTSE is set.				
	0 Transmitter RTS is active low.				
	1 Transmitter RTS is active high.				
1 TXRTSE	Transmitter request-to-send enable				
INITIOL	Controls RTS before and after a transmission.				

Table continues on the next page...


Field	Description				
	0 The transmitter has no effect on RTS.				
	1 When a character is placed into an empty transmitter data buffer , RTS asserts one bit time before the start bit is transmitted. RTS deasserts one bit time after all characters in the transmitter data buffer and shift register are completely sent, including the last stop bit. (FIFO)(FIFO)				
0 TXCTSE	Transmitter clear-to-send enable				
	TXCTSE controls the operation of the transmitter. TXCTSE can be set independently from the state of TXRTSE and RXRTSE.				
	0 CTS has no effect on the transmitter.				
	1 Enables clear-to-send operation. The transmitter checks the state of CTS each time it is ready to send a character. If CTS is asserted, the character is sent. If CTS is deasserted, the signal TXD remains in the mark state and transmission is delayed until CTS is asserted. Changes in CTS as a character is being sent do not affect its transmission.				

UARTx_MODEM field descriptions (continued)

40.3.15 UART FIFO Parameters (UARTx_PFIFO)

This register provides the ability for the programmer to turn on and off FIFO functionality. It also provides the size of the FIFO that has been implemented. This register may be read at any time. This register must be written only when C2[RE] and C2[TE] are cleared/not set and when the data buffer/FIFO is empty.

Address: Base address + 10h offset

* Notes:

- TXFIFOSIZE field: The reset value depends on whether the specific UART instance supports the FIFO and on the size of that FIFO. See the Chip Configuration details for more information on the FIFO size supported for each UART instance.
- RXFIFOSIZE field: The reset value depends on whether the specific UART instance supports the FIFO and on the size of that FIFO. See the Chip Configuration details for more information on the FIFO size supported for each UART instance.

UARTx_PFIFO field descriptions

Field	Description
7 TXFE	Transmit FIFO Enable
	When this field is set, the built in FIFO structure for the transmit buffer is enabled. The size of the FIFO structure is indicated by TXFIFOSIZE. If this field is not set, the transmit buffer operates as a FIFO of depth one dataword regardless of the value in TXFIFOSIZE. Both C2[TE] and C2[RE] must be cleared prior to changing this field. Additionally, TXFLUSH and RXFLUSH commands must be issued immediately after changing this field.

Table continues on the next page...

UARTx_PFIFO field descriptions (continued)

Field	Description					
	0 Transmit FIFO is not enabled. Buffer is depth 1. (Legacy support).					
	1 Transmit FIFO is enabled. Buffer is depth indicated by TXFIFOSIZE.					
6–4	Transmit FIFO. Buffer Depth					
TXFIFOSIZE	The maximum number of transmit datawords that can be stored in the transmit buffer. This field is read					
	only.					
	000 Transmit FIFO/Buffer depth = 1 dataword.					
	001 Transmit FIFO/Buffer depth = 4 datawords.					
	010 Transmit FIFO/Buffer depth = 8 datawords.					
	011 Transmit FIFO/Buffer depth = 16 datawords.					
	100 Transmit FIFO/Buffer depth = 32 datawords.					
	101 Transmit FIFO/Buffer depth = 64 datawords.					
	110 Transmit FIFO/Buffer depth = 128 datawords.					
	111 Reserved.					
3 RXFE	Receive FIFO Enable					
RAFE	When this field is set, the built in FIFO structure for the receive buffer is enabled. The size of the FIFO					
	structure is indicated by the RXFIFOSIZE field. If this field is not set, the receive buffer operates as a FIFO of depth one dataword regardless of the value in RXFIFOSIZE. Both C2[TE] and C2[RE] must be cleared prior to changing this field. Additionally, TXFLUSH and RXFLUSH commands must be issued immediately after changing this field.					
	0 Receive FIFO is not enabled. Buffer is depth 1. (Legacy support)					
	1 Receive FIFO is enabled. Buffer is depth indicted by RXFIFOSIZE.					
2–0	Receive FIFO. Buffer Depth					
RXFIFOSIZE						
	The maximum number of receive datawords that can be stored in the receive buffer before an overrun occurs. This field is read only.					
	000 Receive FIFO/Buffer depth = 1 dataword.					
	001 Receive FIFO/Buffer depth = 4 datawords.					
	010 Receive FIFO/Buffer depth = 8 datawords.					
	011 Receive FIFO/Buffer depth = 16 datawords.					
	100 Receive FIFO/Buffer depth = 32 datawords.					
	101 Receive FIFO/Buffer depth = 64 datawords.					
	110 Receive FIFO/Buffer depth = 128 datawords.					
	111 Reserved.					

40.3.16 UART FIFO Control Register (UARTx_CFIFO)

This register provides the ability to program various control fields for FIFO operation. This register may be read or written at any time. Note that writing to TXFLUSH and RXFLUSH may result in data loss and requires careful action to prevent unintended/ unpredictable behavior. Therefore, it is recommended that TE and RE be cleared prior to flushing the corresponding FIFO.

Address: Base address + 11h offset								
Bit	7	6	5	4	3	2	1	0
Read	0	0		0		RXOFE	TXOFE	RXUFE
Write	TXFLUSH	RXFLUSH				TIXOTE	IXOIL	TIXOLE
Reset	0	0	0	0	0	0	0	0

Field	Description
7 TXFLUSH	Transmit FIFO/Buffer Flush
	Writing to this field causes all data that is stored in the transmit FIFO/buffer to be flushed. This does not affect data that is in the transmit shift register.
	0 No flush operation occurs.
	1 All data in the transmit FIFO/Buffer is cleared out.
6 RXFLUSH	Receive FIFO/Buffer Flush
	Writing to this field causes all data that is stored in the receive FIFO/buffer to be flushed. This does not affect data that is in the receive shift register.
	0 No flush operation occurs.
	1 All data in the receive FIFO/buffer is cleared out.
5–3 Reserved	This field is reserved. This read-only field is reserved and always has the value 0.
2	Receive FIFO Overflow Interrupt Enable
RXOFE	When this field is set, the RXOF flag generates an interrupt to the host.
	0 RXOF flag does not generate an interrupt to the host.
	1 RXOF flag generates an interrupt to the host.
1 TXOFE	Transmit FIFO Overflow Interrupt Enable
	When this field is set, the TXOF flag generates an interrupt to the host.
	0 TXOF flag does not generate an interrupt to the host.
	1 TXOF flag generates an interrupt to the host.
0	Receive FIFO Underflow Interrupt Enable
RXUFE	

UARTx_CFIFO field descriptions

Table continues on the next page...

UARTx_CFIFC	field description	ns (continued)
-------------	-------------------	----------------

Field	Description			
	0 RXUF flag does not generate an interrupt to the host.			
	1 RXUF flag generates an interrupt to the host.			

40.3.17 UART FIFO Status Register (UARTx_SFIFO)

This register provides status information regarding the transmit and receiver buffers/ FIFOs, including interrupt information. This register may be written to or read at any time.

Address: Base address + 12h offset

UARTx_SFIFO field descriptions

Field	Description
7 TXEMPT	Transmit Buffer/FIFO Empty
	Asserts when there is no data in the Transmit FIFO/buffer. This field does not take into account data that is in the transmit shift register.
	0 Transmit buffer is not empty.
	1 Transmit buffer is empty.
6 RXEMPT	Receive Buffer/FIFO Empty
	Asserts when there is no data in the receive FIFO/Buffer. This field does not take into account data that is in the receive shift register.
	0 Receive buffer is not empty.
	1 Receive buffer is empty.
5–3	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
2 RXOF	Receiver Buffer Overflow Flag
	Indicates that more data has been written to the receive buffer than it can hold. This field will assert regardless of the value of CFIFO[RXOFE]. However, an interrupt will be issued to the host only if CFIFO[RXOFE] is set. This flag is cleared by writing a 1.
	0 No receive buffer overflow has occurred since the last time the flag was cleared.
	1 At least one receive buffer overflow has occurred since the last time the flag was cleared.
1 TXOF	Transmitter Buffer Overflow Flag

Table continues on the next page ...

Field	Description
	Indicates that more data has been written to the transmit buffer than it can hold. This field will assert regardless of the value of CFIFO[TXOFE]. However, an interrupt will be issued to the host only if CFIFO[TXOFE] is set. This flag is cleared by writing a 1.
	0 No transmit buffer overflow has occurred since the last time the flag was cleared.
	1 At least one transmit buffer overflow has occurred since the last time the flag was cleared.
0 BXUF	Receiver Buffer Underflow Flag
	Indicates that more data has been read from the receive buffer than was present. This field will assert regardless of the value of CFIFO[RXUFE]. However, an interrupt will be issued to the host only if CFIFO[RXUFE] is set. This flag is cleared by writing a 1.
	 No receive buffer underflow has occurred since the last time the flag was cleared. At least one receive buffer underflow has occurred since the last time the flag was cleared.

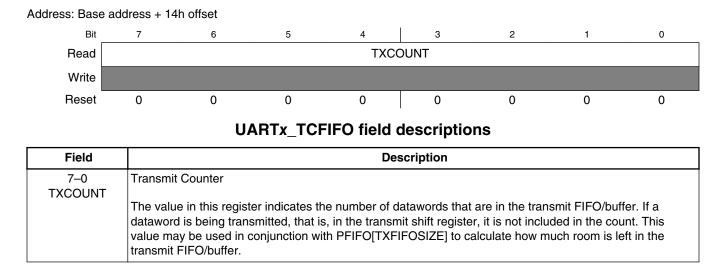
UARTx_SFIFO field descriptions (continued)

40.3.18 UART FIFO Transmit Watermark (UARTx_TWFIFO)

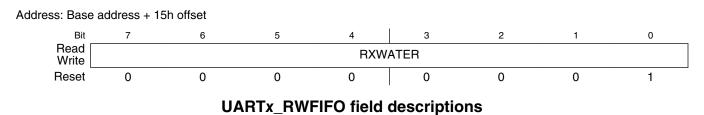
This register provides the ability to set a programmable threshold for notification of needing additional transmit data. This register may be read at any time but must be written only when C2[TE] is not set. Changing the value of the watermark will not clear the S1[TDRE] flag.

Address: Base address + 13h offset

Bit	7	6	5	4	3	2	1	0
Read Write				TXW	ATER			
Reset	0	0	0	0	0	0	0	0

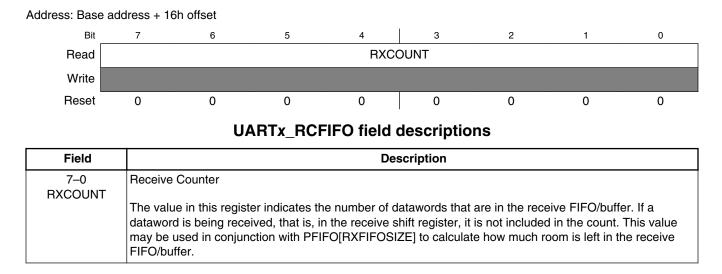

UARTx_TWFIFO field descriptions

Field	Description
	Transmit Watermark When the number of datawords in the transmit FIFO/buffer is equal to or less than the value in this register field, an interrupt via S1[TDRE] or a DMA request via C5[TDMAS] is generated as determined by C5[TDMAS] and C2[TIE]. For proper operation, the value in TXWATER must be set to be less than the size of the transmit buffer/FIFO size as indicated by PFIFO[TXFIFOSIZE] and PFIFO[TXFE].


40.3.19 UART FIFO Transmit Count (UARTx_TCFIFO)

This is a read only register that indicates how many datawords are currently in the transmit buffer/FIFO. It may be read at any time.

40.3.20 UART FIFO Receive Watermark (UARTx_RWFIFO)


This register provides the ability to set a programmable threshold for notification of the need to remove data from the receiver FIFO/buffer. This register may be read at any time but must be written only when C2[RE] is not asserted. Changing the value in this register will not clear S1[RDRF].

register field, an interrupt via S C5[RDMAS] and C2[RIE]. For	Is in the receive FIFO/buffer is equal to or greater than the value in this G1[RDRF] or a DMA request via C5[RDMAS] is generated as determined by proper operation, the value in RXWATER must be set to be less than the dicated by PFIFO[RXFIFOSIZE] and PFIFO[RXFE] and must be greater

40.3.21 UART FIFO Receive Count (UARTx_RCFIFO)

This is a read only register that indicates how many datawords are currently in the receive FIFO/buffer. It may be read at any time.

40.4 Functional description

This section provides a complete functional description of the UART block.

The UART allows full duplex, asynchronous, NRZ serial communication between the CPU and remote devices, including other CPUs. The UART transmitter and receiver operate independently, although they use the same baud rate generator. The CPU monitors the status of the UART, writes the data to be transmitted, and processes received data.

40.4.1 Transmitter

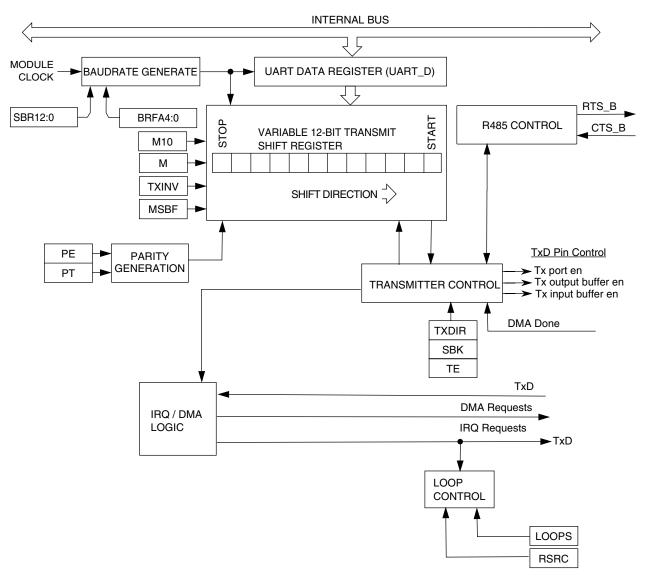


Figure 40-64. Transmitter Block Diagram

40.4.1.1 Transmitter character length

The UART transmitter can accommodate either 8, 9, or 10-bit data characters. The state of the C1[M] and C1[PE] bits and the C4[M10] bit determine the length of data characters. When transmitting 9-bit data, bit C3[T8] is the ninth bit (bit 8).

40.4.1.2 Transmission bit order

When S2[MSBF] is set, the UART automatically transmits the MSB of the data word as the first bit after the start bit. Similarly, the LSB of the data word is transmitted immediately preceding the parity bit, or the stop bit if parity is not enabled. All necessary bit ordering is handled automatically by the module. Therefore, the format of the data written to D for transmission is completely independent of the S2[MSBF] setting.

40.4.1.3 Character transmission

To transmit data, the MCU writes the data bits to the UART transmit buffer using UART data registers C3[T8] and D. Data in the transmit buffer is then transferred to the transmitter shift register as needed. The transmit shift register then shifts a frame out through the transmit data output signal after it has prefaced it with any required start and stop bits. The UART data registers, C3[T8] and D, provide access to the transmit buffer structure.

The UART also sets a flag, the transmit data register empty flag S1[TDRE], and generates an interrupt or DMA request (C5[TDMAS]) whenever the number of datawords in the transmit buffer is equal to or less than the value indicated by TWFIFO[TXWATER]. The transmit driver routine may respond to this flag by writing additional datawords to the transmit buffer using C3[T8]/D as space permits.

See Application information for specific programing sequences.

Setting C2[TE] automatically loads the transmit shift register with the following preamble:

BDH[SBNS]	C1[M]	C4[M10] C1[PE]		Bits transmitted
0	0	—		
1	0	_	_	11
0	1	0	—	11
1	1	0	—	12
0	1	1	1	12
1	1	1	1	13

Table 40-69. Transmit preamble length

After the preamble shifts out, control logic transfers the data from the D register into the transmit shift register. The transmitter automatically transmits the correct start bit and stop bit before and after the dataword. The number of stop bits transmitted after the dataword can be programmed using BDH[SBNS] field.

Hardware supports odd or even parity. When parity is enabled, the bit immediately preceding the stop bit is the parity bit.

When the transmit shift register is not transmitting a frame, the transmit data output signal goes to the idle condition, logic 1. If at any time software clears C2[TE], the transmitter enable signal goes low and the transmit signal goes idle.

If the software clears C2[TE] while a transmission is in progress, the character in the transmit shift register continues to shift out, provided S1[TC] was cleared during the data write sequence. To clear S1[TC], the S1 register must be read followed by a write to D register.

If S1[TC] is cleared during character transmission and C2[TE] is cleared, the transmission enable signal is deasserted at the completion of the current frame. Following this, the transmit data out signal enters the idle state even if there is data pending in the UART transmit data buffer. To ensure that all the data written in the FIFO is transmitted on the link before clearing C2[TE], wait for S1[TC] to set. Alternatively, the same can be achieved by setting TWFIFO[TXWATER] to 0x0 and waiting for S1[TDRE] to set.

40.4.1.4 Transmitting break characters

Setting C2[SBK] loads the transmit shift register with a break character. A break character contains all logic 0s and has no start, stop, or parity bit. Break character length depends on C1[M], C1[PE], S2[BRK13], BDH[SBNS] and C4[M10]. See the following table.

			-		
S2[BRK13]	BDH[SBNS]	C1[M]	C4[M10]	C1[PE]	Bits transmitted
0	0	0	—	—	10
0	1	0	_		11
0	0	1	0	—	11
0	1	1	0		12
0	0	1	1	1	12
0	1	1	1	1	13
1	0	0	_		13
1	0	1	_	_	14
1	1	0	—	—	15
1	1	1		_	16

 Table 40-70.
 Transmit break character length

As long as C2[SBK] is set, the transmitter logic continuously loads break characters into the transmit shift register. After the software clears C2[SBK], the shift register finishes transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the end of a break character guarantees the recognition of the start bit of the next character.

NOTE

When queuing a break character, it will be transmitted following the completion of the data value currently being shifted out from the shift register. This means that, if data is queued in the data buffer to be transmitted, the break character preempts that queued data. The queued data is then transmitted after the break character is complete.

40.4.1.5 Idle characters

An idle character contains all logic 1s and has no start, stop, or parity bit. Idle character length depends on C1[M], C1[PE], BDH[SBNS] and C4[M10]. The preamble is a synchronizing idle character that begins the first transmission initiated after setting C2[TE].

If C2[TE] is cleared during a transmission, the transmit data output signal becomes idle after completion of the transmission in progress. Clearing and then setting C2[TE] during a transmission queues an idle character to be sent after the dataword currently being transmitted.

Note

When queuing an idle character, the idle character will be transmitted following the completion of the data value currently being shifted out from the shift register. This means that if data is queued in the data buffer to be transmitted, the idle character preempts that queued data. The queued data is then transmitted after the idle character is complete.

If C2[TE] is cleared and the transmission is completed, the UART is not the master of the TXD pin.

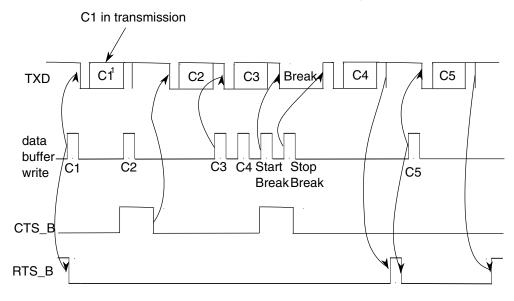
40.4.1.6 Hardware flow control

The transmitter supports hardware flow control by gating the transmission with the value of CTS. If the clear-to-send operation is enabled, the character is transmitted when CTS is asserted. If CTS is deasserted in the middle of a transmission with characters remaining in the receiver data buffer, the character in the shift register is sent and TXD remains in the mark state until CTS is reasserted.

If the clear-to-send operation is disabled, the transmitter ignores the state of CTS. Also, if the transmitter is forced to send a continuous low condition because it is sending a break character, the transmitter ignores the state of CTS regardless of whether the clear-to-send operation is enabled.

The transmitter's CTS signal can also be enabled even if the same UART receiver's RTS signal is disabled.

40.4.1.7 Transceiver driver enable


The transmitter can use RTS as an enable signal for the driver of an external transceiver. See Transceiver driver enable using RTS for details. If the request-to-send operation is enabled, when a character is placed into an empty transmitter data buffer, RTS asserts one bit time before the start bit is transmitted. RTS remains asserted for the whole time that the transmitter data buffer has any characters. RTS deasserts one bit time after all characters in the transmitter data buffer and shift register are completely sent, including the last stop bit. Transmitting a break character also asserts RTS, with the same assertion and deassertion timing as having a character in the transmitter data buffer.

The transmitter's RTS signal asserts only when the transmitter is enabled. However, the transmitter's RTS signal is unaffected by its CTS signal. RTS will remain asserted until the transfer is completed, even if the transmitter is disabled mid-way through a data transfer.

The following figure shows the functional timing information for the transmitter. Along with the actual character itself, TXD shows the start bit. The stop bit is also indicated, with a dashed line if necessary.

Chapter 40 Universal Asynchronous Receiver/Transmitter (UART)

1. Cn = transmit characters

Figure 40-65. Transmitter RTS and CTS timing diagram

40.4.2 Receiver

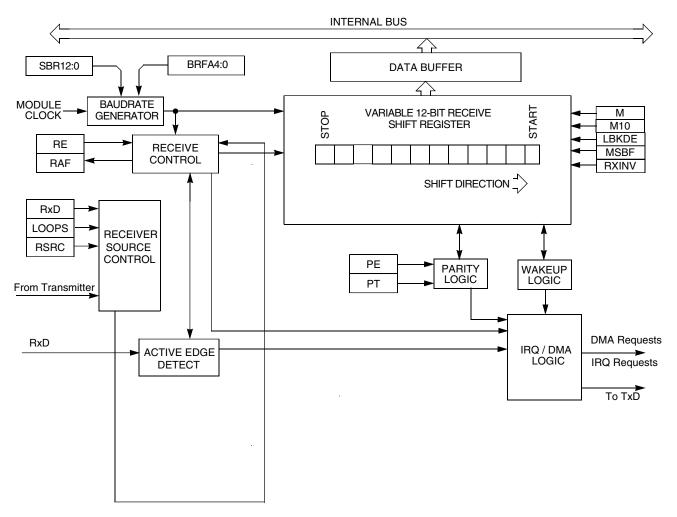


Figure 40-66. UART receiver block diagram

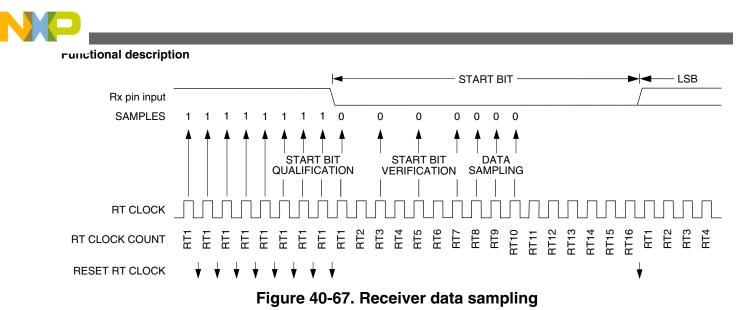
40.4.2.1 Receiver character length

The UART receiver can accommodate 8-, 9-, or 10-bit data characters. The states of C1[M], C1[PE], BDH[SBNS] and C4[M10] determine the length of data characters. When receiving 9 or 10-bit data, C3[R8] is the ninth bit (bit 8).

40.4.2.2 Receiver bit ordering

When S2[MSBF] is set, the receiver operates such that the first bit received after the start bit is the MSB of the dataword. Similarly, the bit received immediately preceding the parity bit, or the stop bit if parity is not enabled, is treated as the LSB for the dataword. All necessary bit ordering is handled automatically by the module. Therefore, the format of the data read from receive data buffer is completely independent of S2[MSBF].

40.4.2.3 Character reception


During UART reception, the receive shift register shifts a frame in from the unsynchronized receiver input signal. After a complete frame shifts into the receive shift register, the data portion of the frame transfers to the UART receive buffer. Additionally, the noise and parity error flags that are calculated during the receive process are also captured in the UART receive buffer. The receive data buffer is accessible via the D and C3[T8] registers. Additional received information flags regarding the receive dataword can be read in ED register. S1[RDRF] is set if the number of resulting datawords in the receive buffer is equal to or greater than the number indicated by RWFIFO[RXWATER]. If the C2[RIE] is also set, RDRF generates an RDRF interrupt request. Alternatively, by programming C5[RDMAS], a DMA request can be generated.

40.4.2.4 Data sampling

The receiver samples the unsynchronized receiver input signal at the RT clock rate. The RT clock is an internal signal with a frequency 16 times the baud rate. To adjust for baud rate mismatch, the RT clock (see the following figure) is re-synchronized:

- After every start bit.
- After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit samples at RT8, RT9, and RT10 returns a valid logic 1 and the majority of the next RT8, RT9, and RT10 samples returns a valid logic 0).

To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.

To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7. The following table summarizes the results of the start bit verification samples.

RT3, RT5, and RT7 samples	Start bit verification	Noise flag
000	Yes	0
001	Yes	1
010	Yes	1
011	No	0
100	Yes	1
101	No	0
110	No	0
111	No	0

Table 40-71. Start bit verification

If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins.

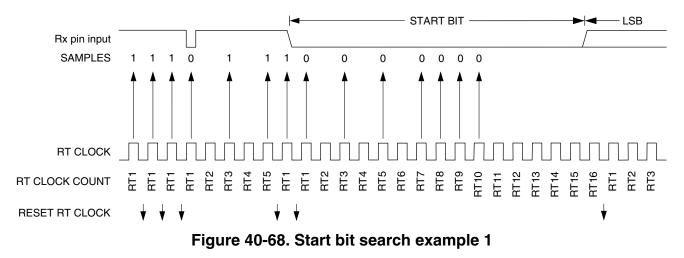
To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. The following table summarizes the results of the data bit samples.

 Table 40-72.
 Data bit recovery

RT8, RT9, and RT10 samples	Data bit determination	Noise flag
000	0	0
001	0	1
010	0	1
011	1	1
100	0	1
101	1	1
110	1	1
111	1	0

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

Note


The RT8, RT9, and RT10 samples do not affect start bit verification. If any or all of the RT8, RT9, and RT10 start bit samples are logic 1s following a successful start bit verification, the noise flag (S1[NF]) is set and the receiver assumes that the bit is a start bit (logic 0).

To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. The following table summarizes the results of the stop bit samples.

RT8, RT9, and RT10 samples	Framing error flag	Noise flag
000	1	0
001	1	1
010	1	1
011	0	1
100	1	1
101	0	1
110	0	1
111	0	0

Table 40-73. Stop bit recovery

In the following figure, the verification samples RT3 and RT5 determine that the first low detected was noise and not the beginning of a start bit. The RT clock is reset and the start bit search begins again. The noise flag is not set because the noise occurred before the start bit was found.

In the following figure, verification sample at RT3 is high. The RT3 sample sets the noise flag. Although the perceived bit time is misaligned, the data samples RT8, RT9, and RT10 are within the bit time and data recovery is successful.

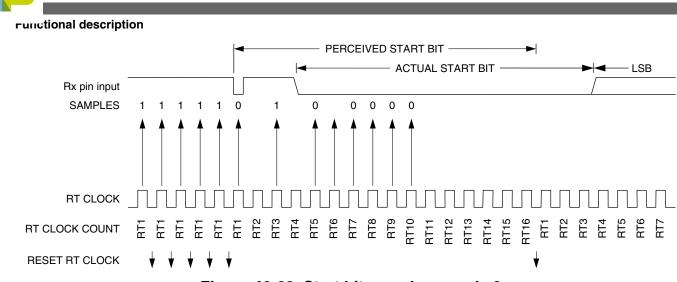


Figure 40-69. Start bit search example 2

In the following figure, a large burst of noise is perceived as the beginning of a start bit, although the test sample at RT5 is high. The RT5 sample sets the noise flag. Although this is a worst-case misalignment of perceived bit time, the data samples RT8, RT9, and RT10 are within the bit time and data recovery is successful.

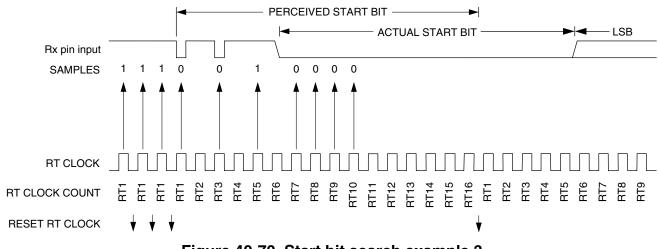
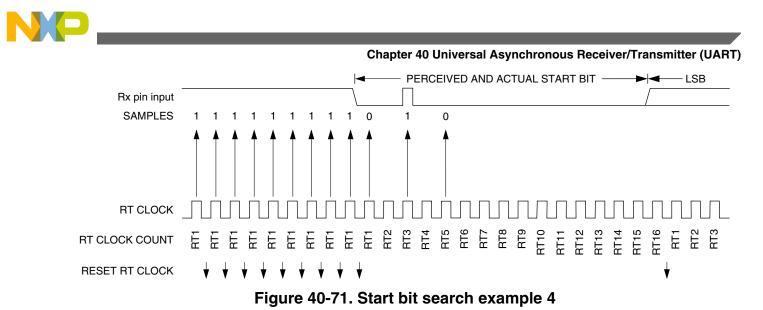
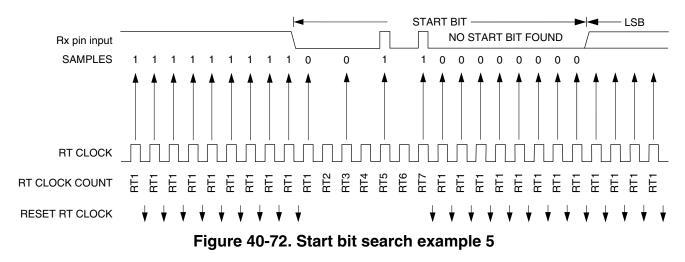
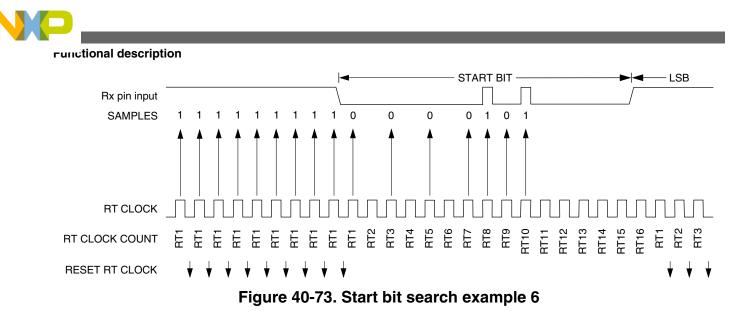




Figure 40-70. Start bit search example 3


The following figure shows the effect of noise early in the start bit time. Although this noise does not affect proper synchronization with the start bit time, it does set the noise flag.

The following figure shows a burst of noise near the beginning of the start bit that resets the RT clock. The sample after the reset is low but is not preceded by three high samples that would qualify as a falling edge. Depending on the timing of the start bit search and on the data, the frame may be missed entirely or it may set the framing error flag.

In the following figure, a noise burst makes the majority of data samples RT8, RT9, and RT10 high. This sets the noise flag but does not reset the RT clock. In start bits only, the RT8, RT9, and RT10 data samples are ignored.

40.4.2.5 Framing errors

If the data recovery logic does not detect a logic 1 where the stop bit should be in an incoming frame, it sets the framing error flag, S1[FE], if S2[LBKDE] is disabled. When S2[LBKDE] is disabled, a break character also sets the S1[FE] because a break character has no stop bit. S1[FE] is set at the same time that received data is placed in the receive data buffer.

40.4.2.6 Receiving break characters

The UART recognizes a break character when a start bit is followed by eight, nine, or ten logic 0 data bits and a logic 0 where the stop bit should be. Receiving a break character has these effects on UART registers:

- Sets the framing error flag, S1[FE].
- Writes an all 0 dataword to the data buffer, which may cause S1[RDRF] to set, depending on the watermark and number of values in the data buffer.
- May set the overrun flag, S1[OR], noise flag, S1[NF], parity error flag, S1[PE], or the receiver active flag, S2[RAF].

Chapter 40 Universal Asynchronous Receiver/Transmitter (UART)

The detection threshold for a break character can be adjusted when using an internal oscillator in a LIN system by setting S2[LBKDE]. The UART break character detection threshold depends on C1[M], C1[PE], S2[LBKDE] and C4[M10]. See the following table.

LBKDE	SBNS	М	M10	PE	Threshold (bits)
0	0	0	—	—	10
0	1	0	—	—	11
0	0	1	0	—	11
0	1	1	0	—	12
0	0	1	1	1	12
0	1	1	1	1	13
1	_	0	_	_	11
1		1			12

Table 40-74. Receive break character detection threshold

While S2[LBKDE] is set, it will have these effects on the UART registers:

- Prevents S1[RDRF], S1[FE], S1[NF], and S1[PF] from being set. However, if they are already set, they will remain set.
- Sets the LIN break detect interrupt flag, S2[LBKDIF], if a LIN break character is received.

40.4.2.7 Hardware flow control

To support hardware flow control, the receiver can be programmed to automatically deassert and assert RTS.

- RTS remains asserted until the transfer is complete, even if the transmitter is disabled midway through a data transfer. See Transceiver driver enable using RTS for more details.
- If the receiver request-to-send functionality is enabled, the receiver automatically deasserts RTS if the number of characters in the receiver data register is equal to or greater than receiver data buffer's watermark, RWFIFO[RXWATER].
- The receiver asserts RTS when the number of characters in the receiver data register is less than the watermark. It is not affected if RDRF is asserted.
- Even if RTS is deasserted, the receiver continues to receive characters until the receiver data buffer is full or is overrun.
- If the receiver request-to-send functionality is disabled, the receiver RTS remains deasserted.

The following figure shows receiver hardware flow control functional timing. Along with the actual character itself, RXD shows the start bit. The stop bit can also indicated, with a dashed line, if necessary. The watermark is set to 2.

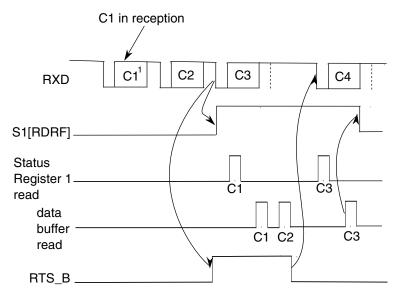


Figure 40-74. Receiver hardware flow control timing diagram

40.4.2.8 Baud rate tolerance

A transmitting device may be operating at a baud rate below or above the receiver baud rate. Accumulated bit time misalignment can cause one of the three stop bit data samples (RT8, RT9, and RT10) to fall outside the actual stop bit. A noise error will occur if the RT8, RT9, and RT10 samples are not all the same logical values. A framing error will occur if the receiver clock is misaligned in such a way that the majority of the RT8, RT9, and RT10 stop bit samples are a logic 0.

As the receiver samples an incoming frame, it resynchronizes the RT clock on any valid falling edge within the frame. Resynchronization within frames corrects a misalignment between transmitter bit times and receiver bit times.

40.4.2.8.1 Slow data tolerance

The following figure shows how much a slow received frame can be misaligned without causing a noise error or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data samples at RT8, RT9, and RT10.

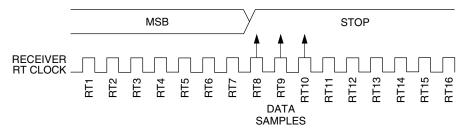


Figure 40-75. Slow data

For an 8-bit data character, data sampling of the stop bit takes the receiver 154 RT cycles (9 bit times \times 16 RT cycles + 10 RT cycles).

With the misaligned character shown in the Figure 40-75, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 147 RT cycles (9 bit times \times 16 RT cycles + 3 RT cycles).

The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit data character with no errors is:

 $((154 - 147) \div 154) \times 100 = 4.54\%$

For a 9-bit data character, data sampling of the stop bit takes the receiver 170 RT cycles (10 bit times \times 16 RT cycles + 10 RT cycles).

With the misaligned character shown in the Figure 40-75, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 163 RT cycles (10 bit times \times 16 RT cycles + 3 RT cycles).

The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit character with no errors is:

 $((170 - 163) \div 170) \times 100 = 4.12\%$

40.4.2.8.2 Fast data tolerance

The following figure shows how much a fast received frame can be misaligned. The fast stop bit ends at RT10 instead of RT16 but is still sampled at RT8, RT9, and RT10.

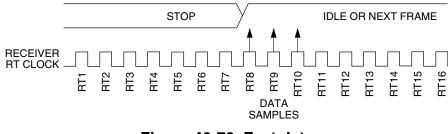


Figure 40-76. Fast data

For an 8-bit data character, data sampling of the stop bit takes the receiver 154 RT cycles (9 bit times \times 16 RT cycles + 10 RT cycles).

With the misaligned character shown in the Figure 40-76, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 160 RT cycles (10 bit times \times 16 RT cycles).

The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit character with no errors is:

 $((154 - 160) \div 154) \times 100 = 3.90\%$

For a 9-bit data character, data sampling of the stop bit takes the receiver 170 RT cycles (10 bit times \times 16 RT cycles + 10 RT cycles).

With the misaligned character shown in the Figure 40-76, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 176 RT cycles (11 bit times \times 16 RT cycles).

The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit character with no errors is:

 $((170 - 176) \div 170) \times 100 = 3.53\%$

40.4.2.9 Receiver wakeup

C1[WAKE] determines how the UART is brought out of the standby state to process an incoming message. C1[WAKE] enables either idle line wakeup or address mark wakeup.

40.4.2.9.1 Idle input line wakeup (C1[WAKE] = 0)

In this wakeup method, an idle condition on the unsynchronized receiver input signal clears C2[RWU] and wakes the UART. The initial frame or frames of every message contain addressing information. All receivers evaluate the addressing information, and receivers for which the message is addressed process the frames that follow. Any receiver for which a message is not addressed can set its C2[RWU] and return to the standby state. C2[RWU] remains set and the receiver remains in standby until another idle character appears on the unsynchronized receiver input signal.

Idle line wakeup requires that messages be separated by at least one idle character and that no message contains idle characters.

When C2[RWU] is 1 and S2[RWUID] is 0, the idle character that wakes the receiver does not set S1[IDLE] or the receive data register full flag, S1[RDRF]. The receiver wakes and waits for the first data character of the next message which is stored in the receive data buffer. When S2[RWUID] and C2[RWU] are set and C1[WAKE] is cleared, any idle condition sets S1[IDLE] and generates an interrupt if enabled.

40.4.2.9.2 Address mark wakeup (C1[WAKE] = 1)

In this wakeup method, a logic 1 in the bit position immediately preceding the stop bit of a frame clears C2[RWU] and wakes the UART. A logic 1 in the bit position immediately preceeding the stop bit marks a frame as an address frame that contains addressing information. All receivers evaluate the addressing information, and the receivers for which the message is addressed process the frames that follow. Any receiver for which a message is not addressed can set its C2[RWU] and return to the standby state. C2[RWU] remains set and the receiver remains in standby until another address frame appears on the unsynchronized receiver input signal.

A logic 1 in the bit position immediately preceding the stop bit clears the receiver's C2[RWU] after the stop bit is received and places the received data into the receiver data buffer. Note that if Match Address operation is enabled i.e. C4[MAEN1] or C4[MAEN2] is set, then received frame is transferred to receive buffer only if the comparison matches.

Address mark wakeup allows messages to contain idle characters but requires that the bit position immediately preceding the stop bit be reserved for use in address frames.

If module is in standby mode and nothing triggers to wake the UART, no error flag is set even if an invalid error condition is detected on the receiving data line.

40.4.2.9.3 Match address operation

Match address operation is enabled when C4[MAEN1] or C4[MAEN2] is set. In this function, a frame received by the RX pin with a logic 1 in the bit position of the address mark is considered an address and is compared with the associated MA1 or MA2 register. The frame is transferred to the receive buffer, and S1[RDRF] is set, only if the comparison matches. All subsequent frames received with a logic 0 in the bit position of the address mark are considered to be data associated with the address and are transferred to the receive data buffer. If no marked address match occurs, then no transfer is made to the receive data buffer, and all following frames with logic 0 in the bit position of the address mark are also discarded. If both C4[MAEN1] and C4[MAEN2] are negated, the receiver operates normally and all data received is transferred to the receive data buffer.

Match address operation functions in the same way for both MA1 and MA2 registers. Note that the position of the address mark is the same as the Parity Bit when parity is enabled for 8 bit and 9 bit data formats.

- If only one of C4[MAEN1] and C4[MAEN2] is asserted, a marked address is compared only with the associated match register and data is transferred to the receive data buffer only on a match.
- If C4[MAEN1] and C4[MAEN2] are asserted, a marked address is compared with both match registers and data is transferred only on a match with either register.

40.4.3 Baud rate generation

A 13-bit modulus counter and a 5-bit fractional fine-adjust counter in the baud rate generator derive the baud rate for both the receiver and the transmitter. The value from 1 to 8191 written to SBR[12:0] determines the module clock divisor. The SBR bits are in the UART baud rate registers, BDH and BDL. The baud rate clock is synchronized with the module clock and drives the receiver. The fractional fine-adjust counter adds fractional delays to the baud rate clock to allow fine trimming of the baud rate to match the system baud rate. The transmitter is driven by the baud rate clock divided by 16. The receiver has an acquisition rate of 16 samples per bit time.

Baud rate generation is subject to two sources of error:

- Integer division of the module clock may not give the exact target frequency. This error can be reduced with the fine-adjust counter.
- Synchronization with the module clock can cause phase shift.

The Table 40-75 lists the available baud divisor fine adjust values.

UART baud rate = UART module clock / $(16 \times (SBR[12:0] + BRFD))$

The following table lists some examples of achieving target baud rates with a module clock frequency of 10.2 MHz, with and without fractional fine adjustment.

Bits SBR (decimal)	Bits BRFA	BRFD value	Receiver clock (Hz)	Transmitter clock (Hz)	Target Baud rate	Error (%)
17	00000	0	600,000.0	37,500.0	38,400	2.3
16	10011	19/32=0.59375	614,689.3	38,418.08	38,400	0.047

 Table 40-75.
 Baud rates (example: module clock = 10.2 MHz)

Table continues on the next page...

Chapter 40 Universal Asynchronous Receiver/Transmitter (UART)

Table 40-75. Baud rates (example: module clock = 10.2 MHz) (continued)

Bits SBR (decimal)	Bits BRFA	BRFD value	Receiver clock (Hz)	Transmitter clock (Hz)	Target Baud rate	Error (%)
33	00000	0	309,090.9	19,318.2	19,200	0.62
33	00110	6/32=0.1875	307,344.6	19,209.04	19,200	0.047
66	00000	0	154,545.5	9659.1	9600	0.62
133	00000	0	76,691.7	4793.2	4800	0.14
266	00000	0	38,345.9	2396.6	2400	0.14
531	00000	0	19,209.0	1200.6	1200	0.11
1062	00000	0	9604.5	600.3	600	0.05
2125	00000	0	4800.0	300.0	300	0.00
4250	00000	0	2400.0	150.0	150	0.00
5795	00000	0	1760.1	110.0	110	0.00

Table 40-76. Baud rate fine adjust

BRFA	Baud Rate Fractional Divisor (BRFD)		
0 0 0 0 0	0/32 = 0		
0 0 0 0 1	1/32 = 0.03125		
00010	2/32 = 0.0625		
00011	3/32 = 0.09375		
00100	4/32 = 0.125		
00101	5/32 = 0.15625		
00110	6/32 = 0.1875		
00111	7/32 = 0.21875		
01000	8/32 = 0.25		
01001	9/32 = 0.28125		
01010	10/32 = 0.3125		
01011	11/32 = 0.34375		
01100	12/32 = 0.375		
01101	13/32 = 0.40625		
01110	14/32 = 0.4375		
01111	15/32 = 0.46875		
10000	16/32 = 0.5		
10001	17/32 = 0.53125		
10010	18/32 = 0.5625		
10011	19/32 = 0.59375		
10100	20/32 = 0.625		
10101	21/32 = 0.65625		
10110	22/32 = 0.6875		

Table continues on the next page ...

BRFA	Baud Rate Fractional Divisor (BRFD)
10111	23/32 = 0.71875
11000	24/32 = 0.75
11001	25/32 = 0.78125
11010	26/32 = 0.8125
11011	27/32 = 0.84375
11100	28/32 = 0.875
11101	29/32 = 0.90625
11110	30/32 = 0.9375
11111	31/32 = 0.96875

Table 40-76. Baud rate fine adjust (continued)

40.4.4 Data format

Each data character is contained in a frame that includes a start bit and a stop bit. The rest of the data format depends upon C1[M], C1[PE], S2[MSBF], BDH[SBNS] and C4[M10].

40.4.4.1 Eight-bit configuration

Clearing C1[M] configures the UART for 8-bit data characters, that is, eight bits are memory mapped in D. A frame with eight data bits has a total of 10 bits (This becomes 11 bits if BDH[SBNS] = 1). The most significant bit of the eight data bits can be used as an address mark to wake the receiver. If the most significant bit is used in this way, then it serves as an address or data indication, leaving the remaining seven bits as actual data. When C1[PE] is set, the eighth data bit is automatically calculated as the parity bit. See the following table.

	Start		C1[PE] Start Da		Address	Parity	Stop
UART_C1[PE]	bit	bits	bits	bits	bit		
0	1	8	0	0	1		
0	1	7	1 ¹	0	1		
1	1	7	0	1	1		

 Table 40-77.
 Configuration of 8-bit data format

1. The address bit identifies the frame as an address character. See Receiver wakeup.

NOTE

In the last column of the above table, the number of stop bits become 2 when BDH[SBNS] is set.

40.4.4.2 Nine-bit configuration

When C1[M] is set and C4[M10] is cleared and BDH[SBNS] is cleared, the UART is configured for 9-bit data characters. If C1[PE] is enabled, the ninth bit is either C3[T8/ R8] or the internally generated parity bit. This results in a frame consisting of a total of 11 bits. In the event that the ninth data bit is selected to be C3[T8], it will remain unchanged after transmission and can be used repeatedly without rewriting it, unless the value needs to be changed. This feature may be useful when the ninth data bit is being used as an address mark.

When C1[M] and C4[M10] are set and BDH[SBNS] is cleared, the UART is configured for 9-bit data characters, but the frame consists of a total of 12 bits. The 12 bits include the start and stop bits, the 9 data character bits, and a tenth internal data bit. Note that if C4[M10] is set, C1[PE] must also be set. In this case, the tenth bit is the internally generated parity bit. The ninth bit can either be used as an address mark or a ninth data bit.

See the following table.

CIE		C1[M10]	Start	Data	Address	Parity	Stop
C1[PE]	UC1[M]	C1[M10]	bit	bits	bits	bits	bit
0	0	0	See Eight-bit configuration				•
0	0	1	Invalid configuration				
0	1	0	1	9	0	0	1
0	1	0	1	8	1 ¹	0	1
0	1	1		In	valid Configurati	on	•
1	0	0		See	Eight-bit configu	ration	
1	0	1		In	valid Configurati	on	
1	1	0	1	8	0	1	1
1	1	1	1	9	0	1	1
1	1	1	1	8	1 ²	1	1

Table 40-78. Configuration of 9-bit data formats

1. The address bit identifies the frame as an address character.

2. The address bit identifies the frame as an address character.

NOTE

In the last column of the above table, the number of stop bits become 2 when BDH[SBNS] is set.

Note

Unless in 9-bit mode with M10 set, do not use address mark wakeup with parity enabled.

40.4.4.3 Timing examples

Timing examples of these configurations in the NRZ mark/space data format are illustrated in the following figures. The timing examples show all of the configurations in the following sub-sections along with the LSB and MSB first variations. This section explains the data formats available assuming single stop bit mode is selected.

40.4.4.3.1 Eight-bit format with parity disabled

The most significant bit can be used for address mark wakeup.

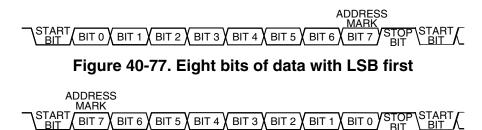


Figure 40-78. Eight bits of data with MSB first

40.4.4.3.2 Eight-bit format with parity enabled

START BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 PARITY STOP START

Figure 40-79. Seven bits of data with LSB first and parity

```
START BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 PARITY STOP START
```

Figure 40-80. Seven bits of data with MSB first and parity

40.4.4.3.3 Nine-bit format with parity disabled

The most significant bit can be used for address mark wakeup.

Figure 40-81. Nine bits of data with LSB first

Chapter 40 Universal Asynchronous Receiver/Transmitter (UART)

ADDRESS MARK START BIT 8 / BIT 7 / BIT 6 / BIT 5 / BIT 4 / BIT 3 / BIT 2 / BIT 1 / BIT 0 / STOP START BIT /
Figure 40-82. Nine bits of data with MSB first

40.4.4.3.4 Nine-bit format with parity enabled

START BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 PARITY STOP START BIT

Figure 40-83. Eight bits of data with LSB first and parity

START BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 PARITY STOP START BIT

Figure 40-84. Eight bits of data with MSB first and parity

40.4.4.3.5 Non-memory mapped tenth bit for parity

The most significant memory-mapped bit can be used for address mark wakeup.

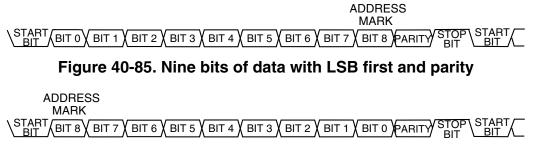


Figure 40-86. Nine bits of data with MSB first and parity

40.4.5 Single-wire operation

Normally, the UART uses two pins for transmitting and receiving. In single wire operation, the RXD pin is disconnected from the UART and the UART implements a half-duplex serial connection. The UART uses the TXD pin for both receiving and transmitting.

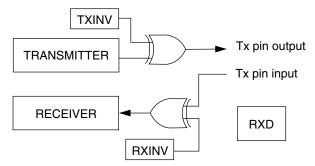


Figure 40-87. Single-wire operation (C1[LOOPS] = 1, C1[RSRC] = 1)

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

Enable single wire operation by setting C1[LOOPS] and the receiver source field, C1[RSRC]. Setting C1[LOOPS] disables the path from the unsynchronized receiver input signal to the receiver. Setting C1[RSRC] connects the receiver input to the output of the TXD pin driver. Both the transmitter and receiver must be enabled (C2[TE] = 1 and C2[RE] = 1).

40.4.6 Loop operation

In loop operation, the transmitter output goes to the receiver input. The unsynchronized receiver input signal is disconnected from the UART.

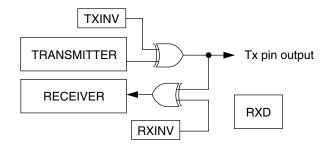


Figure 40-88. Loop operation (C1[LOOPS] = 1, C1[RSRC] = 0)

Enable loop operation by setting C1[LOOPS] and clearing C1[RSRC]. Setting C1[LOOPS] disables the path from the unsynchronized receiver input signal to the receiver. Clearing C1[RSRC] connects the transmitter output to the receiver input. Both the transmitter and receiver must be enabled (C2[TE] = 1 and C2[RE] = 1).

40.5 Reset

All registers reset to a particular value are indicated in Memory map and registers.

40.6 System level interrupt sources

There are several interrupt signals that are sent from the UART. The following table lists the interrupt sources generated by the UART. The local enables for the UART interrupt sources are described in this table. Details regarding the individual operation of each interrupt are contained under various sub-sections of Memory map and registers. However, RXEDGIF description also outlines additional details regarding the RXEDGIF interrupt because of its complexity of operation. Any of the UART interrupt requests listed in the table can be used to bring the CPU out of Wait mode.

Chapter 40 Universal Asynchronous Receiver/Transmitter (UART)

Interrupt Source	Flag	Local enable	DMA select
Transmitter	TDRE	TIE	TDMAS = 0
Transmitter	TC	TCIE	-
Receiver	IDLE	ILIE	-
Receiver	RDRF	RIE	RDMAS = 0
Receiver	LBKDIF	LBKDIE	-
Receiver	RXEDGIF	RXEDGIE	-
Receiver	OR	ORIE	-
Receiver	NF	NEIE	-
Receiver	FE	FEIE	-
Receiver	PF	PEIE	-
Receiver	RXUF	RXUFE	-
Transmitter	TXOF	TXOFE	-

Table 40-79. UART interrupt sources

40.6.1 RXEDGIF description

S2[RXEDGIF] is set when an active edge is detected on the RxD pin. Therefore, the active edge can be detected only when in two wire mode. A RXEDGIF interrupt is generated only when S2[RXEDGIF] is set. If RXEDGIE is not enabled before S2[RXEDGIF] is set, an interrupt is not generated.

40.6.1.1 RxD edge detect sensitivity

Edge sensitivity can be software programmed to be either falling or rising. The polarity of the edge sensitivity is selected using S2[RXINV]. To detect the falling edge, S2[RXINV] is programmed to 0. To detect the rising edge, S2[RXINV] is programmed to 1.

Synchronizing logic is used prior to detect edges. Prior to detecting an edge, the receive data on RxD input must be at the deasserted logic level. A falling edge is detected when the RxD input signal is seen as a logic 1 (the deasserted level) during one module clock cycle, and then a logic 0 (the asserted level) during the next cycle. A rising edge is detected when the input is seen as a logic 0 during one module clock cycle and then a logic 1 during the next cycle.

Divice operation

40.6.1.2 Clearing RXEDGIF interrupt request

Writing a logic 1 to S2[RXEDGIF] immediately clears the RXEDGIF interrupt request even if the RxD input remains asserted. S2[RXEDGIF] remains set if another active edge is detected on RxD while attempting to clear S2[RXEDGIF] by writing a 1 to it.

40.6.1.3 Exit from low-power modes

The receive input active edge detect circuit is still active on low power modes (Wait and Stop). An active edge on the receive input brings the CPU out of low power mode if the interrupt is not masked (S2[RXEDGIF] = 1).

40.7 DMA operation

In the transmitter, S1[TDRE] can be configured to assert a DMA transfer request. In the receiver, S1[RDRF], can be configured to assert a DMA transfer request. The following table shows the configuration field settings required to configure each flag for DMA operation.

Table 40-80. DMA configuration

Flag	Request enable bit	DMA select bit
TDRE	TIE = 1	TDMAS = 1
RDRF	RIE = 1	RDMAS = 1

When a flag is configured for a DMA request, its associated DMA request is asserted when the flag is set. When S1[RDRF] is configured as a DMA request, the clearing mechanism of reading S1, followed by reading D, does not clear the associated flag. The DMA request remains asserted until an indication is received that the DMA transactions are done. When this indication is received, the flag bit and the associated DMA request is cleared. If the DMA operation failed to remove the situation that caused the DMA request, another request is issued.

40.8 Application information

This section describes the UART application information.

40.8.1 Transmit/receive data buffer operation

The UART has independent receive and transmit buffers. The size of these buffers may vary depending on the implementation of the module. The implemented size of the buffers is a fixed constant via PFIFO[TXFIFOSIZE] and PFIFO[RXFIFOSIZE]. Additionally, legacy support is provided that allows for the FIFO structure to operate as a depth of one. This is the default/reset behavior of the module and can be adjusted using the PFIFO[RXFE] and PFIFO[TXFE] bits. Individual watermark levels are also provided for transmit and receive.

There are multiple ways to ensure that a data block, which is a set of characters, has completed transmission. These methods include:

- 1. Set TXFIFO[TXWATER] to 0. TDRE asserts when there is no further data in the transmit buffer. Alternatively the S1[TC] flag can be used to indicate when the transmit shift register is also empty.
- 2. Poll TCFIFO[TXCOUNT]. Assuming that only data for a data block has been put into the data buffer, when TCFIFO[TXCOUNT] = 0, all data has been transmitted or is in the process of transmission.
- 3. S1[TC] can be monitored. When S1[TC] asserts, it indicates that all data has been transmitted and there is no data currently being transmitted in the shift register.

40.8.2 Initialization sequence

To initiate a UART transmission:

- 1. Configure the UART.
 - a. Select a baud rate. Write this value to the UART baud registers (BDH/L) to begin the baud rate generator. Remember that the baud rate generator is disabled when the baud rate is zero. Writing to the BDH has no effect without also writing to BDL.
 - b. Write to C1 to configure word length, parity, and other configuration bits (LOOPS, RSRC, M, WAKE, ILT, PE, and PT). Write to C4, MA1, and MA2 to configure.
 - c. Enable the transmitter, interrupts, receiver, and wakeup as required, by writing to C2 (TIE, TCIE, RIE, ILIE, TE, RE, RWU, and SBK), S2 (MSBF and BRK13), and C3 (ORIE, NEIE, PEIE, and FEIE). A preamble or idle character is then shifted out of the transmitter shift register.

Application information

- 2. Transmit procedure for each byte.
 - a. Monitor S1[TDRE] by reading S1 or responding to the TDRE interrupt. The amount of free space in the transmit buffer directly using TCFIFO[TXCOUNT] can also be monitored.
 - b. If the TDRE flag is set, or there is space in the transmit buffer, write the data to be transmitted to (C3[T8]/D). A new transmission will not result until data exists in the transmit buffer.
- 3. Repeat step 2 for each subsequent transmission.

Note

During normal operation, S1[TDRE] is set when the shift register is loaded with the next data to be transmitted from the transmit buffer and the number of datawords contained in the transmit buffer is less than or equal to the value in TWFIFO[TXWATER]. This occurs 9/16ths of a bit time after the start of the stop bit of the previous frame.

To separate messages with preambles with minimum idle line time, use this sequence between messages.

- 1. Write the last dataword of the first message to C3[T8]/D.
- 2. Wait for S1[TDRE] to go high with TWFIFO[TXWATER] = 0, indicating the transfer of the last frame to the transmit shift register.
- 3. Queue a preamble by clearing and then setting C2[TE].
- 4. Write the first and subsequent datawords of the second message to C3[T8]/D.

40.8.3 Overrun (OR) flag implications

To be flexible, the overrun flag (OR) operates slight differently depending on the mode of operation. There may be implications that need to be carefully considered. This section clarifies the behavior and the resulting implications. Regardless of mode, if a dataword is received while S1[OR] is set, S1[RDRF] and S1[IDLE] are blocked from asserting. If S1[RDRF] or S1[IDLE] were previously asserted, they will remain asserted until cleared.

40.8.3.1 Overrun operation

The assertion of S1[OR] indicates that a significant event has occurred. The assertion indicates that received data has been lost because there was a lack of room to store it in the data buffer. Therefore, while S1[OR] is set, no further data is stored in the data buffer until S1[OR] is cleared. This ensures that the application will be able to handle the overrun condition.

In most applications, because the total amount of lost data is known, the application will attempt to return the system to a known state. Before S1[OR] is cleared, all received data will be dropped. For this, the software does the following.

- 1. Remove data from the receive data buffer. This could be done by reading data from the data buffer and processing it if the data in the FIFO was still valuable when the overrun event occurred, or using CFIFO[RXFLUSH] to clear the buffer.
- 2. Clear S1[OR]. Note that if data was cleared using CFIFO[RXFLUSH], then clearing S1[OR] will result in SFIFO[RXUF] asserting. This is because the only way to clear S1[OR] requires reading additional information from the FIFO. Care should be taken to disable the SFIFO[RXUF] interrupt prior to clearing the OR flag and then clearing SFIFO[RXUF] after the OR flag has been cleared.

When LIN break detect (LBKDE) is asserted, S1[OR] has significantly different behavior than in other modes. S1[OR] will be set, regardless of how much space is actually available in the data buffer, if a LIN break character has been detected and the corresponding flag, S2[LBKDIF], is not cleared before the first data character is received after S2[LBKDIF] asserted. This behavior is intended to allow the software sufficient time to read the LIN break character from the data buffer to ensure that a break character was actually detected. The checking of the break character was used on some older implementations and is therefore supported for legacy reasons. Applications that do not require this checking can simply clear S2[LBKDIF] without checking the stored value to ensure it is a break character.

40.8.4 Match address registers

The two match address registers allow a second match address function for a broadcast or general call address to the serial bus, as an example.

40.8.5 Modem feature

This section describes the modem features.

40.8.5.1 Ready-to-receive using RTS

To help to stop overrun of the receiver data buffer, the RTS signal can be used by the receiver to indicate to another UART that it is ready to receive data. The other UART can send the data when its CTS signal is asserted. This handshaking conforms to the TIA-232-E standard. A transceiver is necessary if the required voltage levels of the communication link do not match the voltage levels of the UART's RTS and CTS signals.

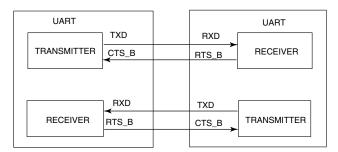


Figure 40-89. Ready-to-receive

The transmitter's CTS signal can be used for hardware flow control whether its RTS signal is used for hardware flow control, transceiver driver enable, or not at all.

40.8.5.2 Transceiver driver enable using RTS

RS-485 is a multiple drop communication protocol in which the UART transceiver's driver is 3-stated unless the UART is driving. The RTS signal can be used by the transmitter to enable the driver of a transceiver. The polarity of RTS can be matched to the polarity of the transceiver's driver enable signal. See the following figure.

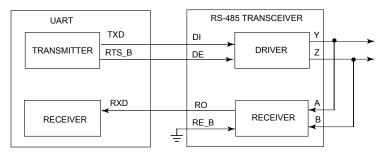


Figure 40-90. Transceiver driver enable using RTS

In the figure, the receiver enable signal is asserted. Another option for this connection is to connect RTS_B to both DE and RE_B. The transceiver's receiver is disabled while driving. A pullup can pull RXD to a non-floating value during this time. This option can be refined further by operating the UART in single wire mode, freeing the RXD pin for other uses.

40.8.6 Legacy and reverse compatibility considerations

Recent versions of the UART have added several new features. Whenever reasonably possible, reverse compatibility was maintained. However, in some cases this was either not feasible or the behavior was deemed as not intended. This section describes several differences to legacy operation that resulted from these recent enhancements. If application code from previous versions is used, it must be reviewed and modified to take the following items into account. Depending on the application code, additional items that are not listed here may also need to be considered.

- 1. Various reserved registers and register bits are used, such as, MSFB and M10.
- 2. This module now generates an error when invalid address spaces are used.
- 3. While documentation indicated otherwise, in some cases it was possible for S1[IDLE] to assert even if S1[OR] was set.
- 4. S1[OR] will be set only if the data buffer (FIFO) does not have sufficient room. Previously, the data buffer was always a fixed size of one and the S1[OR] flag would set so long as S1[RDRF] was set even if there was room in the data buffer. While the clearing mechanism has remained the same for S1[RDRF], keeping the OR flag assertion tied to the RDRF event rather than the data buffer being full would have greatly reduced the usefulness of the buffer when its size is larger than one.
- 5. Previously, when C2[RWU] was set (and WAKE = 0), the IDLE flag could reassert up to every bit period causing an interrupt and requiring the host processor to reassert C2[RWU]. This behavior has been modified. Now, when C2[RWU] is set (and WAKE = 0), at least one non-idle bit must be detected before an idle can be detected.

KV10 Sub-Family Reference Manual, Rev. 7, September 2014

Chapter 41 General-Purpose Input/Output (GPIO)

41.1 Introduction

NOTE

For the chip-specific implementation details of this module's instances, see the chip configuration information.

The general-purpose input and output (GPIO) module is accessible via the peripheral bus and also communicates to the processor core via a zero wait state interface (IOPORT) for maximum pin performance. The GPIO registers support 8-bit, 16-bit or 32-bit accesses.

The GPIO data direction and output data registers control the direction and output data of each pin when the pin is configured for the GPIO function. The GPIO input data register displays the logic value on each pin when the pin is configured for any digital function, provided the corresponding Port Control and Interrupt module for that pin is enabled.

Efficient bit manipulation of the general-purpose outputs is supported through the addition of set, clear, and toggle write-only registers for each port output data register.

41.1.1 Features

- Features of the GPIO module include:
 - Port Data Input register visible in all digital pin-multiplexing modes
 - Port Data Output register with corresponding set/clear/toggle registers
 - Port Data Direction register
 - Zero wait state access to GPIO registers through IOPORT

NOTE

The GPIO module is clocked by system clock.

41.1.2 Modes of operation

The following table depicts different modes of operation and the behavior of the GPIO module in these modes.

Modes of operation	Description
Run	The GPIO module operates normally.
Wait	The GPIO module operates normally.
Stop	The GPIO module is disabled.
Debug	The GPIO module operates normally.

Table 41-1. Modes of operation

41.1.3 GPIO signal descriptions

Table 41-2. GPIO signal descriptions

GPIO signal descriptions	Description	I/O
PORTA31-PORTA0	General-purpose input/output	I/O
PORTB31-PORTB0	General-purpose input/output	I/O
PORTC31-PORTC0	General-purpose input/output	I/O
PORTD31-PORTD0	General-purpose input/output	I/O
PORTE31-PORTE0	General-purpose input/output	I/O
PTD7–PTD0	General-purpose input/output	I/O

NOTE

Not all pins within each port are implemented on each device. See the chapter on signal multiplexing for the number of GPIO ports available in the device.

41.1.3.1 Detailed signal description

Table 41-3. GPIO interface-detailed signal description	ons
--	-----

Signal	I/O	Description									
PORTA31-PORTA0	I/O	General-pu	irpose input/output								
PORTB31-PORTB0		State meaning	Asserted: The pin is logic 1.								
PORTC31-PORTC0			Deasserted: The pin is logic 0.								
PORTD31-PORTD0		Timing	Assertion: When output, this								
PORTE31-PORTE0			signal occurs on the rising- edge of the system clock. For								
PTD7-PTD0			input, it may occur at any time and input may be asserted asynchronously to the system clock.								
			Deassertion: When output, this signal occurs on the rising-edge of the system clock. For input, it may occur at any time and input may be asserted asynchronously to the system clock.								

NOTE

Not all pins within each port are implemented on each device. See the chapter on signal multiplexing for the number of GPIO ports available in the device.

41.2 Memory map and register definition

Any read or write access to the GPIO memory space that is outside the valid memory map results in a bus error.

NOTE

For simplicity, each GPIO port's registers appear with the same width of 32 bits, corresponding to 32 pins. The actual number of pins per port (and therefore the number of usable control bits per port register) is chip-specific. Refer to the Chip Configuration chapter to see the exact control bits for the nonidentical port instance.

GPIO memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
400F_F000	Port Data Output Register (GPIOA_PDOR)	32	R/W	0000_0000h	41.2.1/975
400F_F004	Port Set Output Register (GPIOA_PSOR)	32	W (always reads 0)	0000_0000h	41.2.2/976
400F_F008	Port Clear Output Register (GPIOA_PCOR)	32	W (always reads 0)	0000_0000h	41.2.3/976
400F_F00C	Port Toggle Output Register (GPIOA_PTOR)	32	W (always reads 0)	0000_0000h	41.2.4/977
400F_F010	Port Data Input Register (GPIOA_PDIR)	32	R	0000_0000h	41.2.5/977
400F_F014	Port Data Direction Register (GPIOA_PDDR)	32	R/W	0000_0000h	41.2.6/978
400F_F040	Port Data Output Register (GPIOB_PDOR)	32	R/W	0000_0000h	41.2.1/975
400F_F044	Port Set Output Register (GPIOB_PSOR)	32	W (always reads 0)	0000_0000h	41.2.2/976
400F_F048	Port Clear Output Register (GPIOB_PCOR)	32	W (always reads 0)	0000_0000h	41.2.3/976
400F_F04C	Port Toggle Output Register (GPIOB_PTOR)	32	W (always reads 0)	0000_0000h	41.2.4/977
400F_F050	Port Data Input Register (GPIOB_PDIR)	32	R	0000_0000h	41.2.5/977
400F_F054	Port Data Direction Register (GPIOB_PDDR)	32	R/W	0000_0000h	41.2.6/978
400F_F080	Port Data Output Register (GPIOC_PDOR)	32	R/W	0000_0000h	41.2.1/975
400F_F084	Port Set Output Register (GPIOC_PSOR)	32	W (always reads 0)	0000_0000h	41.2.2/976
400F_F088	Port Clear Output Register (GPIOC_PCOR)	32	W (always reads 0)	0000_0000h	41.2.3/976
400F_F08C	Port Toggle Output Register (GPIOC_PTOR)	32	W (always reads 0)	0000_0000h	41.2.4/977
400F_F090	Port Data Input Register (GPIOC_PDIR)	32	R	0000_0000h	41.2.5/977
400F_F094	Port Data Direction Register (GPIOC_PDDR)	32	R/W	0000_0000h	41.2.6/978
400F_F0C0	Port Data Output Register (GPIOD_PDOR)	32	R/W	0000_0000h	41.2.1/975
400F_F0C4	Port Set Output Register (GPIOD_PSOR)	32	W (always reads 0)	0000_0000h	41.2.2/976
400F_F0C8	Port Clear Output Register (GPIOD_PCOR)	32	W (always reads 0)	0000_0000h	41.2.3/976

Table continues on the next page...

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
400F_F0CC	Port Toggle Output Register (GPIOD_PTOR)	32	W (always reads 0)	0000_0000h	41.2.4/977
400F_F0D0	Port Data Input Register (GPIOD_PDIR)	32	R	0000_0000h	41.2.5/977
400F_F0D4	Port Data Direction Register (GPIOD_PDDR)	32	R/W	0000_0000h	41.2.6/978
400F_F100	Port Data Output Register (GPIOE_PDOR)	32	R/W	0000_0000h	41.2.1/975
400F_F104	Port Set Output Register (GPIOE_PSOR)	32	W (always reads 0)	0000_0000h	41.2.2/976
400F_F108	Port Clear Output Register (GPIOE_PCOR)	32	W (always reads 0)	0000_0000h	41.2.3/976
400F_F10C	Port Toggle Output Register (GPIOE_PTOR)	32	W (always reads 0)	0000_0000h	41.2.4/977
400F_F110	Port Data Input Register (GPIOE_PDIR)	32	R	0000_0000h	41.2.5/977
400F_F114	Port Data Direction Register (GPIOE_PDDR)	32	R/W	0000_0000h	41.2.6/978

GPIO memory map (continued)

41.2.1 Port Data Output Register (GPIOx_PDOR)

This register configures the logic levels that are driven on each general-purpose output pins.

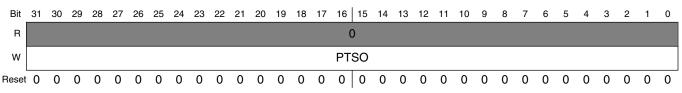
NOTE

Do not modify pin configuration registers associated with pins not available in your selected package. All unbonded pins not available in your package will default to DISABLE state for lowest power consumption.

Address: Base address + 0h offset

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R W	PDO																															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

GPIOx_PDOR field descriptions


Field	Description
31–0 PDO	 Port Data Output Register bits for unbonded pins return a undefined value when read. Logic level 0 is driven on pin, provided pin is configured for general-purpose output. Logic level 1 is driven on pin, provided pin is configured for general-purpose output.

41.2.2 Port Set Output Register (GPIOx_PSOR)

This register configures whether to set the fields of the PDOR.

Address: Base address + 4h offset

GPIOx_PSOR field descriptions

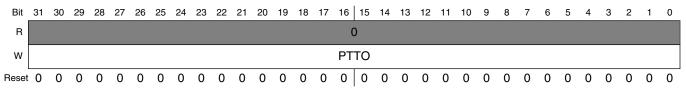
Field	Description
PTSO	 Port Set Output Writing to this register will update the contents of the corresponding bit in the PDOR as follows: 0 Corresponding bit in PDORn does not change. 1 Corresponding bit in PDORn is set to logic 1.

41.2.3 Port Clear Output Register (GPIOx_PCOR)

This register configures whether to clear the fields of PDOR.

Address: Base address + 8h offset

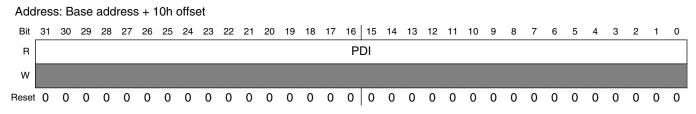
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R																()															
w	PTCO																															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


GPIOx_PCOR field descriptions

Field	Description
31–0 PTCO	Port Clear Output Writing to this register will update the contents of the corresponding bit in the Port Data Output Register (PDOR) as follows: 0 Corresponding bit in PDORn does not change.
	1 Corresponding bit in PDORn is cleared to logic 0.

41.2.4 Port Toggle Output Register (GPIOx_PTOR)

Address: Base address + Ch offset


GPIOx_PTOR field descriptions

Field	Description
PTTO	 Port Toggle Output Writing to this register will update the contents of the corresponding bit in the PDOR as follows: 0 Corresponding bit in PDORn does not change. 1 Corresponding bit in PDORn is set to the inverse of its existing logic state.

41.2.5 Port Data Input Register (GPIOx_PDIR)


NOTE

Do not modify pin configuration registers associated with pins not available in your selected package. All unbonded pins not available in your package will default to DISABLE state for lowest power consumption.

GPIOx_PDIR field descriptions

Field	Description
31–0 PDI	Port Data Input Reads 0 at the unimplemented pins for a particular device. Pins that are not configured for a digital
	function read 0. If the Port Control and Interrupt module is disabled, then the corresponding bit in PDIR does not update.
	0 Pin logic level is logic 0, or is not configured for use by digital function.1 Pin logic level is logic 1.

41.2.6 Port Data Direction Register (GPIOx_PDDR)

The PDDR configures the individual port pins for input or output.

Address: Base address + 14h offset

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R																РГ	מכ															
W																																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

GPIOx_PDDR field descriptions

Field	Description
PDD	 Port Data Direction Configures individual port pins for input or output. 0 Pin is configured as general-purpose input, for the GPIO function. 1 Pin is configured as general-purpose output, for the GPIO function.

41.3 FGPIO memory map and register definition

The GPIO registers are also aliased to the IOPORT interface on the Cortex-M0+ from address 0xF800_0000.

Accesses via the IOPORT interface occur in parallel with any instruction fetches and will therefore complete in a single cycle. This aliased Fast GPIO memory map is called FGPIO.

Any read or write access to the FGPIO memory space that is outside the valid memory map results in a bus error. All register accesses complete with zero wait states, except error accesses which complete with one wait state.

NOTE

For simplicity, each FGPIO port's registers appear with the same width of 32 bits, corresponding to 32 pins. The actual number of pins per port (and therefore the number of usable control bits per port register) is chip-specific. Refer to the Chip Configuration chapter to see the exact control bits for the nonidentical port instance.

FGPIO memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
F800_0000	Port Data Output Register (FGPIOA_PDOR)	32	R/W	0000_0000h	41.3.1/980
F800_0004	Port Set Output Register (FGPIOA_PSOR)	32	W (always reads 0)	0000_0000h	41.3.2/981
F800_0008	Port Clear Output Register (FGPIOA_PCOR)	32	W (always reads 0)	0000_0000h	41.3.3/981
F800_000C	Port Toggle Output Register (FGPIOA_PTOR)	32	W (always reads 0)	0000_0000h	41.3.4/982
F800_0010	Port Data Input Register (FGPIOA_PDIR)	32	R	0000_0000h	41.3.5/982
F800_0014	Port Data Direction Register (FGPIOA_PDDR)	32	R/W	0000_0000h	41.3.6/983
F800_0040	Port Data Output Register (FGPIOB_PDOR)	32	R/W	0000_0000h	41.3.1/980
F800_0044	Port Set Output Register (FGPIOB_PSOR)	32	W (always reads 0)	0000_0000h	41.3.2/981
F800_0048	Port Clear Output Register (FGPIOB_PCOR)	32	W (always reads 0)	0000_0000h	41.3.3/981
F800_004C	Port Toggle Output Register (FGPIOB_PTOR)	32	W (always reads 0)	0000_0000h	41.3.4/982
F800_0050	Port Data Input Register (FGPIOB_PDIR)	32	R	0000_0000h	41.3.5/982
F800_0054	Port Data Direction Register (FGPIOB_PDDR)	32	R/W	0000_0000h	41.3.6/983
F800_0080	Port Data Output Register (FGPIOC_PDOR)	32	R/W	0000_0000h	41.3.1/980
F800_0084	Port Set Output Register (FGPIOC_PSOR)	32	W (always reads 0)	0000_0000h	41.3.2/981
F800_0088	Port Clear Output Register (FGPIOC_PCOR)	32	W (always reads 0)	0000_0000h	41.3.3/981
F800_008C	Port Toggle Output Register (FGPIOC_PTOR)	32	W (always reads 0)	0000_0000h	41.3.4/982
F800_0090	Port Data Input Register (FGPIOC_PDIR)	32	R	0000_0000h	41.3.5/982
F800_0094	Port Data Direction Register (FGPIOC_PDDR)	32	R/W	0000_0000h	41.3.6/983
F800_00C0	Port Data Output Register (FGPIOD_PDOR)	32	R/W	0000_0000h	41.3.1/980
F800_00C4	Port Set Output Register (FGPIOD_PSOR)	32	W (always reads 0)	0000_0000h	41.3.2/981
F800_00C8	Port Clear Output Register (FGPIOD_PCOR)	32	W (always reads 0)	0000_0000h	41.3.3/981

Table continues on the next page...

רטריO memory map and register definition

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
F800_00CC	Port Toggle Output Register (FGPIOD_PTOR)	32	W (always reads 0)	0000_0000h	41.3.4/982
F800_00D0	Port Data Input Register (FGPIOD_PDIR)	32	R	0000_0000h	41.3.5/982
F800_00D4	Port Data Direction Register (FGPIOD_PDDR)	32	R/W	0000_0000h	41.3.6/983
F800_0100	Port Data Output Register (FGPIOE_PDOR)	32	R/W	0000_0000h	41.3.1/980
F800_0104	Port Set Output Register (FGPIOE_PSOR)	32	W (always reads 0)	0000_0000h	41.3.2/981
F800_0108	Port Clear Output Register (FGPIOE_PCOR)	32	W (always reads 0)	0000_0000h	41.3.3/981
F800_010C	Port Toggle Output Register (FGPIOE_PTOR)	32	W (always reads 0)	0000_0000h	41.3.4/982
F800_0110	Port Data Input Register (FGPIOE_PDIR)	32	R	0000_0000h	41.3.5/982
F800_0114	Port Data Direction Register (FGPIOE_PDDR)	32	R/W	0000_0000h	41.3.6/983

FGPIO memory map (continued)

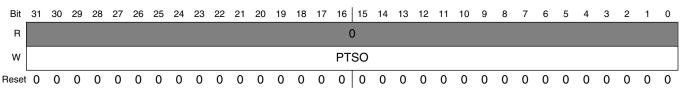
41.3.1 Port Data Output Register (FGPIOx_PDOR)

This register configures the logic levels that are driven on each general-purpose output pins.

Address: Base address + 0h offset

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R																P																
W																ΓL	0															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

FGPIOx_PDOR field descriptions


Field	Description
31–0 PDO	Port Data Output Unimplemented pins for a particular device read as zero.
	 Logic level 0 is driven on pin, provided pin is configured for general-purpose output. Logic level 1 is driven on pin, provided pin is configured for general-purpose output.

41.3.2 Port Set Output Register (FGPIOx_PSOR)

This register configures whether to set the fields of the PDOR.

Address: Base address + 4h offset

FGPIOx_PSOR field descriptions

Field	Description
31–0 PTSO	Port Set Output Writing to this register will update the contents of the corresponding bit in the PDOR as follows: 0 Corresponding bit in PDORn does not change. 1 Corresponding bit in PDORn is set to logic 1.

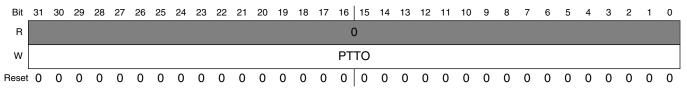
41.3.3 Port Clear Output Register (FGPIOx_PCOR)

This register configures whether to clear the fields of PDOR.

Address: Base address + 8h offset

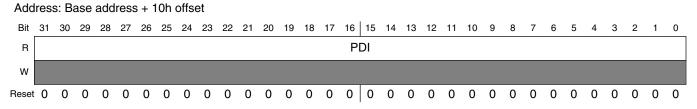
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R																()															
w																PT	со															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

FGPIOx_PCOR field descriptions


Field	Description
31–0 PTCO	Port Clear Output Writing to this register will update the contents of the corresponding bit in the Port Data Output Register (PDOR) as follows:
	 Corresponding bit in PDORn does not change. Corresponding bit in PDORn is cleared to logic 0.

רטדיוO memory map and register definition

41.3.4 Port Toggle Output Register (FGPIOx_PTOR)


Address: Base address + Ch offset

FGPIOx_PTOR field descriptions

Field	Description
PTTO	 Port Toggle Output Writing to this register will update the contents of the corresponding bit in the PDOR as follows: 0 Corresponding bit in PDORn does not change. 1 Corresponding bit in PDORn is set to the inverse of its existing logic state.

41.3.5 Port Data Input Register (FGPIOx_PDIR)

FGPIOx_PDIR field descriptions

Field	Description
31–0 PDI	Port Data Input
	Reads 0 at the unimplemented pins for a particular device. Pins that are not configured for a digital function read 0. If the Port Control and Interrupt module is disabled, then the corresponding bit in PDIR does not update.
	0 Pin logic level is logic 0, or is not configured for use by digital function.1 Pin logic level is logic 1.

41.3.6 Port Data Direction Register (FGPIOx_PDDR)

The PDDR configures the individual port pins for input or output.

Address: Base address + 14h offset Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R PDD W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FGPIOx_PDDR field descriptions

Field	Description
PDD	 Port Data Direction Configures individual port pins for input or output. 0 Pin is configured as general-purpose input, for the GPIO function. 1 Pin is configured as general-purpose output, for the GPIO function.

41.4 Functional description

41.4.1 General-purpose input

The logic state of each pin is available via the Port Data Input registers, provided the pin is configured for a digital function and the corresponding Port Control and Interrupt module is enabled.

The Port Data Input registers return the synchronized pin state after any enabled digital filter in the Port Control and Interrupt module. The input pin synchronizers are shared with the Port Control and Interrupt module, so that if the corresponding Port Control and Interrupt module is disabled, then synchronizers are also disabled. This reduces power consumption when a port is not required for general-purpose input functionality.

41.4.2 General-purpose output

The logic state of each pin can be controlled via the port data output registers and port data direction registers, provided the pin is configured for the GPIO function. The following table depicts the conditions for a pin to be configured as input/output.

If	Then

Table continues on the next page...

runctional description	
A pin is configured for the GPIO function and the corresponding port data direction register bit is clear.	The pin is configured as an input.
A pin is configured for the GPIO function and the corresponding port data direction register bit is set.	The pin is configured as an output and and the logic state of the pin is equal to the corresponding port data output register.

To facilitate efficient bit manipulation on the general-purpose outputs, pin data set, pin data clear, and pin data toggle registers exist to allow one or more outputs within one port to be set, cleared, or toggled from a single register write.

The corresponding Port Control and Interrupt module does not need to be enabled to update the state of the port data direction registers and port data output registers including the set/clear/toggle registers.

41.4.3 IOPORT

The GPIO registers are also aliased to the IOPORT interface on the Cortex-M0+ from address 0xF800_0000. Accesses via the IOPORT interface occur in parallel with any instruction fetches and will therefore complete in a single cycle. If the DMA attempts to access the GPIO registers on the same cycle as an IOPORT access, then the DMA access will stall until any IOPORT accesses have completed.

Chapter 42 Release Notes for Revision 7

42.1 General changes throughout document

- Added Pulse-Out n Delay register (PDB0_PO1DLY) to the PDB module.
- Removed LBKDDMAS bitfield from UARTx_C5 register in UART chapter
- Updated bitfield description of LBKDIE in UARTx_BDH register
- · Changed instances of EREFS0 to EREFS throughout the document
- Removed the bitfield DACBFWM from DACx_C1
- Updated the DAC block diagram.
- Changed the reset value of DACx_SR[DACBFWMF] to 1
- Changed bitwitdth of DACx_C1[DACBFMD] to 1.
- · Removed instances of swing mode throughout the DAC chapter.

42.2 About This Document chapter changes

· No substantial content changes

42.3 Introduction chapter changes

No substantial content changes

42.4 Chip Configuration chapter changes

Updated the section "SPI Instantiation Information."

42.5 Memory Map chapter changes

No substantial content changes

42.6 Clock Distribution chapter changes

• Updated the figure "Flex Timer clock generation"

 Added the note "It is recommended to set both SIM_SOPTx[FTMxCLKSEL] and FTMxSC[CLKS] as 2'b11, when MCGIRCLK and OSCERCLK are used as FTMx clock" to the section "Flex Timer (FTM) Clocking

42.7 Reset and Boot chapter changes

• No substantial content changes

42.8 Power Management chapter changes

• No substantial content changes

42.9 Security chapter changes

• No substantial content changes

42.10 Debug chapter changes

• No substantial content changes

42.11 Signal Multiplexing and Signal Descriptions chapter changes

• No substantial content changes

42.12 PORT changes

No substantial content changes

42.13 SIM changes

• Updated bitfield descriptions of SIM_SOPT7[ADC0TRGSEL] and SIM_SOPT7[ADC1TRGSEL]

42.14 SMC changes

· No substantial content changes

42.15 PMC changes

· No substantial content changes

42.16 LLWU changes

No substantial content changes

42.17 RCM changes

No substantial content changes

42.18 BME configuration changes

No substantial content changes

42.19 MMDVSQ changes

No substantial content changes

42.20 MCM changes

No substantial content changes

42.21 MTB configuration changes

• No substantial content changes

42.22 Crossbar switch module changes

· No substantial content changes

42.23 AIPS module changes

No substantial content changes

42.24 DMAMUX module changes

• No substantial content changes

42.25 eDMA module changes

• Removed "(4 beats of 64 bits)" from TCDn_ATTR[SSIZE] bit field description for b101 value.

• Fault reporting and handling : Added note re. cancel transfer request. Added note re. channel priority errors.

Block parts : Changed "16 bytes of register storage" to "a data buffer" in Data path description.

• Added note to DMA_CR[CLM] description re. restriction on use of continuous link mode.

 In section "Peak transfer rates", added a note stating "All architectures will not meet the assumptions listed above. See the SRAM configuration section for more information."

42.26 EWM changes

· No substantial content changes

42.27 WDOG changes

No substantial content changes

42.28 MCG changes

• Updated the bitfield access of ATMF and LOCS0 in the MCG_SC register

42.29 OSC changes

No substantial content changes

42.30 FMC changes

· No substantial content changes

42.31 FTFA changes

No substantial content changes

42.32 CRC changes

No substantial content changes

42.33 ADC changes

- Editorial changes
- Changed bitfield access of ADC_SC3[CALF] to w1c (write 1 to clear).

42.34 CMP changes

· No substantial content changes

42.35 DAC changes

• No substantial content changes

42.36 FTM changes

· No substantial content changes

42.37 LPTMR changes

· No substantial content changes

42.38 PDB changes

• No substantial content changes

42.39 SPI module changes

Included two topics and removed 'DSI' text from title of these topics; Modified SPI Transfer Format (MTFE = 1, CPHA = 0) and Modified SPI Transfer Format (MTFE = 1, CPHA = 1).

- Reduced bit width of SPIx_CTAR_SLAVE [FMSZ] from 5 to 4.
- In RSER register, added note "Always write the reset value to this field." to Reserved bits.
- In PUSHR register, added note "Always write the reset value to this field." to Reserved bits.
- In Memory Map/Register Definition section, added 'RXFRn' word.
- In Module Configuration Register (SPI_MCR) register, added "Refer to the chip-specific..." sentence in PCSIS bit.
- In PUSH TX FIFO Register In Master Mode (SPI_PUSHR) register, added "Refer to the chip-specific..." sentence in PCS bit.
- In Continuous Serial Communications Clock section, updated the second sentence in second paragraph as 'Enabling this bit generates the Continuous SCK only if MCR[HALT] bit is low'.
- Editorial updates.

42.40 I2C changes

• Added the handling of START/STOP interrupt in the ISR flowchart Typical I2C interrupt routine.

42.41 UART changes

No substantial content changes

42.42 GPIO changes

· No substantial content changes

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

©2014 Freescale Semiconductor, Inc.

Document Number KV10P48M75RM Revision 7, December 2014

